Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
Abstract
1. Introduction
- -
- Extraction of humic substances from peat and demonstrating that post-extraction peat still holds value as a secondary raw material;
- -
- Recovery and reuse of nutrients from hard-to-recycle post-cultivation mineral wool in the form of a liquid fertilizer product or intermediate;
- -
- Reuse of post-extraction peat and post-extraction, post-cultivation mineral wool in the production of a new organic–mineral horticultural substrate;
- -
- Initial attestation tests of liquid fertilizers and substrates necessary to place these products on the market.
2. Materials and Methods
2.1. Materials
2.2. Extraction of Humic and Fulvic Acids from Peat
2.3. Characterization of Humic Acids, Fulvic Acids, and Peat Before and After Extraction
2.4. Procedure of Nutrient Extraction from Waste Mineral Wool to Produce Liquid Fertilizer
2.5. The Reuse of Post-Extration Peat and Mineral Wool in the Production of a New Organic–Mineral Horticultural Substrate
2.6. Initial Attestation Tests of Liquid Fertilizer and Substrate Necessary to Place Products on the Market
3. Results
3.1. Physicochemical Characterization of Humic Acids, Fulvic Acids, and Peat Before and After Extraction
3.2. Physicochemical and Biological Characteristics of the New Organic–Mineral Substrate and Liquid Fertilizer
4. Discussion
4.1. Qualitative Assessment of Humic Acids, Fulvic Acids, and Peat Before and After Extraction
4.2. Qualitative Assessment of the New Organic–Mineral Substrate and Liquid Fertilizer
4.3. Practical Implications and Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reynolds, M.P.; Quilligan, E.; Aggarwal, P.K.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.C.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S. An Integrated Approach to Maintaining Cereal Productivity under Climate Change. Glob. Food Secur. 2016, 8, 9–18. [Google Scholar] [CrossRef]
- Coccia, M. Why Do Nations Produce Science Advances and New Technology? Technol. Soc. 2019, 59, 101124. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Ritzén, S.; Sandström, G.Ö. Barriers to the Circular Economy–Integration of Perspectives and Domains. Procedia CIRP 2017, 64, 7–12. [Google Scholar] [CrossRef]
- Smol, M.; Marcinek, P.; Duda, J.; Szołdrowska, D. Importance of Sustainable Mineral Resource Management in Implementing the Circular Economy (CE) Model and the European Green Deal Strategy. Resources 2020, 9, 55. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural Utilization of Biosolids: A Review on Potential Effects on Soil and Plant Grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Canato, M.; Abba, A.; Miino, M.C. Biosolids: What Are the Different Types of Reuse? J. Clean. Prod. 2019, 238, 117844. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef]
- Smol, M. Transition to Circular Economy in the Fertilizer Sector—Analysis of Recommended Directions and End-Users’ Perception of Waste-Based Products in Poland. Energies 2021, 14, 4312. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What Could Promote Farmers to Replace Chemical Fertilizers with Organic Fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Marcinek, P.; Smol, M. Bioeconomy as One of the Key Areas of Implementing a Circular Economy (CE) in Poland. Environ. Res. Eng. Manag. 2020, 76, 20–31. [Google Scholar] [CrossRef]
- Regulation European Union. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003 (Text with EEA Relevance). OJ L 170/1, 25.6. 2019. J. Eur. Union 2019, 62, 1–132. [Google Scholar]
- Chen, W.-M.; Kim, H. Circular Economy and Energy Transition: A Nexus Focusing on the Non-Energy Use of Fuels. Energy Environ. 2019, 30, 586–600. [Google Scholar] [CrossRef]
- Atkins, R. Coal in a New Carbon Age: Powering a Wave of Innovation in Advanced Products & Manufacturing. 2019. Available online: https://www.ourenergypolicy.org/wp-content/uploads/2019/05/NCC-COAL-IN-A-NEW-CARBON-AGE-2.pdf (accessed on 16 June 2025).
- Nagachandrabose, S.; Baidoo, R. Humic Acid–a Potential Bioresource for Nematode Control. Nematology 2021, 24, 1–10. [Google Scholar] [CrossRef]
- Pulidindi, K.; Pandey, H. Humic Acid Market Size by Application (Agriculture, Ecological Bioremediation, Horticulture, Dietary Supplements). In Industry Analysis Report, Regional Outlook, COVID-19 Impact Analysis, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2022–2028; Global Market Insights Inc.: Selbyville, DE, USA, 2022; Available online: https://www.gminsights.com/industry-analysis/humic-acid-market (accessed on 14 July 2022).
