Improving Ecosystem Services Production Efficiency by Optimizing Resource Allocation in 130 Cities of the Yangtze River Economic Belt, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ecosystem Services Assessment
2.3. Quantifying the Ecosystem Services Production Efficiency
2.3.1. Super Slacks-Based Measure Model
2.3.2. Malmquist Index Model
2.4. Data Sources and Processing
3. Results
3.1. Spatiotemporal Patterns of Multiple Ecosystem Services
3.2. Ecosystem Services Production Efficiency Analysis
3.2.1. Descriptive Statistics of Indicators
3.2.2. Spatiotemporal Patterns of Static Efficiency
3.2.3. Redundancy Analysis
3.2.4. Dynamic Efficiency and Its Decomposition
4. Discussion
4.1. Optimization of Ecosystem Services Production Efficiency
4.2. Policy Implications
4.3. Limitations and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Carbon storage |
DEA | Data envelopment analysis |
DMUs | Decision-making units |
ESPE | Ecosystem services production efficiency |
ESs | Ecosystem services |
HQ | Habitat quality |
MI | Malmquist index |
PEC | Pure efficiency change |
SBM | Slacks-Based Measure |
SEC | Scale efficiency change |
SR | Soil retention |
TEC | Technical efficiency change |
TPC | Technological progress change |
WC | Water conservation |
WP | Water purification |
YREB | Yangtze River Economic Belt |
References
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1460. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; O’Connor, P.; Xu, H.; Li, Y.; Lu, F.; Robinson, B.E.; Ouyang, Z.; Hai, Y.; Daily, G.C. Time and Space Catch up with Restoration Programs That Ignore Ecosystem Service Trade-Offs. Sci. Adv. 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Huang, D.; Li, B.L.; Liu, J.; Liu, W.; Ma, J.; Wang, F.; Wang, Y.; Wu, S.; et al. The Development of China’s Yangtze River Economic Belt: How to Make It in a Green Way? Sci. Bull. 2017, 62, 648–651. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and Socioeconomic Effects of China’s Policies for Ecosystem Services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [PubMed]
- Viña, A.; McConnell, W.J.; Yang, H.; Xu, Z.; Liu, J. Effects of Conservation Policy on China’s Forest Recovery. Sci. Adv. 2016, 2, 1500965. [Google Scholar] [CrossRef]
- Yang, W.; Liu, W.; Viña, A.; Luo, J.; He, G.; Ouyang, Z.; Zhang, H.; Liu, J. Performance and Prospects of Payments for Ecosystem Services Programs: Evidence from China. J. Environ. Manag. 2013, 127, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Wang, W.; Li, Y.; Wang, X.; Jin, J.; Jiang, J.; Yang, H.; Wang, L. Identifying Priority Conservation Areas Based on Ecosystem Services Change Driven by Natural Forest Protection Project in Qinghai Province, China. J. Clean. Prod. 2022, 362, 132453. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, W.; Lewis, B.J.; Wei, Y.; Dai, L. Effects of Management Regimes on Carbon Sequestration under the Natural Forest Protection Program in Northeast China. J. For. Res. 2018, 29, 1187–1194. [Google Scholar] [CrossRef]
- Yu, D.Y.; Shi, P.J.; Han, G.Y.; Zhu, W.Q.; Du, S.Q.; Xun, B. Forest Ecosystem Restoration Due to a National Conservation Plan in China. Ecol. Eng. 2011, 37, 1387–1397. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, H.; Huang, Y.; Yin, S.; Jin, G. Assessment and Analysis of Ecosystem Services Value along the Yangtze River under the Background of the Yangtze River Protection Strategy. J. Geogr. Sci. 2020, 30, 553–568. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Liu, J.; Hu, H. Ecosystem Services Trade-Offs and Determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ. 2018, 634, 1601–1614. [Google Scholar] [CrossRef]
- China’s State Council Guiding Opinions on Promoting the Development of the Yangtze River Economic Belt Relying on the Golden Waterway. Available online: https://www.gov.cn/zhengce/zhengceku/2014-09/25/content_9092.htm (accessed on 4 August 2025).
