Experimental Evaluation of Oxygen and Dissolved Solids Levels in Hydroponic Crops Using Organic Nutrients as a Function of the Number of Daily Recirculations
Abstract
1. Introduction
2. Materials and Methods
2.1. Hydroponic System Design
2.2. Formulation and Dosage of Organic Nutrients
2.3. Automatic Recirculation System Design
2.4. Sensors
2.5. Recirculation Logic
2.6. IoT System
2.7. Monitoring Interface
3. Implementation
3.1. Recirculation System Coupling
3.2. Electronic System Functional Tests
3.3. Physicochemical Monitoring in Hydroponic Cultivation
3.4. Lettuce Planting
4. Results
4.1. Standardization of Recirculations
4.2. Lettuce Physical Characteristics
4.2.1. Stem Thickness
4.2.2. Leaf Length
4.2.3. Head Thickness
4.2.4. Number of Leaves
4.2.5. Root Length
4.3. Physicochemical Variables
4.3.1. pH Characteristics
4.3.2. Total Dissolved Solids (TDS):
4.3.3. Dissolved Oxygen (DO):
4.3.4. Water Hardness:
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arumugam, T.; Sandeep, G.; Maheswari, M.U. Soilless farming of vegetable crops: An overview. Pharma. Innov. J. 2021, 10, 773–785. [Google Scholar]
- Manos, D.; Xydis, G. Hydroponics: Are we moving towards that direction only because of the environment? A discussion on forecasting and a systems review. Environ. Sci. Pollut. Res. 2019, 26, 12662–12672. [Google Scholar] [CrossRef]
- Hidalgo, Á.L. Manual Técnico Para el Desarrollo de Cultivos Hidropónicos, 1st ed.; Centro de Publicaciones U.C.S.G: Guayaquil, Ecuador, 2005. [Google Scholar]
- Saavedra Sarango, J.A.; Pardo Alejandro, D.F.P.A.; Gualan Cueva, M.G.; Jiménez Espinoza, J.A.; Ramón Sarango, X.d.C.; Cueva Salazar, A.J. El Impacto De Las Verduras Hidropónicas En La Salud. Cienc. Lat. 2024, 8, 2584–2592. [Google Scholar] [CrossRef]
- Albuja, V.; Andrade, J.; Lucano, C.; Rodriguez, M. Comparison of the Advantages of Hydroponic Systems as Agricultural Alternatives in Urban Areas. Minerva 2021, 2, 45–54. [Google Scholar] [CrossRef]
- Angulo Cueva, G.E.; Espinoza, S.T.L.; Vásquez García, J. Plagas y enfermedades presentes en cultivo hidropónico de dos variedades de tomate (Lycopersicon esculentum, Mill), bajo condiciones semi controladas en Chachapoyas—Perú. Rev. Investig. Agroproducción Sustentable 2018, 2, 7–17. [Google Scholar] [CrossRef]
- Sapkota, S.; Sapkota, S.; Liu, Z. Effects of Nutrient Composition and Lettuce Cultivar on Crop Production in Hydroponic Culture. Horticulturae 2019, 5, 72. [Google Scholar] [CrossRef]
- Kumari, N.; Jha, V.K. A Review on Hydroponic System: Hope and Hype. In Recent Advances in Chemical Sciences & Biotechnology; New Delhi Publication: New Delhi, India, 2019. [Google Scholar]
- De la Rosa-Rodríguez, R.; Lara-Herrera, A.; Trejo-Téllez, L.I.; Padilla-Bernal, L.E.; Solís-Sánchez, L.O.; Ortiz-Rodríguez, J.M. Water and fertilizers use efficiency in two hydroponic systems for tomato production. Hortic. Bras. 2020, 38, 47–52. [Google Scholar] [CrossRef]
- AlShrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 2017, 27, 247–255. [Google Scholar]
- Gashgari, R.; Alharbi, K.; Mughrbi, K.; Jan, A.; Golam, A. Comparison between Growing Plants in Hydroponic System and Soil Based System. In Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (MCM’18), Madrid, Spain, 16–18 August 2018. [Google Scholar]
- Sahoo, S.; Sahoo, D.; Sahoo, K.K. Optimization of an efficient hydroponic cultivation method for high yield of strawberry plants. S. Afr. J. Bot. 2024, 167, 429–440. [Google Scholar] [CrossRef]
- Lo, Y.C.; Tsai, Y.-H.; Chen, H.; Hsieh, H.-P.; Chen, Y.-C.; Chen, H.-E.; Lin, Z.-H.; Huang, H.-T.; Liu, J.-M.; Liaw, C.-C.; et al. Quality and production enhancement of fish mint, Houttuynia cordata Thunb., cultivated in a hydroponic planting system with designed plant growth-promoting additives. Heliyon 2024, 10, e25875. [Google Scholar] [CrossRef]
- Nieto-Cañarte, C.A.; Lozano-Mendoza, P.H.; Penaherrera-Chang, C.P.; Vargas-Collaguazo, L.A. Huerto hidropónico: Solución para mitigar la contaminación ambiental y fortalecer la soberanía alimentaria en Quevedo, Ecuador. Rev. Soc. Front. 2025, 5, e595. [Google Scholar] [CrossRef]
- Lucho-Constantino, C.A.; Barrera-Ramírez, Z.J.; Beltrán-Hernández, R.I.; Aguilar-Huesca, J.A.; Arce-Cervantes, Ó.; López Pérez, P.A. Cultivos Hidropónicos Bajo Un Enfoque De Economía Circular; ICBI: Bangalore, Karnataka, 2025; Volume 13, Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=10097352 (accessed on 22 February 2024).