- Jung, H.; Kwon, S.; Kim, J.-H.; Jeon, J.-R. Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? Molecules 2021, 26, 760. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A Meta-Analysis and Review of Plant-Growth Response to Humic Substances: Practical Implications for Agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar]
- Yang, F.; Tang, C.; Antonietti, M. Natural and Artificial Humic Substances to Manage Minerals, Ions, Water, and Soil Microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef] [PubMed]
- Akimbekov, N.S.; Digel, I.; Tastambek, K.T.; Sherelkhan, D.K.; Jussupova, D.B.; Altynbay, N.P. Low-Rank Coal as a Source of Humic Substances for Soil Amendment and Fertility Management. Agriculture 2021, 11, 1261. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Fenton, O.; Szara, E.; Thornton, S.F.; Malina, G. Holistic Assessment of Biochar and Brown Coal Waste as Organic Amendments in Sustainable Environmental and Agricultural Applications. Water Air Soil Pollut. 2021, 232, 106. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Bussell, W.T.; Mckennie, S. Rockwool in Horticulture, and Its Importance and Sustainable Use in New Zealand. N. Z. J. Crop Hortic. Sci. 2004, 32, 29–37. [Google Scholar] [CrossRef]
- Domis, M.; Papadopoulos, A.P.; Gosselin, A. Greenhouse Tomato Fruit Quality. Horticult. Rev. 2002, 26, 239–349. [Google Scholar]
- Jeong, B.R.; Hwang, S.J. Use of Recycled Hydroponic Rockwool Slabs for Hydroponic Production of Cut Roses. In World Congress on Soilless Culture: Agriculture in the Coming Millennium 554; ISHS: Korbeek-Lo, Belgium, 2000; pp. 89–94. [Google Scholar]
- Peet, M.M.; Welles, G.W.H. Greenhouse Tomato Production. Crop Prod. Sci. Hortic. 2005, 13, 257. [Google Scholar]
- Huculak-Mączka, M.; Hoffmann, K.; Klem, E.; Hoffmann, J. Możliwości Wykorzystania Odpadowej Wełny Mineralnej w Rolnictwie. Przemysł Chem. 2014, 93, 1029–1032. [Google Scholar]
- Grodan. Recycling Manual—Grower. 2018. Available online: https://www.grodan.com/syssiteassets/downloads/downloads-en/whitepapers-en/recycling-manual-grower-2018-september-en.pdf?f=20181113174543 (accessed on 16 June 2025).
- Vandecasteele, B.; Similon, L.; Moelants, J.; Hofkens, M.; Visser, R.; Melis, P. End-of-Life Stage of Renewable Growing Media with Biochar versus Spent Peat or Mineral Wool. Nutr. Cycl. Agroecosyst. 2024, 128, 447–461. [Google Scholar] [CrossRef]
- ISO 19822:2018; Fertilizers and Soil Conditioners—Determination of Humic and Hydrophobic Fulvic Acids Concentrations in Fertilizer Materials. International Organization for Standardization: Geneva, Switzerland, 2018.
- PN-EN 13040:2009; Soil Improvers and Growing Media—Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density. Polish Committee for Standardization: Warsaw, Poland, 2009.
