Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Data Collection
2.3. Questionnaire
2.4. Data Analysis
3. Results
3.1. Air Purifier Performance in Different Seasons
3.1.1. PM2.5 Concentrations Across Seasons
3.1.2. Severe Polluted Settings
3.2. Seasonal Variation of Ventilation Behavior
3.3. Drivers of Window Operation (Questionnaire Analysis)
3.4. Predictive Modeling of Window Opening Behavior
3.5. Effect of Window Opening on Indoor PM2.5 Concentration
4. Discussion
4.1. Seasonal Variation in Air Purifier Effectiveness
4.2. Drivers of Window Operation
4.3. Implications of Window Operation and Air Purifier Performance
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IAQ | Indoor air quality |
HEPA | High-efficiency particulate air |
PM | Particulate matter |
GLA | Greater London Authority |
TfL | Transport for London |
LAEI | London Atmospheric Emissions Inventory |
Appendix A
Channel | Parameter | Measuring Range | Resolution | Accuracy | Additional Notes |
---|---|---|---|---|---|
A | Temperature | −30.0 to 65.0 °C | 0.1 °C | ±0.2 °C at 20 °C ± 0.4 °C (5–40 °C) ± 1.0 °C (20–65 °C) | |
B | RH | 0.0 to 100.0 % | 0.1 % | ±2% RH (0–90% RH) ± 4% RH (0–100% RH) | |
C | CO2 | 0–5000 ppm | — | <±50 ppm, +3% from measured valueTemp. dependence: 2 ppm/°C (0–50 °C)Long-term stability: 20 ppm/year | Operational: −10 to 50 °C, 5–95% RH non-condensing |
D | Particulate PM (0–1 μm) | 0–500.00 μg/m3 | — | — | Particle count |
E | Particulate PM2.5 (1–2.5 μm) | 0–500.00 μg/m3 | — | — | Particle count |
F | Particulate PM10 (2.5–10 μm) | 0–500.00 μg/m3 | — | — | Particle count |
G | Airflow | 0.00 to 500 m/s | — | — | |
H | NO2 | −0.1000 to 3.0000 ppm | — | — | For 0.0000–3.0000 ppm refer to Eltek |
I | CO | −5.00 to 500.00 ppm | — | — | For 0.00–500.00 ppm refer to Eltek |
J | VOC | 0.00 to 50.00 ppm | — | — | |
K | DC Voltage | 0.00 to 130 dB (scaled) | — | — | |
L | DC (External supply voltage) | 0.00 to 20.000 VDC | — | — |
Appendix B
Nursery | Classroom | Window ID | Window Area (m2) |
---|---|---|---|
N1 | N1_class1 | c1w4 | 0.9 |
N1 | N1_class2 | c2w3 | 1.2 |
N1 | N1_class2 | c2w5 | 0.9 |
N1 | N1_class2 | c2w6 | 0.9 |
N1 | N1_class5 | c5w1 | 1.3 |
N1 | N1_class5 | c5w3 | 0.9 |
N1 | N1_class5 | c5w6 | 0.9 |
N1 | N1_class5 | c5w8 | 1.3 |
N1 | N1_staff1 | c4w5 | 1.2 |
N1 | N1_staff2 | c3w1 | 1.3 |
N1 | N1_staff2 | c3w3 | 0.9 |
N1 | N1_staff2 | c3w5 | 0.9 |
N1 | N1_staff2 | c3w6 | 0.9 |
N1 | N1_staff2 | c3w7 | 1.3 |
N1 | N1_staff2 | c3w8 | 1.3 |
N2 | N2_class1 | c1w1 | 1.5 |
N2 | N2_class1 | c1w2 | 1.0 |
N2 | N2_class2 | c2w1 | 1.5 |
N2 | N2_staff2 | c4w7 | 0.5 |
N3 | N3_class2 | c2w3 | 1.6 |
N3 | N3_class2 | c2w4 | 0.8 |
N3 | N3_class3 | c3w4 | 1.4 |
Appendix C
References
- Kim, K.H.; Kabir, E.; Kabir, S. A Review on the Human Health Impact of Airborne Particulate Matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Zhang, S.; Mumovic, D.; Stamp, S.; Curran, K.; Cooper, E. What Do We Know about Indoor Air Quality of Nurseries? A Review of the Literature. Build. Serv. Eng. Res. Technol. 2021, 42, 603–632. [Google Scholar] [CrossRef]
