Predicting Rock Failure in Wet Environments Using Nonlinear Energy Signal Fusion for Sustainable Infrastructure Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Moisture Conditioning
2.2. Microstructure Characterization
2.3. Uniaxial Compression and Acoustic Monitoring
2.4. Energy and Damage Index Calculation
3. Results
3.1. Mechanical Response Analysis
3.2. Energy Evolution Laws
3.3. Acoustic Emission (AE) Energy and Damage Evolution
3.3.1. AE Energy Characteristics Analysis
3.3.2. AE-Based Damage Variable and Evolution Law
3.4. Nonlinear Damage Model
3.4.1. Model Established
3.4.2. Parameter Analysis
4. Discussion
4.1. Multi-Parameter Energy Instability Criterion Construction
4.2. Model Validation
4.3. Engineering Implications
5. Conclusions
- (1)
- The presence of moisture has a pronounced effect on the mechanical properties and failure modes of hard limestone. As water content increases, peak strength, elastic modulus, and energy storage capacity decrease significantly. The failure mode transitions from brittle shear to ductile tensile–shear composite behavior, indicating a clear shift toward ductility.
- (2)
- Water content alters the energy evolution pathway during deformation. Pore water pressure suppresses the closure of initial defects, while lubrication effects reduce crack propagation resistance. These factors increase energy dissipation during the plastic stage and lower the proportion of elastic energy, marking a transformation from concentrated release to dissipation-dominated failure.
- (3)
- Acoustic emission (AE) parameters effectively characterize the damage evolution and critical failure state. Dry samples exhibit intense and abrupt AE energy release, while saturated samples show more gradual and progressive signals, reflecting moisture-induced ductile behavior. The AE-based damage variable model captures a three-stage damage process: initiation, stable propagation, and accelerated failure.
- (4)
- An energy-based instability criterion incorporating the dissipation factor η, together with Ed, Dη, and Cη, is proposed to quantify the transition from stable to unstable deformation. A nonlinear energy–damage coupling model is also developed, with water-sensitive parameters (W0, k, A, R0), enabling unified prediction of both moisture state and energy response.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, H.M.; Mu, X.H. Contributions to Rock Fracture Induced by High Ground Stress in Deep Mining: A Review. Rock Mech. Rock Eng. 2025, 58, 463–511. [Google Scholar] [CrossRef]
- Xia, H.J.; Zhang, H.M.; Zhang, J.F. Research on Damage Mechanism and Mechanical Characteristics of Coal Rock under Water Immersion. Sustainability 2023, 15, 13095. [Google Scholar] [CrossRef]
- Song, Z.; Wang, T.; Wang, J.; Xiao, K.; Yang, T. Uniaxial compression mechanical properties and damage constitutive model of limestone under osmotic pressure. Int. J. Damage Mech. 2022, 31, 557–581. [Google Scholar] [CrossRef]
- Xia, Y.; Zhen, W.Y.; Huang, H.S.; Zhang, Y.; Tang, Q.H.; Liu, H.L. Research on the Fissure Development and Seepage Evolution Patterns of Overburden Rock in Weakly Cemented Strata Under Repeated Mining. Sustainability 2025, 17, 2780. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, J.C.; Si, X.F.; Wu, W.X.; Li, S.P. Failure characteristics and energy properties of red sandstone under uniaxial compression: Water content effect and its application. Bull. Eng. Geol. Environ. 2025, 84, 57. [Google Scholar] [CrossRef]