- PN-EN 13038:2011; Soil Improvers and Growing Media—Determination of Electrical Conductivity. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Yang, Y.; Li, H.; Li, J. Variation in Humic and Fulvic Acids during Thermal Sludge Treatment Assessed by Size Fractionation, Elementary Analysis, and Spectroscopic Methods. Front. Environ. Sci. Eng. 2014, 8, 854–862. [Google Scholar] [CrossRef]
- Boguta, P.; Skic, K.; Sokołowska, Z.; Frąc, M.; Sas-Paszt, L. Chemical Transformation of Humic Acid Molecules under the Influence of Mineral, Fungal and Bacterial Fertilization in the Context of the Agricultural Use of Degraded Soils. Molecules 2021, 26, 4921. [Google Scholar] [CrossRef] [PubMed]
- Orliński, T.; Anielak, A.M. Characteristics of Fulvic Acids Generated in Communes Waste Landfills. Arch. Environ. Prot. 2021, 47, 41–52. [Google Scholar]
- Anielak, A.M. Kwasy Humusowe: Ekstrakcja, Analiza i Znaczenie w Środowisku Oraz Metody Ich Usuwania. Przemysł Chem. 2019, 98, 1580–1586. [Google Scholar]
- Gong, G.Q.; Zhao, Y.F.; Zhang, Y.J.; Deng, B.; Liu, W.X.; Wang, M.; Yuan, X.; Xu, L.W. Establishment of a Molecular Structure Model for Classified Products of Coal-Based Fulvic Acid. Fuel 2020, 267, 117210. [Google Scholar] [CrossRef]
- Giovanela, M.; Crespo, J.S.; Antunes, M.; Adamatti, D.S.; Fernandes, A.N.; Barison, A.; da Silva, C.W.P.; Guégan, R.; Motelica-Heino, M.; Sierra, M.M.D. Chemical and Spectroscopic Characterization of Humic Acids Extracted from the Bottom Sediments of a Brazilian Subtropical Microbasin. J. Mol. Struct. 2010, 981, 111–119. [Google Scholar] [CrossRef]
- Qi, G.; Yue, D.; Nie, Y. Characterization of Humic Substances in Bio-Treated Municipal Solid Waste Landfill Leachate. Front. Environ. Sci. Eng. China 2012, 6, 711–716. [Google Scholar] [CrossRef]
- Drosos, M.; Jerzykiewicz, M.; Deligiannakis, Y. H-Binding Groups in Lignite vs. Soil Humic Acids: NICA-Donnan and Spectroscopic Parameters. J. Colloid Interface Sci. 2009, 332, 78–84. [Google Scholar] [CrossRef] [PubMed]
- de Paolis, F.; Kukkonen, J. Binding of Organic Pollutants to Humic and Fulvic Acids: Influence of PH and the Structure of Humic Material. Chemosphere 1997, 34, 1693–1704. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, F.; Xing, B.; Meng, W.; Shi, G.; Ma, Y.; Giesy, J.P. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-Fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer. Sci. Rep. 2015, 5, 8723. [Google Scholar] [CrossRef]
- Lu, X.Q.; Hanna, J.V.; Johnson, W.D. Source Indicators of Humic Substances: An Elemental Composition, Solid State 13C CP/MAS NMR and Py-GC/MS Study. Appl. Geochem. 2000, 15, 1019–1033. [Google Scholar] [CrossRef]
- da Silva, R.R.; Lucena, G.N.; Machado, Â.F.; de Freitas, G.A.; Matos, A.T.; Abrahão, W.A.P. Spectroscopic and Elementary Characterization of Humic Substances in Organic Substrates. Comun. Sci. 2018, 9, 264–274. [Google Scholar] [CrossRef]
- Kļaviņš, M.; Sire, J.; Purmalis, O.; Melecis, V. Approaches to Estimating Humification Indicators for Peat. 2008. Available online: http://www.mires-and-peat.net/pages/volumes/map03/map0307.php (accessed on 16 June 2025).
- Tfaily, M.M.; Cooper, W.T.; Kostka, J.E.; Chanton, P.R.; Schadt, C.W.; Hanson, P.J.; Iversen, C.M.; Chanton, J.P. Organic Matter Transformation in the Peat Column at Marcell Experimental Forest: Humification and Vertical Stratification. J. Geophys. Res. Biogeosci. 2014, 119, 661–675. [Google Scholar] [CrossRef]