- Dhandapani, S.; Philip, V.S.; Ahamed, N.N.S.A.; Park, B.S. Advanced growth device boosts hydroponic efficiency: Enhancing yield and quality while reducing crop production cost and algae contamination. Environ. Technol. Innov. 2025, 37, 104051. [Google Scholar] [CrossRef]
- Cifuentes-Torres, L.; Mendoza-Espinosa, L.G.; Correa-Reyes, G.; Daesslé, L.W. Hydroponics with wastewater: A review of trends and opportunities. Water Environ. J. 2021, 35, 166–180. [Google Scholar] [CrossRef]
- Barus, S.P.; Dhamma, Y.A. Development of Hydroponic Application based on Web and Internet of Things for The Community to Monitor pH and Total Dissolved Solids. Int. J. Res. Community Serv. 2024, 5, 130–137. [Google Scholar] [CrossRef]
- Alam, T.; Haq, Z.-U.; Ahmed, M.A.; Ikram, M. Hydroponics as an advanced vegetable production technique: An overview. Zoo Bot. 2023, 1, 29–42. [Google Scholar] [CrossRef]
- Guarnizo, E.; Gil, R.; Márquez, N.; Duran, M. Hydroponic Cultivation for Quality Education in the Community for Milan. Estud. Perspect. 2010, 4, 523–544. [Google Scholar]
- Imbernón, A. Evaluation and Validation of Technologies and Tools for Sustainable Irrigation Management with Desalinated Seawater in Plots. Ph.D. Thesis, Universidad Politécnica de Cartagena, Murcia, España, 2023. [Google Scholar]
- Purwakalamsa, A.Z.; Gurning, T.E.; Silaen, E.; Tobing, P.; Siallagan, A.O.; Simatupang, F.S. Automated Nutrition Doser for Hydroponic System Based on IoT. IOP Conf. Ser. Earth Environ. Sci. 2023, 1253, 012024. [Google Scholar]
- Gillani, S.A.; Abbasi, R.; Martinez, P.; Ahmad, R. Comparison of Energy-use Efficiency for Lettuce Plantation under Nutrient Film Technique and Deep-Water Culture Hydroponic Systems. Procedia Comput. Sci. 2023, 217, 11–19. [Google Scholar] [CrossRef]
- Pomoni, D.I.; Koukou, M.K.; Vrachopoulos, M.G.; Vasiliadis, L. A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies 2023, 16, 1690. [Google Scholar] [CrossRef]
- Srinivasan, K.; Yadav, V.K. Fresh bell peppers consumed in cities: Unveiling the environmental impact of urban and rural food supply systems. Sci. Total Environ. 2024, 927, 172359. [Google Scholar] [CrossRef]
- Paturu, P.; Varadarajan, S. Assessing environmental sustainability by combining product service systems and life cycle perspective: A case study of hydroponic urban farming models in India. Sci. Total Environ. 2024, 927, 172232. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Cieza, J.-P.; Barahona-Burbano, R.-T. Cambio climático y sistemas de producción agroecológico, orgánico y convencional en los cantones Cayambe y Pedro Moncayo. Let. Verdes 2021, 29, 149–166. [Google Scholar] [CrossRef]
- Sangeetha, T.; Periyathambi, E. Automatic Nutrient Estimator: Distributing Nutrient Solution in Hydroponic Plants Based on Plant Growth. PeerJ Comput. Sci. 2024, 10, e1871. [Google Scholar] [CrossRef]
- Elescano-Arana, Y.D. Evaluación de la Rentabilidad Económica de la Producción de Forraje Verde Hidropónico de Maíz con Agua y Probiótico en Zúngaro Cocha en el 2023. Master's Thesis, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú, 2024. [Google Scholar]
- Kim, M.-J.; Shim, C.-K.; Ko, B.-G.; Kim, J. Effect of the Microalga Chlorella fusca CHK0059 on Strawberry PGPR and Biological Control of Fusarium Wilt Disease in Non-Pesticide Hydroponic Strawberry Cultivation. J. Microbiol. Biotechnol. 2020, 30, 708–716. [Google Scholar] [CrossRef]