- Luo, Q.; Luo, Y.; Zhou, Q.; Song, Y. Does China’s Yangtze River Economic Belt Policy Impact on Local Ecosystem Services? Sci. Total Environ. 2019, 676, 231–241. [Google Scholar] [CrossRef]
- Cai, S.; Zhao, X.; Pittelkow, C.M.; Fan, M.; Zhang, X.; Yan, X. Optimal Nitrogen Rate Strategy for Sustainable Rice Production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef]
- Kai, H. State Council Audit Report on the 2023 Central Budget Execution. Available online: https://www.audit.gov.cn/n5/n26/c10423410/part/10423799.pdf (accessed on 4 August 2025).
- Wang, S.; Zhao, D.; Chen, H. Government Corruption, Resource Misallocation, and Ecological Efficiency. Energy Econ. 2020, 85, 104573. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Yang, L.; Hu, T.; Pan, H.; Luo, H.; Han, W.; Xiao, S. Moving towards Sustainable Development in China’s Rural Counties: Ecological Efficiency Evaluation Based on DEA-Malmquist-Tobit Model. J. Clean. Prod. 2024, 442, 141093. [Google Scholar] [CrossRef]
- Susaeta, A.; Sancewich, B.; Adams, D.; Moreno, P.C. Ecosystem Services Production Efficiency of Longleaf Pine Under Changing Weather Conditions. Ecol. Econ. 2019, 156, 24–34. [Google Scholar] [CrossRef]
- Ding, Z.; Zheng, H.; Wang, J.; O’Connor, P.; Li, C.; Chen, X.; Li, R.; Ouyang, Z. Integrating Top-Down and Bottom-Up Approaches Improves Practicality and Efficiency of Large-Scale Ecological Restoration Planning: Insights from a Social–Ecological System. Engineering 2023, 31, 50–58. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Introduction to Data Envelopment Analysis and Its Uses with DEA-Solver Software and References; Springer: New York, NY, USA, 2006. [Google Scholar]
- Liu, Y.; Zou, L.; Wang, Y. Spatial-Temporal Characteristics and Influencing Factors of Agricultural Eco-Efficiency in China in Recent 40 Years. Land Use Policy 2020, 97, 104794. [Google Scholar] [CrossRef]
- Su, D.; Cao, Y.; Fang, X.; Wang, J. Regional Integration, Agricultural Production, and Their Heterogeneous Interaction in the Classic Urban Agglomeration of China. J. Clean. Prod. 2024, 464, 142806. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial Cultivated Land Use Efficiency in China: Empirical Analysis Based on the SBM-DEA Model with Carbon Emissions Considered. Technol. Forecast. Soc. Change 2020, 151, 119874. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture Carbon-Emission Reduction and Changing Factors behind Agricultural Eco-Efficiency Growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Sun, W. Does the Agglomeration of Urban Producer Services Promote Carbon Efficiency of Manufacturing Industry? Land Use Policy 2022, 120, 106264. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H. Spatial Spillover Effect of Urban Sprawl on Total Factor Energy Ecological Efficiency: Evidence from 272 Cities in China. Energy 2023, 273, 127217. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, W.; Hou, M.; Zhang, X.; Xu, S.; Yao, N.; Guo, Y.; Li, H.; Yao, S. How Eco-Efficiency Is the Forestry Ecological Restoration Program? The Case of the Sloping Land Conversion Program in the Loess Plateau, China. Land 2022, 11, 712. [Google Scholar] [CrossRef]
- Susaeta, A.; Adams, D.C.; Carter, D.R.; Dwivedi, P. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests. Environ. Manag. 2016, 58, 417–430. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural Capital and Ecosystem Services Informing Decisions: From Promise to Practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef] [PubMed]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy Using Ecosystem Services Assessments for Land Use Planning. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Li, C.; Zheng, H.; Li, S.; Chen, X.; Li, J.; Zeng, W.; Liang, Y.; Polasky, S.; Feldman, M.W.; Ruckelshaus, M.; et al. Impacts of Conservation and Human Development Policy across Stakeholders and Scales. Proc. Natl. Acad. Sci. USA 2015, 112, 7396–7401. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Penningtonh, D.; Radeloff, V.C. Projected Land-Use Change Impacts on Ecosystem Services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and Mental Health: An Ecosystem Service Perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed]