- Wu, C.; Li, S.; Hu, P.; Ma, T.; Wang, X.; Gao, L.; Zhu, K.; Li, J.; Luo, Y.; Chen, W. Inequitable Air Quality Improvement in China: Regional and Population-Level Disparities in PM Exposure (2013–2020). Atmosphere 2025, 16, 152. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Department for Education. BB101: Guidelines on Ventilation, Thermal Comfort and Indoor Air Quality in Schools; Department for Education: London, UK, 2018. Available online: https://www.gov.uk/government/publications/building-bulletin-101-ventilation-for-school-buildings (accessed on 26 July 2025).
- Chong-Neto, H.J.; Filho, N.A.R. How Does Air Quality Affect the Health of Children and Adolescents? J. De Pediatr. 2025, 101, S77–S83. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Improving Indoor Air Quality, Health and Performance within Environments Where People Live, Travel, Learn and Work. Atmos. Environ. 2019, 200, 90–109. [Google Scholar] [CrossRef]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable Air Purification: Review of Impacts on Indoor Air Quality and Health. Sci. Total Environ. 2021, 766, 142585. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.; Wang, Y.; Stamp, S.; Burman, E.; Mumovic, D. Use of Portable Air Purifiers in Homes: Operating Behaviour, Effect on Indoor PM2.5 and Perceived Indoor Air Quality. Build. Environ. 2021, 191, 107621. [Google Scholar] [CrossRef]
- Villanueva, F.; Felgueiras, F.; Notario, A.; Cabañas, B.; Gabriel, M.F. Indoor Environmental Quality and Effectiveness of Portable Air Cleaners in Reducing Levels of Airborne Particles during Schools’ Reopening in the COVID-19 Pandemic. Sustainability 2024, 16, 6549. [Google Scholar] [CrossRef]
- Zuraimi, M.S.; Tham, K.W. Indoor Air Quality and Its Determinants in Tropical Child Care Centers. Atmos. Environ. 2008, 42, 2225–2239. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Particulate Matter in Rural and Urban Nursery Schools in Portugal. Environ. Pollut. 2015, 202, 7–16. [Google Scholar] [CrossRef]
- Canha, N.; Mandin, C.; Ramalho, O.; Wyart, G.; Ribéron, J.; Dassonville, C.; Hänninen, O.; Almeida, S.M.; Derbez, M. Assessment of Ventilation and Indoor Air Pollutants in Nursery and Elementary Schools in France. Indoor Air 2016, 26, 350–365. [Google Scholar] [CrossRef]
- Rim, D.; Gall, E.T.; Kim, J.B.; Bae, G.N. Particulate Matter in Urban Nursery Schools: A Case Study of Seoul, Korea during Winter Months. Build. Environ. 2017, 119, 1–10. [Google Scholar] [CrossRef]
- Chatzidiakou, E.; Mumovic, D.; Summerfield, A.J.; Altamirano, H.M. Indoor Air Quality in London Schools. Part 1: ‘Performance in Use.’. Intell. Build. Int. 2015, 7, 101–129. [Google Scholar] [CrossRef]
- James, C.; Bernstein, D.I.; Cox, J.; Ryan, P.; Wolfe, C.; Jandarov, R.; Newman, N.; Indugula, R.; Reponen, T. HEPA Filtration Improves Asthma Control in Children Exposed to Traffic-Related Airborne Particles. Indoor Air 2020, 30, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Cheng, K.C.; Tetteh, A.O.; Hildemann, L.M.; Nadeau, K.C. Effectiveness of Air Purifier on Health Outcomes and Indoor Particles in Homes of Children with Allergic Diseases in Fresno, California: A Pilot Study. J. Asthma 2017, 54, 341–346. [Google Scholar] [CrossRef]