- Qi, X.Y.; Geng, D.D.; Feng, M.Y.; Xu, M.Z. Study on failure characteristics and evaluation index of aquifer shale based on energy evolution. Acta Geotech. 2024, 19, 6691–6710. [Google Scholar] [CrossRef]
- Khan, N.M.; Ma, L.Q.; Cao, K.W.; Hussain, S.; Liu, W.; Xu, Y.J.; Yuan, Q.P.; Gu, J. Prediction of an early failure point using infrared radiation characteristics and energy evolution for sandstone with different water contents. Bull. Eng. Geol. Environ. 2021, 80, 6913–6936. [Google Scholar] [CrossRef]
- Chen, Z.Q.; He, C.; Ma, G.Y.; Xu, G.W.; Ma, C.C. Energy Damage Evolution Mechanism of Rock and Its Application to Brittleness Evaluation. Rock Mech. Rock Eng. 2019, 52, 1265–1274. [Google Scholar] [CrossRef]
- Wang, C.L.; He, B.B.; Hou, X.L.; Li, J.Y.; Liu, L. Stress-Energy Mechanism for Rock Failure Evolution Based on Damage Mechanics in Hard Rock. Rock Mech. Rock Eng. 2020, 53, 1021–1037. [Google Scholar] [CrossRef]
- Meng, Q.B.; Zhang, M.W.; Han, L.J.; Pu, H.; Nie, T.Y. Effects of Acoustic Emission and Energy Evolution of Rock Specimens Under the Uniaxial Cyclic Loading and Unloading Compression. Rock Mech. Rock Eng. 2016, 49, 3873–3886. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Z.P.; Yang, T.T.; Han, J.J.; Wang, B.W.; Zhang, Z.K. Investigating the aging damage evolution characteristics of layered hard sandstone using digital image correlation. Constr. Build. Mater. 2022, 353, 128838. [Google Scholar] [CrossRef]
- Chen, W.Z.; Chang, R.; Liu, X.Q.; Chang, Y.; Zhang, F.Q.; Li, D.W.; Wang, Z.H. Mechanical Properties and Damage Constitutive Model of Thermally Damaged Basalt. Sustainability 2024, 16, 3570. [Google Scholar] [CrossRef]
- Ma, H.F.; Song, Y.Q.; Chen, S.J.; Yin, D.W.; Zheng, J.J.; Shen, F.X.; Li, X.S.; Ma, Q. Experimental Investigation on the Mechanical Behavior and Damage Evolution Mechanism of Water-Immersed Gypsum Rock. Rock Mech. Rock Eng. 2021, 54, 4929–4948. [Google Scholar] [CrossRef]
- Liu, X.B.; Zhang, Z.Y.; Ge, Z.L.; Zhong, C.L.; Liu, L. Brittleness Evaluation of Saturated Coal Based on Energy Method from Stress-Strain Curves of Uniaxial Compression. Rock Mech. Rock Eng. 2021, 54, 3193–3207. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, K.S.; Cho, W.J.; Choi, H.J.; Cho, G.C. A Comparative Evaluation of Stress-Strain and Acoustic Emission Methods for Quantitative Damage Assessments of Brittle Rock. Rock Mech. Rock Eng. 2015, 48, 495–508. [Google Scholar] [CrossRef]
- Fukui, K.; Okubo, S.; Terashima, T. Electromagnetic Radiation from Rock During Uniaxial Compression Testing: The Effects of Rock Characteristics and Test Conditions. Rock Mech. Rock Eng. 2005, 38, 411–423. [Google Scholar] [CrossRef]
- Xiao, F.K.; He, J.; Liu, Z.J.; Shen, Z.L.; Liu, G. Analysis on warning signs of damage of coal samples with different water contents and relevant damage evolution based on acoustic emission and infrared characterization. Infrared Phys. Technol. 2019, 97, 287–299. [Google Scholar] [CrossRef]
