Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. Measurements
- -
- Hardness (N): maximum force recorded during the first compression cycle;
- -
- Cohesiveness (adim.): measurement of the strength of the internal bonds that allow the berry to “reform” its structure;
- -
- Springiness (mm): height regained by the berry between the end of the first cycle and the beginning of the second;
- -
- Gumminess (N): energy required to dissolve the berry so that it resembles a semi-solid, deglutible food;
- -
- Chewiness (mJ): energy required to chew the berry until it is ready for deglutition;
- -
- Resilience (adim.): ability of the berry to return to its original position after being squeezed.
- -
- Maximum breaking force (FB—force break): expressed in Newtons (N), representing the force required to break the skin;
- -
- Energy required for perforation (EB—energy break): calculated as the area under the time-deformation curve, between the start of the test (zero force or trigger point, i.e., the point at which the probe touches the grape) and the complete breaking point of the skin (yield point).
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IY | Inactive Yeast |
MBW | Medium Berry Weight |
TSS | Total Soluble Solids |
TA | Titratable Acidity |
TPC | Total Polyphenol Content |
ANT | Anthocyanins |
H | Hardness |
Ch | Chewiness |
Co | Cohesiveness |
E | Elasticity |
G | Gumminess |
R | Resilience |
FB | Force Break |
EB | Energy Break |
Th | Skin Thickness |
L* | Lightness |
a* | Red/Green Scale |
b* | Yellow/Blue Scale |
C* | Chroma |
h* | Hue Angle |
References
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Change 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Lachhab, N.; Sanzani, S.M.; Adrian, M.; Chiltz, A.; Balacey, S.; Boselli, M.; Ippolito, A.; Poinssot, B. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola. Front. Plant Sci. 2014, 5, 716. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Regulation (Eu) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj/eng (accessed on 17 March 2025).
- Jindo, K.; Goron, T.L.; Pizarro-Tobias, P.; Sanchez-Monedero, M.A.; Audette, Y.; Deolu-Ajayi, A.O.; van der Werf, A.; Teklu, M.G.; Shenker, M.; Pombo Sudré, C.; et al. Application of biostimulant products and biological control agents in sustainable viticulture: A review. Front. Plant Sci. 2022, 13, 932311. [Google Scholar] [CrossRef] [PubMed]
- Crupi, P.; Palattella, D.; Corbo, F.; Clodoveo, M.L.; Masi, G.; Caputo, A.R.; Battista, F.; Tarricone, L. Effect of pre-harvest inactivated yeast treatment on the anthocyanin content and quality of table grapes. Food Chem. 2021, 337, 128006. [Google Scholar] [CrossRef]
- Portu, J.; López, R.; Baroja, E.; Santamaría, P.; Garde-Cerdán, T. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chem. 2016, 201, 213–221. [Google Scholar] [CrossRef]
- Puccioni, S.; Biselli, C.; Perria, R.; Zanella, G.; D’Arcangelo, M.E.M. Alternative Effects Yeast-Based Biostimulants Against Downy Mildew in Vitis vinifera cv Cabernet Sauvignon. Horticulturae 2025, 11, 203. [Google Scholar] [CrossRef]
- Pastore, C.; Allegro, G.; Valentini, G.; Pizziolo, A.; Battista, F.; Spinelli, F.; Filippetti, I. Foliar application of specific yeast derivative enhances anthocyanins accumulation and gene expression in Sangiovese cv (Vitis vinifera L.). Sci. Rep. 2020, 10, 11627. [Google Scholar] [CrossRef]
- Hernández-Fernández, M.; Cordero-Bueso, G.; Ruiz-Muñoz, M.; Cantoral, J.M. Culturable Yeasts as Biofertilizers and Biopesticides for a Sustainable Agriculture: A Comprehensive Review. Plants 2021, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Petoumenou, D.G.; Patris, V.E. Effects of Several Preharvest Canopy Applications on Yield and Quality of Table Grapes (Vitis vinifera L.) Cv. Crimson Seedless. Plants 2021, 10, 906. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Olavarrieta, C.E.; Sampedro, M.C.; Vallejo, A.; Štefelová, N.; Barrio, R.J.; De Diego, N. Biostimulants as an Alternative to Improve the Wine Quality from Vitis vinifera (cv. Tempranillo) in La Rioja. Plants 2022, 11, 1594. [Google Scholar] [CrossRef]