- Gomes, F.Y.; Masdi, J.; Harunisa, J. Evaluating the Impact of Organic Fertilizers on Crop Yields, Soil Health, and Environmental Sustainability in Agriculture. J. Sos. Sains Terap. Dan Ris. 2024, 13, 13–22. (In Indonesia) [Google Scholar]
- Ezziddine, M.; Liltved, H.; Seljåsen, R. Cultivo hidropónico de lechuga con solución nutritiva orgánica de lodos acuícolas digeridos aeróbicamente. Agronomía 2021, 11, 1484. [Google Scholar] [CrossRef]
- Yuijn, P.; Williams, K.A. Organic hydroponics: A review. Sci. Hortic. 2024, 324, 112604. [Google Scholar] [CrossRef]
- Vought, K.; Haimanote, K.; Bayabil, J.; Crawford, D.; Zhang, Y.; Correll, M.; Martin-Ryals, A. Dynamics of micro and macronutrients in a hydroponic nutrient film technique system under lettuce cultivation. Heliyon 2024, 10, e32316. [Google Scholar] [CrossRef] [PubMed]
- Casey, L.; Freeman, B.; Kurt, F.; Brychkova, G.; McKeown, P.; Spillane, C.; Bezrukov, A.; Zaworotko, M.; Styles, D. Comparative environmental footprints of lettuce supplied by hydroponic controlled-environment agriculture and field-based supply chains. J. Clean. Prod. 2022, 369, 133214. [Google Scholar] [CrossRef]
- Fraile-Robayo, R.D.; Álvarez-Herrera, J.G.; Reyes, A.J.; Álvarez-Herrera, O.F.; Fraile-Robayo, A.L. Evaluation of the growth and quality of lettuce (Lactuca sativa L.) in a closed recirculating hydroponic system. Agron. Colomb. 2017, 35, 216–222. [Google Scholar] [CrossRef]
- Agbayani, L.S.T.; Villaverde, J.F. Effect of lettuce on different recirculation intervals of an IoT-Based hydroponics system using deep flow technique. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, 1–3 July 2022; pp. 1–6. [Google Scholar]
- Xu, K.; Kitazumi, Y.; Kano, K.; Shirai, O. Automatic Management of Nutrient Solution for Hydroponics-Construction of Multi-ion Stat. Jpn. Anal. Sci. 2020, 36, 1141–1144. [Google Scholar] [CrossRef]
- Adesh, D.; Swapni, S.; Aditya, S.; Krishna, H. Automated Hydroponic System; OAIJSE: Pune, India, 2021; Volume 6, Available online: https://www.oaijse.com/VolumeArticles/FullTextPDF/827_24.AUTOMATED_HYDROPONIC_SYSTEM.pdf (accessed on 22 February 2024).
- Selvalakshmi, S.; Bharath Singh, J.; Priyadharshini, S.; Sushmitha, S. PLC-based Automated Aqua-Hydroponics System. In Proceedings of the Acts de la 5ta International Conference on Materials Science and Manufacturing Technology (ICMSMT-2023), Coimbatore, India, 12–14 April 2023. [Google Scholar]
- Catota-Ocapana, P.; Minaya-Andino, C.; Astudillo, P.; Pichoasamin, D. Smart Control Models Used for Nutrient Management in Hydroponic Crops: A Systematic Review. IEEE Access 2025, 13, 13070–13087. [Google Scholar] [CrossRef]
- García, A. Learning to Use the Temperature Sensor DS18B20; Panama Hitek: Panama City, Panama, 2016; Available online: https://naylampmechatronics.com/blog/46_tutorial-sensor-digital-de-temperatura-ds18b20.html (accessed on 22 February 2024).
- Smarthon (Blog), Mayo 2020. Available online: https://smarthon-docs-en.readthedocs.io/en/latest/Sensors_and_actuators/DHT11.html (accessed on 19 May 2025).
- DFROBOT PH Meter (SKU: SEN0161). Available online: https://wiki.dfrobot.com/PH_meter_SKU__SEN0161 (accessed on 19 May 2025).
- García, V. Reloj Con el DS1307, November 2010. Available online: http://www.diarioelectronicohoy.com/blog/reloj-con-el-ds1307 (accessed on 10 February 2017).
- Valdés, F.; Pallás, A. Microcontroladores: Fundamentos y Aplicaciones con PIC; Carles Parcerisas Civit: Marcombo, España, 2007. [Google Scholar]
- MCI Electronics, “¿Qué es XBee?”, XBee.cl, 2012. Available online: https://xbee.cl/que-es-xbee/ (accessed on 10 February 2024).