- Shouliang, H.U.O.; Beidou, X.I.; Haichan, Y.U.; Liansheng, H.E.; Shilei, F.A.N.; Hongliang, L.I.U. Characteristics of Dissolved Organic Matter (DOM) in Leachate with Different Landfill Ages. J. Environ. Sci. 2008, 20, 492–498. [Google Scholar] [CrossRef]
- Fuentes, M.; Baigorri, R.; Garcia-Mina, J.M. Maturation in Composting Process, an Incipient Humification-like Step as Multivariate Statistical Analysis of Spectroscopic Data Shows. Environ. Res. 2020, 189, 109981. [Google Scholar] [CrossRef]
- Thor-1n, K.A.; Cox, L.G. N-15 NMR Spectra of Naturally Abundant Nitrogen in Soil and Aquatic Natural Organic Matter Samples of the International Humic Substances Society. Org. Geochem. 2009, 40, 484–499. [Google Scholar] [CrossRef]
- Mengchang, H.E.; Yehong, S.H.I.; Chunye, L.I.N. Characterization of Humic Acids Extracted from the Sediments of the Various Rivers and Lakes in China. J. Environ. Sci. 2008, 20, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Doskočil, L.; Burdíková-Szewieczková, J.; Enev, V.; Kalina, L.; Wasserbauer, J. Spectral Characterization and Comparison of Humic Acids Isolated from Some European Lignites. Fuel 2018, 213, 123–132. [Google Scholar] [CrossRef]
- Araújo, B.R.; Romão, L.P.C.; Doumer, M.E.; Mangrich, A.S. Evaluation of the Interactions between Chitosan and Humics in Media for the Controlled Release of Nitrogen Fertilizer. J. Environ. Manag. 2017, 190, 122–131. [Google Scholar] [CrossRef]
- Gondar, D.; Lopez, R.; Fiol, S.; Antelo, J.M.; Arce, F. Characterization and Acid-Base Properties of Fulvic and Humic Acids Isolated from Two Horizons of an Ombrotrophic Peat Bog. Geoderma 2005, 126, 367–374. [Google Scholar] [CrossRef]
- Sierra, M.M.D.; Giovanela, M.; Parlanti, E.; Esteves, V.I.; Duarte, A.C.; Fransozo, A.; Soriano-Sierra, E.J. Structural Description of Humic Substances from Subtropical Coastal Environments Using Elemental Analysis, FT-IR and 13C-Solid State NMR Data. J. Coast. Res. 2005, 42, 370–382. [Google Scholar]
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. NaCl Accumulation and Macronutrient Uptake by a Melon Crop in a Closed Hydroponic System in Relation to Water Uptake. Agric. Water Manag. 2016, 165, 22–32. [Google Scholar] [CrossRef]
- Savvas, D.; Ntatsi, G.; Passam, H.C. Plant Nutrition and Physiological Disorders in Greenhouse Grown Tomato, Pepper and Eggplant. Eur. J. Plant Sci. Biotechnol. 2008, 2, 45–61. [Google Scholar]
- Figura, A.; Cencek, T.; Żbikowska, E. Parasitic Threat in Commercial Organic Fertilizers. Parasitol. Res. 2022, 121, 945–949. [Google Scholar] [CrossRef] [PubMed]
Sample | Elemental Composition (%) | Atomic Ratio | |||||
---|---|---|---|---|---|---|---|
N | C | H | O | H/C | O/C | C/N | |
HAs | 3.1 | 50.6 | 4.7 | 41.7 | 0.9 | 0.8 | 16.4 |
3.0 | 50.0 | 5.6 | 41.4 | 1.1 | 0.8 | 16.6 | |
3.1 | 51.3 | 5.3 | 40.3 | 1.0 | 0.8 | 16.5 | |
Average | 3.1 | 50.6 | 5.2 | 41.1 | 1.0 | 0.8 | 16.5 |
FAs | 0.9 | 19.9 | 10.9 | 68.3 | 5.5 | 2.5 | 21.2 |
1.1 | 20.2 | 8.4 | 70.3 | 4.2 | 3.5 | 17.9 | |
1.1 | 19.1 | 8.5 | 71.3 | 4.5 | 3.7 | 16.9 | |
Average | 1.1 | 19.7 | 9.3 | 70.0 | 4.7 | 3.2 | 18.7 |
Peat | 2.9 | 41.1 | 6.4 | 49.6 | 1.6 | 1.2 | 14.1 |
2.6 | 42.7 | 5.6 | 49.1 | 1.3 | 1.1 | 16.4 | |
2.7 | 38.0 | 5.6 | 53.7 | 1.5 | 1.4 | 14.0 | |
Average | 2.7 | 40.6 | 5.9 | 50.8 | 1.4 | 1.3 | 14.8 |
Post-Peat | 3.3 | 46.1 | 6.3 | 44.3 | 1.4 | 1.0 | 14.0 |