- Samuels, L.J.; Setati, M.E.; Blancquaert, E.H. Towards a Better Understanding of the Potential Benefits of Seaweed Based Biostimulants in Vitis vinifera L. Cultivars. Plants 2022, 11, 348. [Google Scholar] [CrossRef]
- Gatti, N.; Maghrebi, M.; Serio, G.; Gentile, C.; Bunea, V.; Vigliante, I.; Boitte, C.; Garabello, C.; Contartese, V.; Bertea, C.M.; et al. Seaweed and yeast extracts as sustainable phytostimulant to boost secondary metabolism of apricot fruits. Front. Plant Sci. 2024, 15, 1455156. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S. Biological elicitors of plant secondary metabolites: Mode of action and use in the production of nutraceutics. Adv. Exp. Med. Biol. 2010, 698, 152–166. [Google Scholar] [CrossRef]
- Šuklje, K.; Antalick, G.; Buica, A.; Coetzee, Z.A.; Brand, J.; Schmidtke, L.M.; Vivier, M.A. Inactive dry yeast application on grapes modify Sauvignon Blanc wine aroma. Food Chem. 2016, 197, 1073–1084. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Marín-San Román, S.; Jofré, V.; Rubio-Bretón, P.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Effects on chlorophyll and carotenoid contents in different grape varieties (Vitis vinifera L.) after nitrogen and elicitor foliar applications to the vineyard. Food Chem. 2018, 269, 380–386. [Google Scholar] [CrossRef]
- Rantsiou, K.; Giacosa, S.; Pugliese, M.; Englezos, V.; Ferrocino, I.; Río Segade, S.; Monchiero, M.; Gribaudo, I.; Gambino, G.; Gullino, M.L.; et al. Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Microbial Ecology and Chemical-Physical Grape Characteristics at Harvest. Front. Plant Sci. 2020, 11, 700. [Google Scholar] [CrossRef]
- Giacosa, S.; Ossola, C.; Botto, R.; Río Segade, S.; Paissoni, M.A.; Pollon, M.; Gerbi, V.; Rolle, L. Impact of specific inactive dry yeast application on grape skin mechanical properties, phenolic compounds extractability, and wine composition. Food Res. Int. 2019, 116, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- Rolle, L.; Torchio, F.; Zeppa, G.; Gerbi, V. Anthocyanin extractability assessment of grape skins by texture analysis. Int. Sci. Vigne Vin 2008, 42, 157–162. [Google Scholar]
- Torchio, F.; Cagnasso, E.; Gerbi, V.; Rolle, L. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas. Anal. Chim. Acta 2010, 660, 183–189. [Google Scholar] [CrossRef]
- Villangó, S.; Pásti, G.; Kállay, M.; Leskó, A.; Balga, I.; Donkó, A.; Ladányi, M.; Pálfi, Z.; Zsófi, Z. Enhancing Phenolic Maturity of Syrah with the Application of a New Foliar Spray. S. Afr. J. Enol. Vitic. 2015, 36, 3. [Google Scholar] [CrossRef]
- Zapata-García, S.; Berríos, P.; Temnani, A.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Combined Use of Biostimulation and Deficit Irrigation Improved the Fruit Quality in Table Grape. Plants 2025, 14, 485. [Google Scholar] [CrossRef]
- Letaief, H.; Rolle, L.; Gerbi, V. Mechanical behavior of winegrapes under compression tests. Am. J. Enol. Vitic. 2008, 59, 323. [Google Scholar] [CrossRef]
- Zsófi, Z.; Villangò, S.; Pálfi, Z.; Tóth, E.; Bálo, B. Texture characteristics of the grape berry skin and seed (Vitis vinifera L. cv. Kékfrankos) under postveraison water deficit. Sci. Hortic. 2014, 172, 176–182. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of Total Phenolics. Curr. Protoc. Food Anal. Chem. 2001, 6, I1.1.1–I1.1.8. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Dickinson, N. Revealing the Complex Interplay of Biostimulant Applications. Plants 2024, 13, 2188. [Google Scholar] [CrossRef]