- Butz, A.M. A Randomized Trial of Air Cleaners and a Health Coach to Improve Indoor Air Quality for Inner-City Children With Asthma and Secondhand Smoke Exposure. Arch. Pediatr. Adolesc. Med. 2011, 165, 741. [Google Scholar] [CrossRef]
- Oh, H.J.; Nam, I.S.; Yun, H.; Kim, J.; Yang, J.; Sohn, J.R. Characterization of Indoor Air Quality and Efficiency of Air Purifier in Childcare Centers, Korea. Build. Environ. 2014, 82, 203–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Hopke, P.K.; Mandin, C. Handbook of Indoor Air Quality; Springer Nature: Dordrecht, The Netherlands, 2022; ISBN 9789811676796. [Google Scholar] [CrossRef]
- Kim, D.D.; Kang, K. Experimental Study of Energy Recovery Ventilator for Enhancing Indoor Air Quality in Daycare Centers: A Case Study in South Korea. Buildings 2025, 15, 566. [Google Scholar] [CrossRef]
- Anake, W.U.; Nnamani, E.A. Indoor Air Quality in Day-Care Centres: A Global Review. Air Qual. Atmos. Health 2023, 16, 997–1022. [Google Scholar] [CrossRef]
- Korsavi, S.S.; Jones, R.V.; Fuertes, A. Operations on Windows and External Doors in UK Primary Schools and Their Effects on Indoor Environmental Quality. Build. Environ. 2022, 207, 108416. [Google Scholar] [CrossRef]
- Zhang, S.; Stamp, S.; Cooper, E.; Curran, K.; Mumovic, D. Evaluating the Impact of Air Purifiers and Window Operation upon Indoor Air Quality-UK Nurseries during Covid-19. Build. Environ. 2023, 243, 110636. [Google Scholar] [CrossRef]
- Stamp, S.; Burman, E.; Chatzidiakou, L.; Cooper, E.; Wang, Y.; Mumovic, D. A Critical Evaluation of the Dynamic Nature of Indoor-Outdoor Air Quality Ratios. Atmos. Environ. 2022, 273, 118955. [Google Scholar] [CrossRef]
- Pacitto, A.; Amato, F.; Moreno, T.; Pandolfi, M.; Fonseca, A.; Mazaheri, M.; Stabile, L.; Buonanno, G.; Querol, X. Effect of Ventilation Strategies and Air Purifiers on the Children’s Exposure to Airborne Particles and Gaseous Pollutants in School Gyms. Sci. Total Environ. 2020, 712, 135673. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhou, M.; Wei, S.; Peng, J.; Wang, Q.; Wang, L.; Cheng, D.; Yu, W. Particle Removal Effectiveness of Portable Air Purifiers in Aged-Care Centers and the Impact on the Health of Older People. Energy Build. 2021, 250, 111250. [Google Scholar] [CrossRef]
- Wang, Y.; Tahmasebi, F.; Cooper, E.; Stamp, S.; Chalabi, Z.; Burman, E.; Mumovic, D. Exploring the Relationship between Window Operation Behavior and Thermal and Air Quality Factors: A Case Study of UK Residential Buildings. J. Build. Eng. 2022, 48, 103997. [Google Scholar] [CrossRef]
- Utami, I.I.; Baroto, W.A. The Perception of Air Purifiers on Indoor Air Quality: Effective or Human Herd Behavior? City Built Environ. 2025, 3, 6. [Google Scholar] [CrossRef]
- London Datastore. London Atmospheric Emissions Inventory (LAEI). 2019. Available online: https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory--laei--2019 (accessed on 26 December 2024).