- Fan, S.Y.; Song, Z.P.; Xu, T.; Zhang, Y.W. Investigation of the microstructure damage and mechanical properties evolution of limestone subjected to high-pressure water. Constr. Build. Mater. 2022, 316, 125871. [Google Scholar] [CrossRef]
- Fan, S.Y.; Song, Z.P.; Wang, H.Z.; Zhang, Y.W.; Zhang, Q. Influence of the combined action of water and axial pressure on the microscopic damage and mechanical properties of limestone. Geoenergy Sci. Eng. 2023, 228, 212027. [Google Scholar] [CrossRef]
- Salmi, E.F.; Hosseinzadeh, S. Slope stability assessment using both empirical and numerical methods: A case study. Bull. Eng. Geol. Environ. 2015, 74, 13–25. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, C.W.; Sun, Y.H.; Chen, L.Y.; Lu, X.G.; Qian, W.J.; Wang, T.; Zhi, B.; Liu, Z.; Song, Z.P.P. Macro-micro fracture mechanism and acoustic emission characteristics of brittle rock induced by loading rate effect. Sci. Rep. 2024, 14, 23657. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Zhang, C.; Gao, Q.; Lu, W.; Chen, M.; Zhou, C. Acoustic wave test on mechanical properties variation of rocks under different damage degrees. Rock Soil Mech. 2015, 36, 3425–3432. [Google Scholar]
- Wang, S.; Wang, L.Q.; Zhang, W.A.; Lin, S.C.; Sun, W.X.; Jiang, S.W.; Zhao, G.; Li, X.M.; Wang, C.; Xiong, Z.H. Microstructural deterioration mechanism and failure mode of water-immersed sandstone under uniaxial compression in Dazu rock carvings. Eng. Fract. Mech. 2025, 321, 111110. [Google Scholar] [CrossRef]
- Krajcinovic, D.; Silva, M.A.G. Statistical aspects of the continuous damage theory. Int. J. Solids Struct. 1982, 18, 551–562. [Google Scholar] [CrossRef]
- Nejati, H.R.; Ghazvinian, A. Brittleness Effect on Rock Fatigue Damage Evolution. Rock Mech. Rock Eng. 2014, 47, 1839–1848. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, X.; Wang, L.; Zeng, P.; Yang, D.X.; Jin, J.F. Investigation of the crack and acoustic emission behavior evolution of red sandstone subjected to water. Theor. Appl. Fract. Mech. 2022, 120, 103419. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Wang, P.Y.; Cai, X.; Cao, W.Z. Influence of Water Content on Energy Partition and Release in Rock Failure: Implications for Water-Weakening on Rock-burst Proneness. Rock Mech. Rock Eng. 2023, 56, 6189–6205. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stimpson, B.; Stead, D. Effects of Grain Size on the Initiation and Propagation Thresholds of Stress-induced Brittle Fractures. Rock Mech. Rock Eng. 1999, 32, 81–99. [Google Scholar] [CrossRef]
- Yan, B.Q.; Kang, H.P.; Zuo, J.P.; Wang, P.T.; Li, X.S.; Cai, M.F.; Liu, J.Z. Study on damage anisotropy and energy evolution mechanism of jointed rock mass based on energy dissipation theory. Bull. Eng. Geol. Environ. 2023, 82, 294. [Google Scholar] [CrossRef]
- Hu, J.Y.; Sheng, D.F.; Qin, F.F.; Zhu, Y.C.; Li, Z.H.; Chen, T.C.; Yu, H.Q. Progressive failure characteristics and damage constitutive model of fissured rocks under water-rock coupling. Theor. Appl. Fract. Mech. 2025, 135, 104765. [Google Scholar] [CrossRef]
- Yang, Y.; Xing, Y.L.; Fang, K.L.; Wu, C.; Yang, K.P.; Xie, Z.F.; Wang, X.P.; Nikolayevich, L.S. Influence of dynamic load and water on energy accumulation and dissipation in sandstone. Sci. Rep. 2023, 13, 22010. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Deng, H.C.; Deng, Y.; Chen, K.P.; He, J.H. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location. J. Pet. Sci. Eng. 2021, 201, 108420. [Google Scholar] [CrossRef]