- Susaeta, A.; Sancewich, B.; Klizentyte, K.; Soto, J.; Joshi, O. Profit Efficiency in the Provision of Ecosystem Services in the Cross Timbers Forests. Land Use Policy 2024, 136, 106978. [Google Scholar] [CrossRef]
- Susaeta, A.; Gutiérrez, E.; Lozano, S. Profit-Efficiency Analysis of Forest Ecosystem Services in the Southeastern US. Ecosyst. Serv. 2023, 64, 101567. [Google Scholar] [CrossRef]
- Pukkala, T. Which Type of Forest Management Provides Most Ecosystem Services? For. Ecosyst. 2016, 3, 9. [Google Scholar] [CrossRef]
- Tone, K. A Modified Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-Based Measure of Super-Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Li, Z.; Hu, J.; Hou, S.; Zhao, W.; Li, J. Quantifying Ecosystem Service Trade-Offs/Synergies and Their Drivers in Dongting Lake Region Using the InVEST Model. 2025, 1–20. Sustainability 2025, 17, 6072. [Google Scholar] [CrossRef]
- Ke, L.; Jiang, Q.; Wang, L.; Lu, Y.; Zhao, Y.; Wang, Q. Spatiotemporal Evolution of Ecosystem Service Value and Its Tradeoffs and Synergies in the Liaoning Coastal Economic Belt. Sustainability 2025, 17, 5245. [Google Scholar] [CrossRef]
- Li, T.; Yin, J.P.; Zhong, K. Does Financial Support for Grassland Conservation and Restoration Improve Ecological Benefits? Evidence from China. Ecol. Indic. 2024, 159, 111628. [Google Scholar] [CrossRef]
- Ouyang, X.; Tang, L.; Wei, X.; Li, Y. Spatial Interaction between Urbanization and Ecosystem Services in Chinese Urban Agglomerations. Land Use Policy 2021, 109, 105587. [Google Scholar] [CrossRef]
- Tu, D.; Cai, Y.; Liu, M. Coupling Coordination Analysis and Spatiotemporal Heterogeneity between Ecosystem Services and New-Type Urbanization: A Case Study of the Yangtze River Economic Belt in China. Ecol. Indic. 2023, 154, 110535. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2024. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- National Bureau of Statistics of China. China Forestory and Grassland Statistical Yearbook 2016–2022; China Forestry Press: Beijing, China, 2022. [Google Scholar]
- Seiford, L.M.; Zhu, J. Modeling Undesirable Factors in Efficiency Evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Natural Capital Project InVEST 3.13.0. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 4 August 2025).
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res. 2004, 40, 1–14. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, P.; Li, M. Assessing Potential Ecosystem Service Dynamics Driven by Urbanization in the Yangtze River Economic Belt, China. J. Environ. Manag. 2021, 292, 112734. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Alatalo, J.M. Impacts of Rural Tourism-Driven Land Use Change on Ecosystems Services Provision in Erhai Lake Basin, China. Ecosyst. Serv. 2020, 42, 101081. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-Temporal Heterogeneity of Ecosystem Service Interactions and Their Social-Ecological Drivers: Implications for Spatial Planning and Management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Li, C.; Xu, Y.; Hao, F.; Yin, G. Ecosystem Service Trade-Offs and Synergies under Influence of Climate and Land Cover Change in an Afforested Semiarid Basin, China. Ecol. Eng. 2021, 159, 106083. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.; Zheng, X.; Hou, W.; Chen, X.; Xiao, S.; Zhang, X.; Deng, S.; Hao, J.; Luo, H.; et al. Moving towards Co-Benefits of Hydropower: Ecological Efficiency Evaluation Based on LCA and DEA. Environ. Impact Assess. Rev. 2023, 102, 107208. [Google Scholar] [CrossRef]
- Malmquist, S. Index Number and Indifference Surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Rolf, F.; Shawna, G.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar] [CrossRef]
- CNRDS Chinese Research Data Services Platform. Available online: https://www.Cnrds.Com/Home/Login (accessed on 4 August 2025).