- Río Segade, S.; Suárez Martínez, C.; Ossola, C.; Battista, F.; Téllez Quemada, J.; Rolle, L.; Paissoni, M.A.; Vagnoli, P.; Giacosa, S.; Gerbi, V. Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability. In Proceedings of the Macrowine 2016, Nyon, Switzerland, 27–30 June 2016. [Google Scholar]
- Santamaria, A.R.; Mulinacci, N.; Valletta, A.; Innocenti, M.; Pasqua, G. Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J. Agric. Food Chem. 2011, 59, 9094–9101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef]
- Lijavetzky, D.; Ruiz-García, L.; Cabezas, J.A.; De Andrés, M.T.; Bravo, G.; Ibáñez, A.; Carreño, J.; Cabello, F.; Ibáñez, J.; Martínez-Zapater, J.M. Molecular genetics of berry colour variation in table grape. Mol. Genet Genom. 2006, 276, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.Z.; Cheng, G.; Li, Q.; Zhu, Y.R.; Zhang, X.; Wang, Y.; He, Y.N.; Li, S.Y.; He, L.; Chen, W.; et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC Plant Biol. 2019, 19, 583. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hierro, J.M.; Quijada-Morín, N.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 2014, 146, 41–47. [Google Scholar] [CrossRef]
- Medina Plaza, C.; Dokoozlian, N.; Ponangi, R.; Blair, T.; Block, D.; Oberholster, A. Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines. In Proceedings of the OENO IVAS 2019, Bordeaux, France, 25–28 June 2019. [Google Scholar]
- Kőrösi, L.; Molnár, S.; Teszlák, P.; Dörnyei, Á.; Maul, E.; Töpfer, R.; Marosvölgyi, T.; Szabó, É.; Röckel, F. Comparative Study on Grape Berry Anthocyanins of Various Teinturier Varieties. Foods 2022, 11, 3668. [Google Scholar] [CrossRef]
- González Neves, G.; Piccardo, D.; Gil, G.; Favre, G.; Barreiro, L.; Ferrer, M. Anthocyanin accumulation and extractability during the maturation of the grapes of three varieties. In Proceedings of the Macrowine 2016, Nyon, Switzerland, 27–30 June 2016. [Google Scholar]
- Salem-Fnayou, A.B.; Bouamama, B.; Ghorbel, A.; Mliki, A. Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera) under heat stress. Microsc. Res. Tech. 2011, 74, 756–762. [Google Scholar] [CrossRef]
- Petoumenou, D.G.; Liava, V. Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality. Plants 2025, 14, 2157. [Google Scholar] [CrossRef]
- Işçı, B.; Kacar, E.; Altindışlı, A. Effects of IBA and plant growthpromoting rhizobacteria (PGPR) on rooting of ramsey American grapevine rootstock. Appl. Ecol. Environ. Res. 2019, 17, 4693–4705. [Google Scholar] [CrossRef]
- de Carvalho, R.P.; Pasqual, M.; de Oliveira Silveira, H.R.; de Melo, P.C.; Bispo, D.F.A.; Laredo, R.R.; de Aguiar Saldanha Lima, L. “Niágara rosada” table grape cultivated with seaweed extracts: Physiological, nutritional, and yielding behavior. J. Appl. Phycol. 2019, 31, 2053–2064. [Google Scholar] [CrossRef]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Rolle, L.; Guidoni, S. Color and anthocyanin evaluation of red winegrapes by CIE L*, a*, b* parameters. OENO One 2007, 41, 193–201. [Google Scholar] [CrossRef]
- Gombau, J.; Pons, P.; Fernández, D.; Heras, J.M.; Sieczkowski, N.; Canals, J.M.; Zamora, F. Influence of supplementation with two specific inactivated dry yeast and grape-skin extract on the color and composition of red wine. BIO Web Conf. 2019, 12, 02004. [Google Scholar] [CrossRef]
- Rustioni, L.; Basilico, R.; Fiori, S.; Leoni, A.; Maghradze, D.; Failla, O. Grape Colour Phenotyping: Development of a Method Based on the Reflectance Spectrum. Phytochem. Anal. 2013, 24, 453–459. [Google Scholar] [CrossRef]
- Rolle, L.; Siret, R.; Rio Segade, S.; Maury, C.; Gerbi, V.; Jourjon, F. Instrumental texture analysis parameters as markers of table-grape and winegrape quality: A review. Am. J. Enol. Vitic. 2012, 63, 11–28. [Google Scholar] [CrossRef]