3.5 | 48.5 | 6.2 | 41.8 | 1.3 | 0.9 | 13.7 | |
3.5 | 47.8 | 6.4 | 42.3 | 1.3 | 0.9 | 13.7 | |
Average | 3.4 | 47.4 | 6.3 | 42.8 | 1.3 | 0.9 | 13.8 |
Sample | Distribution of Carbon Chemical Shift (ppm), % | |||
---|---|---|---|---|
0–45 | 45–110 | 110–160 | 160–210 | |
Alkyl C | Carbohydrate C | Aromatic C | Carboxylic C | |
HAs | 25.3 | 29.4 | 26.7 | 18.6 |
FAs | 22.1 | 28.5 | 23.5 | 25.9 |
Peat | 28.3 | 33.7 | 23.6 | 14.3 |
Post-Peat | 25.3 | 37.9 | 24.4 | 12.4 |
Parameter, Unit | Determined in the Sample | Minimum Requirements for Mineral Fertilizers According to Journal of Laws No 119, Item 765 and of 2008 |
---|---|---|
N, wt% | 2.5 ± 0.3 | 1.0 |
P2O5, wt% | 3.3 ± 0.5 | 1.0 |
K2O, wt% | 6.65 ± 0.39 | 1.0 |
Mg, wt% | 1.3 ± 0.2 | - |
Ca, wt% | 0.01 ± 0.01 | - |
Na, wt% | 0.33 ± 0.05 | - |
Cu, mg/kg | 105 ± 13 | - |
Zn, mg/kg | 193 ± 24 | - |
Mn, mg/kg | 1049 ± 126 | - |
Fe, mg/kg | 2.5 ± 0.3 | - |
B, mg/kg | 96.2 ± 11.6 | - |
Mo, mg/kg | 12.8 ± 1.3 | - |
Cr, mg/kg | <5.0 | 100 |
Cd, mg/kg | <0.5 | 5 |
Ni, mg/kg | 6.8 ± 0.9 | 60 |
Pb, mg/kg | <5.0 | 140 |
Hg, mg/kg | <0.01 | 2 |
Presence of pathogens and eggs of intestinal parasites | ||
Ascaris sp., number of eggs/1 kg of dry matter | Not determined | |
Trichuris sp., number of eggs/1 kg of dry matter | Not determined | |
Toxocara sp., number of eggs/1 kg of dry matter | Not determined | |
Salmonella sp., per 100 g of sediment | Not determined |
Parameter, Unit | Determined in the Sample | Minimum Requirements for Mineral Fertilizers According to Journal of Laws No 119, Item 765 and of 2008 |
---|---|---|
N, wt% | 0.32 ± 0.05 | - |
P, wt% | 0.75 ± 0.12 | - |
K, wt% | 0.25 ± 0.03 | - |
Mg, wt% | 1.04 ± 0.17 | - |
Ca, wt% | 3.24 ± 0.50 | - |
Na, wt% | 0.38 ± 0.06 | - |
Cu, mg/kg | 32.9 ± 3.98 | - |
Zn, mg/kg | 64.3 ± 7.88 | - |
Mn, mg/kg | 545 ± 65.6 | - |
Fe, mg/kg | 1007 ± 121 | - |
B, mg/kg | 11.5 ± 1.37 | - |
Mo, mg/kg | 9.25 ± 1.08 | - |
Cr, mg/kg | 22.9 ± 2.8 | 100 |
Cd, mg/kg | <0.5 | 5 |
Ni, mg/kg | 26.6 ± 3.2 | 60 |
Pb, mg/kg | 20.0 ± 2.4 | 140 |
Hg, mg/kg | 0.07 ± 0.01 | 2 |
Moisture, % | 6.0 ± 0.1 | - |
Organic matter, % | 37.6 ± 2.3 | - |
pH-H2O | 5.3 ± 0.2 | - |
EC, g NaCl/dm3 | 7.8 ± 0.6 | - |
Bulk density, g/m3 | 246 ± 50 | - |
Presence of pathogens and eggs of intestinal parasites | ||
Ascaris sp., number of eggs/1 kg of dry matter | Not determined | |
Trichuris sp., number of eggs/1 kg of dry matter | Not determined | |
Toxocara sp., number of eggs/1 kg of dry matter | Not determined | |
Salmonella sp., per 100 g of sediment | Not determined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huculak-Mączka, M.; Nieweś, D.; Marecka, K.; Braun-Giwerska, M. Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy. Sustainability 2025, 17, 7083. https://doi.org/10.3390/su17157083
Huculak-Mączka M, Nieweś D, Marecka K, Braun-Giwerska M. Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy. Sustainability. 2025; 17(15):7083. https://doi.org/10.3390/su17157083
Chicago/Turabian StyleHuculak-Mączka, Marta, Dominik Nieweś, Kinga Marecka, and Magdalena Braun-Giwerska. 2025. "Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy" Sustainability 17, no. 15: 7083. https://doi.org/10.3390/su17157083
APA StyleHuculak-Mączka, M., Nieweś, D., Marecka, K., & Braun-Giwerska, M. (2025). Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy. Sustainability, 17(15), 7083. https://doi.org/10.3390/su17157083