- Yang, J.; Huang, X. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2022 (Version 1.0.2) [Data Set]; Zenodo: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.; Wang, X. Spatial Correction of Ecosystem Service Value and the Evaluation of Eco-Efficiency: A Case for China’s Provincial Level. Ecol. Indic. 2018, 95, 841–850. [Google Scholar] [CrossRef]
- Jiang, Y.; Guan, D.; He, X.; Yin, B.; Zhou, L.; Sun, L.; Huang, D.; Li, Z.; Zhang, Y. Quantification of the Coupling Relationship between Ecological Compensation and Ecosystem Services in the Yangtze River Economic Belt, China. Land Use Policy 2022, 114, 105995. [Google Scholar] [CrossRef]
- He, L.; Xie, Z.; Wu, H.; Liu, Z.; Zheng, B.; Wan, W. Exploring the Interrelations and Driving Factors among Typical Ecosystem Services in the Yangtze River Economic Belt, China. J. Environ. Manag. 2024, 351, 119794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, Y.; Fan, Z.; Long, Z.; Wan, S.; Zhang, Z.; Chen, X. Analysis of County-Scale Eco-Efficiency and Spatiotemporal Characteristics in China. Land 2023, 12, 1–21. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, Z.; Jeppesen, E.; Gao, Y.; Liu, Y.; Liu, Y.; Lu, Q.; Wang, C.; Sun, X. Assessment of the Effectiveness of China’s Protected Areas in Enhancing Ecosystem Services. Ecosyst. Serv. 2024, 65, 101588. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, B.; Chen, M.; Bai, Y.; Yang, G. Strengthening the Effectiveness of Nature Reserves in Representing Ecosystem Services: The Yangtze River Economic Belt in China. Land Use Policy 2020, 96, 104717. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, J.; Yang, F.; Chen, G. Can Green Finance Policy Promote Ecosystem Product Value Realization? Evidence from a Quasi-Natural Experiment in China. Humanit. Soc. Sci. Commun. 2024, 11, 1–18. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Y.; Liu, S.; Gong, X.; Zhao, Y.; Jin, R.; Duan, H.; Jiang, P. A Comparative Study of Green Growth Efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020. Ecol. Indic. 2023, 150, 110214. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, D. Benefits Evaluation of Ecological Restoration Projects Based on Value Realization of Ecological Products. J. Environ. Manag. 2024, 352, 120139. [Google Scholar] [CrossRef]
- Huang, B.; Lu, F.; Wang, X.; Wu, X.; Zheng, H.; Su, Y.; Yuan, Y.; Ouyang, Z. The Impact of Ecological Restoration on Ecosystem Services Change Modulated by Drought and Rising CO2. Glob. Chang. Biol. 2023, 29, 5304–5320. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Lu, F.; Wang, X.; Wu, X.; Zhang, L.; Ouyang, Z. Ecological Restoration and Rising CO2enhance the Carbon Sink, Counteracting Climate Change in Northeastern China. Environ. Res. Lett. 2022, 17, 014002. [Google Scholar] [CrossRef]
- Jiang, B.; Bai, Y.; Wong, C.P.; Xu, X.; Alatalo, J.M. China’s Ecological Civilization Program–Implementing Ecological Redline Policy. Land Use Policy 2019, 81, 111–114. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening Protected Areas for Biodiversity and Ecosystem Services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal Vegetation Cover Variations Associated with Climate Change and Ecological Restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Kuglerová, L.; Ågren, A.; Jansson, R.; Laudon, H. Towards Optimizing Riparian Buffer Zones: Ecological and Biogeochemical Implications for Forest Management. For. Ecol. Manag. 2014, 334, 74–84. [Google Scholar] [CrossRef]