- National Instruments. “What Can You Do with LabVIEW?—National Instruments. 2016. [En línea]. Available online: http://www.ni.com/labview/why/esa/ (accessed on 22 February 2024).
- National Instruments. Serial Communication Using LabVIEW with a Microcontroller. 2016. Available online: http://www.ni.com/white-paper/7907/es/ (accessed on 22 February 2024).
- National Instruments. Module NI LabVIEW Datalogging and Supervisory Control. 2016. [En línea]. Available online: http://sine.ni.com/nips/cds/view/p/lang/es/nid/209851 (accessed on 22 February 2024).
- Baiyin, B.; Xiang, Y.; Hu, J.; Tagawa, K.; Son, J.E.; Yamada, S.; Yang, Q. El entorno de flujo de solución nutritiva afecta la síntesis de metabolitos induciendo la tigmomorfogénesis radicular de lechuga (Lactuca sativa L.) en hidroponía. Int. J. Mol. Sci. 2023, 24, 16616. [Google Scholar] [CrossRef]
- Nitu, O.A.; Ivan, E.Ş.; Tronac, A.S.; Arshad, A. Optimización del crecimiento de lechuga en hidroponía con técnica de película nutritiva: Evaluación del impacto de concentraciones elevadas de oxígeno en la zona radicular bajo iluminación LED. Agronomía 2024, 14, 1896. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 8th ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Tesi, R.; Lenzi, A.; Lombardi, P. Effect of salinity and oxygen level on lettuce grown in a floating system. Acta Hortic. 2003, 609, 383–387. [Google Scholar] [CrossRef]
- Shawon, M.R.A.; Azad, M.O.K.; Ryu, B.R.; Na, J.K.; Choi, K.Y. The Electrical Conductivity of Nutrient Solution Influenced the Growth, Centellosides Content and Gene Expression of Centella asiatica in a Hydroponic System. Agriculture 2023, 13, 2236. [Google Scholar] [CrossRef]
- Noah, L.; Skabelund, J.; Ai, H.; Royal, H.; Bugbee, B. Advantages of a novel in situ pH measurement for soilless media. J. Front. Plant Sci. 2024, 15, 1334328. [Google Scholar] [CrossRef]
Chemical Compound | Quantity |
---|---|
Potassium Nitrate 13.5% N, 45% K2O | 550 g |
Ammonium Nitrate 33% N | 350 g |
Triple Superphosphate 45% P2O5, 20% CaO | 180 g |
Chemical Compound | Quantity |
---|---|
Magnesium Sulfate 16% MgO | 220 g |
Iron Chelate 6% Fe 33% N | 17 g |
Micronutrient Solution | 400 mL |
Chemical Compound | Quantity |
---|---|
Magnesium Sulfate | 5.0 g |
Boric Acid | 3.0 g |
Zinc Sulfate | 1.7 g |
Copper Sulfate | 1.0 g |
Ammonium Molybdate | 0.2 g |
Sulfominors I | 0.5 g |
Time | pH | Temperature (°C) | Humidity (%) |
---|---|---|---|
10:15:18.603 | 4 | 37 | 50 |
10:15:23.104 | 4 | 37 | 50 |
10:15:27.604 | 4 | 37 | 50 |
10:15:32.103 | 4 | 37 | 50 |
10:15:36.607 | 4 | 37 | 50 |
10:15:41.106 | 5 | 37 | 49 |
10:15:44.107 | 5 | 37 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega, N.; Zamora, N.; Tigse, A.; Chacón, J.; Vega, A. Experimental Evaluation of Oxygen and Dissolved Solids Levels in Hydroponic Crops Using Organic Nutrients as a Function of the Number of Daily Recirculations. Sustainability 2025, 17, 7484. https://doi.org/10.3390/su17167484
Vega N, Zamora N, Tigse A, Chacón J, Vega A. Experimental Evaluation of Oxygen and Dissolved Solids Levels in Hydroponic Crops Using Organic Nutrients as a Function of the Number of Daily Recirculations. Sustainability. 2025; 17(16):7484. https://doi.org/10.3390/su17167484
Chicago/Turabian StyleVega, Nino, Néstor Zamora, Ana Tigse, Juan Chacón, and Alexis Vega. 2025. "Experimental Evaluation of Oxygen and Dissolved Solids Levels in Hydroponic Crops Using Organic Nutrients as a Function of the Number of Daily Recirculations" Sustainability 17, no. 16: 7484. https://doi.org/10.3390/su17167484
APA StyleVega, N., Zamora, N., Tigse, A., Chacón, J., & Vega, A. (2025). Experimental Evaluation of Oxygen and Dissolved Solids Levels in Hydroponic Crops Using Organic Nutrients as a Function of the Number of Daily Recirculations. Sustainability, 17(16), 7484. https://doi.org/10.3390/su17167484