- Eva, C.; Isabella, A.-M.; Paolo, C.; Stylianos, K.; Joana, M.; Peter, R.; De Oliveira Fernandes, E.; Josefa, B.; Tãmea, B.S.Z.I.; Hanns, M. SINPHONIE (Schools Indoor Pollution and Health Observatory Network in Europe): Executive Summary of the Final Report. 2014. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC91160 (accessed on 19 July 2025).
- Calì, D.; Andersen, R.K.; Müller, D.; Olesen, B.W. Analysis of Occupants’ Behavior Related to the Use of Windows in German Households. Build. Environ. 2016, 103, 54–69. [Google Scholar] [CrossRef]
- Haldi, F.; Robinson, D. Interactions with Window Openings by Office Occupants. Build. Environ. 2009, 44, 2378–2395. [Google Scholar] [CrossRef]
- Wang, Y.; Tahmasebi, F.; Cooper, E.; Stamp, S.; Chalabi, Z.; Burman, E.; Mumovic, D. An Investigation of the Influencing Factors for Occupants’ Operation of Windows in Apartments Equipped with Portable Air Purifiers. Build. Environ. 2021, 205, 108260. [Google Scholar] [CrossRef]
- Fabi, V.; Andersen, R.V.; Corgnati, S.; Olesen, B.W. Occupants’ Window Opening Behaviour: A Literature Review of Factors Influencing Occupant Behaviour and Models. Build. Environ. 2012, 58, 188–198. [Google Scholar] [CrossRef]
- Cooper, E.; Wang, Y. Modelling the Impact on Mortality of Using Portable Air Purifiers to Reduce Modelling the Impact on Mortality of Using Portable Air Purifiers to Reduce. Atmos. Environ. 2022, 289, 119311. [Google Scholar] [CrossRef]
- Fell, M.J.; Pagel, L.; Chen, C.-F.; Goldberg, M.H.; Herberz, M.; Huebner, G.M.; Sareen, S.; Hahnel, U.J.J. Validity of Energy Social Research during and after COVID-19: Challenges, Considerations, and Responses. Energy Res. Soc. Sci. 2020, 68, 101646. [Google Scholar] [CrossRef]
- Lavtižar, K.; Fikfak, A.; Fink, R. Overlooked Impacts of Urban Environments on the Air Quality in Naturally Ventilated Schools Amid the COVID-19 Pandemic. Sustainability 2023, 15, 2796. [Google Scholar] [CrossRef]
- Belafi, Z.D.; Naspi, F.; Arnesano, M.; Reith, A.; Revel, G.M. Investigation on Window Opening and Closing Behavior in Schools through Measurements and Surveys: A Case Study in Budapest. Build. Environ. 2018, 143, 523–531. [Google Scholar] [CrossRef]
- Stazi, F.; Naspi, F.; D’Orazio, M. Modelling Window Status in School Classrooms. Results from a Case Study in Italy. Build. Environ. 2017, 111, 24–32. [Google Scholar] [CrossRef]
- Alonso, A.; Llanos, J.; Escandón, R.; Sendra, J.J. Effects of the Covid-19 Pandemic on Indoor Air Quality and Thermal Comfort of Primary Schools in Winter in a Mediterranean Climate. Sustainability 2021, 13, 2699. [Google Scholar] [CrossRef]
- Munckton, B.; Rajagopalan, P. Interaction between Thermal Conditions and Ventilation in Kindergartens in Melbourne, Australia. Sustainability 2024, 16, 1186. [Google Scholar] [CrossRef]