- Mester, B.; Szepesváry, C.; Szabolcs, M.; Mizsei, E.; Mérő, T.O.; Málnás, K.; Lengyel, S. Salvaging Bycatch Data for Conservation: Unexpected Benefits of Restored Grasslands to Amphibians in Wetland Buffer Zones and Ecological Corridors. Ecol. Eng. 2020, 153, 105916. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, Z.; Dong, B.; Xu, H.; Lu, Z.; Liu, X. Habitat Suitability Evaluation and Ecological Corridor Construction of Wintering Cranes in Poyang Lake. Ecol. Eng. 2023, 189, 106894. [Google Scholar] [CrossRef]
- Kadaverugu, A.; Nageshwar Rao, C.; Viswanadh, G.K. Quantification of Flood Mitigation Services by Urban Green Spaces Using InVEST Model: A Case Study of Hyderabad City, India. Model. Earth Syst. Environ. 2021, 7, 589–602. [Google Scholar] [CrossRef]
- Yu, A.; You, J.; Rudkin, S.; Zhang, H. Industrial Carbon Abatement Allocations and Regional Collaboration: Re-Evaluating China through a Modified Data Envelopment Analysis. Appl. Energy 2019, 233–234, 232–243. [Google Scholar] [CrossRef]
- Martin, R.; Schlüter, M.; Blenckner, T. The Importance of Transient Social Dynamics for Restoring Ecosystems beyond Ecological Tipping Points. Proc. Natl. Acad. Sci. USA 2020, 117, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Temperton, V.M.; Buchmann, N.; Buisson, E.; Durigan, G.; Kazmierczak, Ł.; Perring, M.P.; Dechoum, M.D.S.; Veldman, J.W.; Overbeck, G.E. Step Back from the Forest and Step up to the Bonn Challenge: How a Broad Ecological Perspective Can Promote Successful Landscape Restoration. Restor. Ecol. 2019, 27, 705–719. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the Impacts of Natural and Human Factors on Ecosystem Service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Bi, Y.; Zheng, L.; Wang, Y.; Li, J.; Yang, H.; Zhang, B. Coupling relationship between urbanization and water-related ecosystem services in China’s Yangtze River economic Belt and its socio-ecological driving forces: A county-level perspective. Ecol. Indic. 2023, 146, 109871. [Google Scholar] [CrossRef]
- Chen, D.; Duan, Y.; Jiang, P.; Li, M. Spatial zoning to enhance ecosystem service co-benefits for sustainable land-use management in the Yangtze River economic Belt, China. Ecol. Indic. 2024, 159, 111753. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Q.; Jiang, P.; Li, M. Incorporating ecosystem services to assess progress towards sustainable development goals: A case study of the Yangtze River Economic Belt, China. Sci. Total Environ. 2022, 806, 151277. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; He, L.; Mao, Z.; Wan, W.; Song, X.; Wu, Z.; Liang, H.; Liu, J.; Zheng, B.; Zhu, J. Spatial heterogeneity of natural and socio-economic features shape that of ecosystem services. A large-scale study on the Yangtze River economic Belt, China. Ecol. Indic. 2024, 159, 111729. [Google Scholar] [CrossRef]
ES | Definition | Unit | Method | Data Required |
---|---|---|---|---|
WC | WC refers to the ability of an ecosystem to intercept or store water resources from rainfall, which is equal to water yield minus surface runoff [1]. | mm | Water yield model of InVEST | Precipitation, Potential evapotranspiration, surface runoff, soil data and LULC |
SR | SR is defined as the soil retained by the ecosystem, which is expressed as the gap between potential and actual soil erosion [54]. | t·hm−2 | Sediment retention model of InVEST | Rainfall erosion factor, soil erodibility factor, DEM, and LULC |