- Rio Segade, S.; Giacosa, S.; Gerbi, V.; Rolle, L. Berry skin thickness as main texture parameter to predict anthocyanin extractability in winegrapes. LWT Food Sci. Technol. 2011, 44, 392–398. [Google Scholar] [CrossRef]
Tmin (°C) | Tmax (°C) | Tmean (°C) | Rain Sum (mm) | PET Sum (mm) | |
---|---|---|---|---|---|
January | 2.2 | 10.9 | 6.1 | 52.4 | 27.3 |
February | 4.0 | 14.1 | 8.5 | 87.5 | 38.3 |
March | 5.7 | 15.6 | 10.4 | 126.4 | 58.8 |
April | 7.1 | 19.1 | 12.8 | 65.4 | 97.1 |
May | 10.6 | 21.7 | 16.3 | 89.9 | 116.3 |
June | 14.5 | 27.4 | 21.0 | 37.7 | 147.5 |
July | 18.7 | 33.3 | 26.4 | 2.4 | 186.2 |
August | 19.7 | 33.9 | 26.8 | 22.3 | 157.4 |
September | 14.2 | 24.4 | 19.0 | 160.0 | 89.4 |
October | 12.0 | 20.5 | 15.8 | 257.6 | 49.3 |
November | 4.5 | 14.8 | 9.1 | 22.8 | 35.3 |
December | 0.3 | 10.3 | 4.4 | 98.9 | 24.0 |
Annual mean/sum | 9.5 | 20.5 | 14.8 | 1023.3 | 1026.8 |
Vegetative season mean/sum | 14.1 | 26.6 | 20.4 | 377.7 | 793.9 |
Factors | Cabernet Sauvignon | Merlot | |||||||
---|---|---|---|---|---|---|---|---|---|
Cultivar | Treatment | Interaction | Test | T1 | T2 | Test | T1 | T2 | |
MBW (g) | *** | *** | * | 0.78 ab | 0.73 b | 0.85 a | 1.17 a | 0.95 b | 1.04 ab |
TSS (°Brix) | *** | n.s. | n.s. | 25.0 | 24.5 | 25.2 | 26.9 | 26.9 | 25.9 |
TA (g/L) | n.s. | n.s. | n.s. | 4.35 | 4.62 | 4.57 | 3.93 | 3.99 | 4.13 |
pH | n.s. | n.s. | n.s. | 3.60 | 3.52 | 3.55 | 3.65 | 3.62 | 3.62 |
TPC (mg GAE/g) | n.s. | n.s. | n.s. | 45.88 | 44.14 | 42.42 | 37.87 b | 40.92 a | 39.84 ab |
ANT (mg Cy/g skin) | * | * | * | 16.35 ab | 18.02 a | 14.79 b | 16.36 b | 17.30 ab | 18.35 a |
Factors | Cabernet Sauvignon | Merlot | |||||||
---|---|---|---|---|---|---|---|---|---|
Cultivar | Treatment | Interaction | Test | T1 | T2 | Test | T1 | T2 | |
H (N) | *** | * | n.s. | 3.88 a | 3.48 b | 3.85 ab | 4.59 | 3.97 | 3.93 |
Ch (mJ) | * | * | n.s. | 2.69 | 2.21 | 2.95 | 3.93 a | 2.62 b | 3.22 ab |
Co | n.s. | n.s. | n.s. | 0.47 | 0.43 | 0.5 | 0.48 | 0.45 | 0.49 |
E (mm) | n.s. | *** | *** | 1.47 b | 1.27 c | 1.66 a | 1.65 a | 1.36 b | 1.34 b |
G (N) | * | * | n.s. | 1.83 | 1.59 | 1.89 | 2.31 | 1.86 | 2.05 |
R | n.s. | n.s. | n.s. | 0.35 | 0.34 | 0.34 | 0.35 | 0.34 | 0.35 |
FB (N) | *** | ** | n.s. | 0.74 b | 0.83 ab | 0.84 a | 1.16 | 1.18 | 1.3 |
EB (mJ) | *** | * | n.s. | 0.62 | 0.73 | 0.73 | 1.22 | 1.24 | 1.41 |
Th (mm) | *** | *** | * | 0.18 | 0.19 | 0.18 | 0.20 b | 0.30 a | 0.22 b |
Factors | Cabernet Sauvignon | Merlot | |||||||
---|---|---|---|---|---|---|---|---|---|
Cultivar | Treatment | Interaction | Test | T1 | T2 | Test | T1 | T2 | |
L* | *** | n.s. | n.s. | 35.53 | 35.48 | 33.64 | 31.19 | 32.02 | 31.53 |
a* | *** | n.s. | n.s. | −0.78 | −0.77 | −0.61 | −0.07 | 0.04 | 0.02 |
b* | *** | n.s. | n.s. | −4.54 | −4.49 | −4.15 | −3.03 | −3.29 | −2.93 |
C* | n.s. | ** | *** | 3.67 a | 2.00 c | 2.98 b | 2.75 ab | 3.19 a | 2.35 b |
h* | * | n.s. | ** | 266.35 b | 271.71 a | 268.69 ab | 270.4 | 269.1 | 274.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentilesco, G.; Alba, V.; Forte, G.; Milella, R.A.; Roselli, G.; D’Arcangelo, M.E.M. Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars. Sustainability 2025, 17, 6958. https://doi.org/10.3390/su17156958
Gentilesco G, Alba V, Forte G, Milella RA, Roselli G, D’Arcangelo MEM. Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars. Sustainability. 2025; 17(15):6958. https://doi.org/10.3390/su17156958
Chicago/Turabian StyleGentilesco, Giovanni, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli, and Mauro Eugenio Maria D’Arcangelo. 2025. "Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars" Sustainability 17, no. 15: 6958. https://doi.org/10.3390/su17156958
APA StyleGentilesco, G., Alba, V., Forte, G., Milella, R. A., Roselli, G., & D’Arcangelo, M. E. M. (2025). Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars. Sustainability, 17(15), 6958. https://doi.org/10.3390/su17156958