- D’Oca, S.; Hong, T. A Data-Mining Approach to Discover Patterns of Window Opening and Closing Behavior in Offices. Build. Environ. 2014, 82, 726–739. [Google Scholar] [CrossRef]
- Herkel, S.; Knapp, U.; Pfafferott, J. Towards a Model of User Behaviour Regarding the Manual Control of Windows in Office Buildings. Build. Environ. 2008, 43, 588–600. [Google Scholar] [CrossRef]
- Zhang, X.; Wargocki, P.; Lian, Z. Human Responses to Carbon Dioxide, a Follow-up Study at Recommended Exposure Limits in Non-Industrial Environments. Build. Environ. 2016, 100, 162–171. [Google Scholar] [CrossRef]
- Yao, M.; Zhao, B. Window Opening Behavior of Occupants in Residential Buildings in Beijing. Build. Environ. 2017, 124, 441–449. [Google Scholar] [CrossRef]
- Branco, P.T.B.S.; Sousa, S.I.V.; Dudzińska, M.R.; Ruzgar, D.G.; Mutlu, M.; Panaras, G.; Papadopoulos, G.; Saffell, J.; Scutaru, A.M.; Struck, C.; et al. A Review of Relevant Parameters for Assessing Indoor Air Quality in Educational Facilities. Environ. Res. 2024, 261, 119713. [Google Scholar] [CrossRef] [PubMed]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A.J. What Do We Know about Indoor Air Quality in School Classrooms? A Critical Review of the Literature. Intell. Build. Int. 2012, 4, 228–259. [Google Scholar] [CrossRef]
- Settimo, G.; Indinnimeo, L.; Inglessis, M.; De Felice, M.; Morlino, R.; di Coste, A.; Carriera, F.; Di Fiore, C.; Avino, P. CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces. Sustainability 2024, 16, 8619. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, X.; Xu, G.; Jia, J.; Hai, R.; Gao, C.; Zhang, S. The Relationship between Different Types of Alarm Sounds and Children’s Perceived Risk Based on Their Physiological Responses. Int. J. Environ. Res. Public Health 2019, 16, 5091. [Google Scholar] [CrossRef]
Site | Room 1 | Abbr. | Occupancy 4 | Area (m2) | Volume (m3) | Air Purifier |
---|---|---|---|---|---|---|
Site 1 | classroom 1 | N1_class1 | 33 | 35 | 105 | No |
classroom 2 | N1_class2 | 33 | 41 | 160 | No | |
classroom 3 | N1_class3 | 20 | 48 | 190 | No | |
staffroom 1 2 | N1_staff1 | 6 | 45 | 188 | Yes (1 unit) | |
staffroom 2 3 | N1_staff2 | 4 | 48 | 193 | Yes (1 unit) | |
N1_class5 | 20 | |||||
Site 2 | classroom 1 | N2_class1 | 22 | 55 | 210 | No |
classroom 2 | N2_class2 | 12 | 36 | 85 | No | |
staffroom 1 2 | N2_staff1 | 5 | 55 | 215 | Yes (1 unit) | |
staffroom 2 | N2_staff2 | 3 | 49 | 170 | Yes (1 unit) | |
Site 3 | classroom 1 | N3_class1 | 50–60 | 165 | 530 | Yes (2 units) |
classroom 2 | N3_class2 | 20–30 | 55 | 180 | No | |
classroom 3 | N3_class3 | 25 | 71 | 140 | No |
Site | Classroom | Windows |
---|---|---|
Nursery 1 | N1_class1 | c1w4 |
(N1) | N1_class2 | c2w3, c2w5, c2w6 |
N1_class3 | c3w1–8 | |
N1_staff1 | c4w5 | |
N1_staff2 | c5w1–3, c5w6–8 | |
Nursery 2 | N2_class1 | c1w1, c1w2 |
(N2) | N2_class2 | c2w1 |
N2_staff1 | - | |