CS | CS refers to the quantity of carbon storage and sequestration in an ecosystem, which includes aboveground carbon, belowground carbon, dead organic carbon, and soil organic carbon [55]. | t·hm−2 | Carbon Storage and Sequestration model of InVEST | LULC and carbon pools data |
HQ | HQ is an important indicator that reflects biodiversity by estimating the extent of habitat and vegetation types across a landscape, and their state of degradation [56]. | Index | Habitat quality model of InVEST | LULC, threat data, and sensitive data |
WP | WP is defined as the retention capacity of nitrogen by the ecosystem, which is expressed by total nitrogen delivered to a water body. A larger nitrogen delivery value indicates weaker WP capacity [57]. | kg·km−2 | Nutrient delivery ratio model of InVEST | Precipitation, nutrient load, retention efficiency, length, DEM, and LULC |
Category | Indicator | Variable | Variable Description | Unit |
---|---|---|---|---|
Input | Capital | Financial investment | Annual investment of local government in ecological restoration and management | Billion yuan |
Labor | Employees | Number of employees, including researchers, administrators, and forest rangers in the forestry and grassland system | Persons | |
Resource | Land | Afforestation area and grass planting area | km−2 | |
Technology | Green innovation | The annual grant quantity of green invention patents and green new utility patents | Count | |
Output | Desired outputs | Water conservation (WC) | Details are shown in Table 1 | Billion m3 |
Soil retention (SR) | Billion tons | |||
Carbon storage (CS) | Billion tons | |||
Habitat quality (HQ) | Index (0–1) | |||
Undesired output | Water purification (WP) | Million tons |
Indicator | Sample Quantity | Unit | Mean | Std. Dev | Max | Min |
---|---|---|---|---|---|---|
Financial investment | 390 | Billion yuan | 6.51 | 6.85 | 50.98 | 0.62 |
Employees | 390 | Persons | 5420 | 8082 | 63,968 | 26 |
Land | 390 | km−2 | 170.53 | 285.13 | 2900.02 | 0.27 |
Green innovation | 390 | Count | 603 | 1430 | 13,320 | 2 |
Water conservation (WC) | 390 | Billion m3 | 10.35 | 9.38 | 78.07 | 0.26 |
Soil retention (SR) | 390 | Billion tons | 6.72 | 17.57 | 173.93 | 0.00035 |
Carbon storage (CS) | 390 | Billion tons | 0.20 | 0.22 | 1.64 | 0.01 |
Habitat quality (HQ) | 390 | Index | 0.65 | 0.13 | 0.89 | 0.32 |
Water purification (WP) | 390 | Million tons | 3.80 | 2.85 | 27.36 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, W.; Zheng, X.; Liang, T.; Liu, X.; Pan, H. Improving Ecosystem Services Production Efficiency by Optimizing Resource Allocation in 130 Cities of the Yangtze River Economic Belt, China. Sustainability 2025, 17, 7189. https://doi.org/10.3390/su17167189
Hou W, Zheng X, Liang T, Liu X, Pan H. Improving Ecosystem Services Production Efficiency by Optimizing Resource Allocation in 130 Cities of the Yangtze River Economic Belt, China. Sustainability. 2025; 17(16):7189. https://doi.org/10.3390/su17167189
Chicago/Turabian StyleHou, Wenyue, Xiangyu Zheng, Tao Liang, Xincong Liu, and Hengyu Pan. 2025. "Improving Ecosystem Services Production Efficiency by Optimizing Resource Allocation in 130 Cities of the Yangtze River Economic Belt, China" Sustainability 17, no. 16: 7189. https://doi.org/10.3390/su17167189
APA StyleHou, W., Zheng, X., Liang, T., Liu, X., & Pan, H. (2025). Improving Ecosystem Services Production Efficiency by Optimizing Resource Allocation in 130 Cities of the Yangtze River Economic Belt, China. Sustainability, 17(16), 7189. https://doi.org/10.3390/su17167189