- Geng, J.S.; Cao, L.W. Failure analysis of water-bearing sandstone using acoustic emission and energy dissipation. Eng. Fract. Mech. 2020, 231, 107021. [Google Scholar] [CrossRef]
- Wang, W.N.; Yao, Q.L.; Tang, C.J.; Li, H.T.; Liu, H.Y.; Shan, C.H. Mechanical Properties Damage, Fracture Evolution, and Constitutive Model of Siltstone under the Effect of Moisture Content. Geofluids 2022, 2022, 8599808. [Google Scholar] [CrossRef]
- Yao, Q.L.; Chen, T.; Tang, C.J.; Sedighi, M.; Wang, S.W.; Huang, Q.X. Influence of moisture on crack propagation in coal and its failure modes. Eng. Geol. 2019, 258, 105156. [Google Scholar] [CrossRef]
Moisture Condition | Dry State | Natural State | Non-Saturated State | Saturated State |
---|---|---|---|---|
Total strain energy U (MJ·m−3) | 0.1460 | 0.1412 | 0.1305 | 0.1224 |
Peak elastic strain energy Ue (MJ·m−3) | 0.1347 | 0.1242 | 0.1107 | 0.0977 |
Peak dissipated strain energy Ud (MJ·m−3) | 0.0109 | 0.0171 | 0.0199 | 0.0247 |
Energy storage ratio Ue/U | 0.9226 | 0.8796 | 0.8483 | 0.7982 |
Dissipation ratio Ud/U | 0.0747 | 0.1211 | 0.1525 | 0.2018 |
Moisture Condition | Dry State | Natural State | Non-Saturated State | Saturated State |
---|---|---|---|---|
W0 | 0.026 | 0.030 | 0.033 | 0.036 |
k | 295.38 | 306.62 | 314.83 | 321.25 |
A | 5.35 × 10−8 | 9.94 × 10−9 | 3.69 × 10−11 | 7.17 × 10−13 |
R0 | 4403 | 4679 | 5613 | 6029 |
Variance | 0.9901 | 0.9434 | 0.9729 | 0.9284 |
Moisture Condition | Dry State | Natural State | Non-Saturated State | Saturated State |
---|---|---|---|---|
Ed | 1.041 | 1.040 | 1.038 | 1.015 |
Dη | 0.452 | 0.200 | 0.170 | 0.030 |
Cη | 0.471 | 0.208 | 0.177 | 0.030 |
Failure mode | Semi-brittle failure | Transition from brittle failure to ductility | Semi-ductile failure | Typical ductile failure |
Moisture Condition | Parameter | R2 | |||
---|---|---|---|---|---|
W0 | k | A | R0 | ||
Dry state | 0.030 | 300.22 | 5.54 × 10−8 | 4331 | 0.9922 |
Natural state | 0.033 | 306.53 | 1.10 × 10−8 | 4824 | 0.9418 |
Non-saturated state | 0.037 | 313.98 | 1.69 × 10−9 | 5464 | 0.9720 |
Saturated state | 0.041 | 320.57 | 3.33 × 10−10 | 6087 | 0.9236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhi, B.; Tian, X.; Cheng, Y.; Li, C.; Song, Z. Predicting Rock Failure in Wet Environments Using Nonlinear Energy Signal Fusion for Sustainable Infrastructure Design. Sustainability 2025, 17, 7232. https://doi.org/10.3390/su17167232
Wang T, Zhi B, Tian X, Cheng Y, Li C, Song Z. Predicting Rock Failure in Wet Environments Using Nonlinear Energy Signal Fusion for Sustainable Infrastructure Design. Sustainability. 2025; 17(16):7232. https://doi.org/10.3390/su17167232
Chicago/Turabian StyleWang, Tong, Bin Zhi, Xiaoxu Tian, Yun Cheng, Changwei Li, and Zhanping Song. 2025. "Predicting Rock Failure in Wet Environments Using Nonlinear Energy Signal Fusion for Sustainable Infrastructure Design" Sustainability 17, no. 16: 7232. https://doi.org/10.3390/su17167232
APA StyleWang, T., Zhi, B., Tian, X., Cheng, Y., Li, C., & Song, Z. (2025). Predicting Rock Failure in Wet Environments Using Nonlinear Energy Signal Fusion for Sustainable Infrastructure Design. Sustainability, 17(16), 7232. https://doi.org/10.3390/su17167232