N2_staff2 | c3w1, c3w2 | |
Nursery 3 | N3_class1 | - |
(N3) | N3_class2 | c2w1–4 |
N3_class3 | c3w4 |
Specifications | |
---|---|
Airflow Rate per fan speed * | 230/290/350/420/480 m3/h |
Sound Power Level per fan speed * | 23/29/35/42/48 |
Total System Efficiency for: | |
Fine Particles and allergens (≥0.3 µm) | ≥99% |
Ultrafine Particles, bacteria and viruses (<0.1 µm) | ≥99% |
Particulate Matter (PM2.5, PM10) | ≥99% |
Particle Filter | High-efficiency particle filter with high-capacity media surface area (approx. 13.3 m2) |
Site | Window | Percentage of Time in the Open State (%) | Median Duration (min) | |||
---|---|---|---|---|---|---|
Overall | Non-Heating | Heating | Non-Heating | Heating | ||
N1_class3 | c3w3 | 24.5 | 24.2 | 18.7 | 215 | 145 |
N1_class4 | c4w5 | 5.1 | 8.2 | 2.8 | 270 | 185 |
N1_class5 | c5w8 | 32.3 | 24.7 | 49.3 | 415 | 365 |
N2_class1 | c1w2 | 40.3 | 55.5 | 25.3 | 235 | 125 |
N2_class2 | c2w1 | 44.7 | 66.5 | 25.7 | 380 | 317.5 |
N2_staff2 | c4w7 | 53 | 36.1 | - | 335 | 50 |
N3_class2 | c2w3 | 60.1 | 66.9 | 63.9 | 395 | 625 |
N3_class2 | c2w4 | 48.7 | 49.8 | 53.6 | 420 | 822.5 |
Mean | 41.5 | 34.2 | 333 | 329 |
Window Opening Frequency | Non-Heating Season | Heating Season |
---|---|---|
Always | 88% | 74% |
2–3 times a day | 9% | 21% |
Once a day | 3% | 3% |
Never | 0% | 3% |
Reason for Closing Windows | Non-Heating Season | Heating Season |
---|---|---|
In concerns of COVID-19 | 0% | 4% |
Concerns about outdoor air pollution | 4% | 4% |
Story time | 7% | 0% |
Air quality is fine, no ventilation needs | 21% | 14% |
Noise outside | 4% | 4% |
Too cold | 0% | 14% |
None | 64% | 61% |
Nursery | Classroom | Window | Diff Rate (%) | |
---|---|---|---|---|
Closed | Open | |||
N1 | N1_class1 | 4.0 | 5.3 | 32.5 |
N1_class2 | 3.4 | 4.8 | 41.2 | |
N1_class3 | 4.0 | 4.6 | 15.0 | |
N1_staff1 | 0.3 | 0.3 | 0.0 | |
N1_staff2 | 1.9 | 2.1 | 10.5 | |
N2 | N2_class1 | 3.3 | 4.3 | 30.3 |
N2_class2 | 2.5 | 3.9 | 56.0 | |
N2_staff1 | 0.8 | 1.6 | 100.0 | |
N2_staff2 | 0.6 | 0.6 | 0.0 | |
N3 | N3_class1 | 2.2 | 2.3 | 4.5 |
N3_class2 | 5.2 | 5.6 | 7.7 | |
N3_class3 | 4.5 | 6.0 | 33.3 | |
Mean | 2.7 | 3.5 | 27.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, D.; Li, X. Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries. Sustainability 2025, 17, 7093. https://doi.org/10.3390/su17157093
Zhang S, Chen D, Li X. Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries. Sustainability. 2025; 17(15):7093. https://doi.org/10.3390/su17157093
Chicago/Turabian StyleZhang, Shuo, Didong Chen, and Xiangyu Li. 2025. "Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries" Sustainability 17, no. 15: 7093. https://doi.org/10.3390/su17157093
APA StyleZhang, S., Chen, D., & Li, X. (2025). Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries. Sustainability, 17(15), 7093. https://doi.org/10.3390/su17157093