Characterizing the Green Watershed Index (GWI) in the Razey Watershed, Meshginshahr County, NW Iran
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Setting the Sustainability Indicators
2.3. Scoring of the Sustainability Indicators
2.4. Weighting the Sustainability Indicators
2.5. Calculation of Green Watershed Index (GWI)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zakeri, M.A.; Mirnia, S.K.; Moradi, H.R. Assessment of water security in the large watersheds of Iran. Environ. Sci. Policy. 2022, 127, 31–37. [Google Scholar] [CrossRef]
- Afshar Bakeshlo, Z.; Omidvar, M.; Gigauri, I. Sustainable Path and Green Leadership: Navigating the Challenges of Environmental Sustainability in Iran. In Navigating Corporate Social Responsibility Through Leadership and Sustainable Entrepreneurship; Gigauri, I., A. Khan, A., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 257–278. [Google Scholar] [CrossRef]
- Abedini, M.; Sabouri, H.; Pasban, A. Flood Hazard Zoning and Its Relationship with Land Use Using the Analytic Network Process Model (Case Study: Razi Chay Watershed, Ardabil Province). J. Sustain. Urban Reg. Dev. Stud. 2025, 6, 68–84. Available online: https://www.srds.ir/article_214387_en.html (accessed on 26 May 2025). (In Persian).
- Shamaee, S.H.; Yousefi, H.; Zahedi, R. Assessing urban development indicators for environmental sustainability. Discov. Sustain. 2024, 5, 341. [Google Scholar] [CrossRef]
- Amghani, M.S.; Sabouri, M.S.; Baghernejad, J.; Norozi, A. Factors affecting the livelihood sustainability of smallholder farmers in Iran. Environ. Sustain. Indic. 2025, 26, 100601. [Google Scholar] [CrossRef]
- Tajbakhshian, M. Groundwater quality and hydrogeochemical challenges in the Sarakhs Plain, NE Iran: A call for sustainable management. Environ. Geochem. Health. 2025, 47, 75. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, S.; Hafezparast, M.; Mastali, F. Productivity and sustainability index evaluation for Harsin dam. J. Rainwater Catchment Syst. 2019, 7, 53–63. (In Persian) [Google Scholar]
- Saeedi, I.; Mikaeili Tabrizi, A.R.; Bahremand, A.; Salmanmahiny, A. A soft systems methodology and interpretive structural modeling framework for green infrastructure development to control runoff in Tehran metropolis. Nat. Resour. Model. 2022, 35, e12339. [Google Scholar] [CrossRef]
- He, D.; Hu, J.; Zhang, J. Assessment of sustainable development suitability in linear cultural heritage—A case of Beijing Great Wall Cultural Belt. Land 2023, 12, 1761. [Google Scholar] [CrossRef]
- Núñez-Razo, I.; de Anda, J.; Barrios-Piña, H.; Olvera-Vargas, L.A.; García-Ruíz-García, M.; Hernández-Morales, S. Development of a watershed sustainability index for the Santiago River Basin, Mexico. Sustainability 2023, 15, 8428. [Google Scholar] [CrossRef]
- Mocuta, D.; Stoian, E. Interdependence between sustainable development and human health. In Scientific Papers. Series “Management, Economic Engineering in Agriculture and Rural Development”; U.S.A.M.V.: Bucharest, Romania, 2013; Volume 13, pp. 241–246. ISSN 2284-7995. [Google Scholar]
- Flotemersch, J.; Leibowitz, S.; Hill, R.; Stoddard, J.; Thoms, M.; Tharme, R. A watershed integrity definition and assessment approach to support strategic management of watersheds. River Res. Appl. 2016, 32, 1654–1671. [Google Scholar] [CrossRef]
- Naiman, R.J. New Perspectives for Watershed Management: Balancing Long-Term Sustainability with Cumulative Environmental Change. In Watershed Management; Naiman, R.J., Ed.; Springer: New York, NY, USA, 1992. [Google Scholar] [CrossRef]
- Kateb, F.; Ouri, A.E.; Mostafazadeh, R.; Sharari, M.; Hazbavi, Z. Index-based assessment of stakeholder perception for participatory sustainable soil and water resources in a mountainous landscape. Eval. Program Plan. 2025, 112, 102643. [Google Scholar] [CrossRef]
- Jarzebski, M.P.; Karthe, D.; Chapagain, S.K.; Setiawati, M.D.; Wadumestrige Dona, C.G.; Pu, J.; Fukushi, K. Comparative Analysis of Water Sustainability Indices: A Systematic Review. Water 2024, 16, 961. [Google Scholar] [CrossRef]
- Nugroho, H.Y.S.H.; Purwanto, P.; Nandini, R.; Adi, R.N.; Savitri, E.; Putra, P.B.; Indrawati, D.R.; Nada, F.M.H.; Nugroho, A.W. Building Adaptive and Resilient Community to Climate Change Through Micro Watershed Management Strategies to Support the Achievement of Village SDGs. In Climate Change: Conflict and Resilience in the Age of Anthropocene; Pal, S.C., Chatterjee, U., Saha, A., Ruidas, D., Eds.; Advances in Global Change Research; Springer: Cham, Switzerland, 2025; Volume 80. [Google Scholar] [CrossRef]
- Eurostat. Water Exploitation Index in Europe, 2016, 310. Available online: http://maps.eea.europa.eu/EEAViewer/?appid=eaf7bb088ba-548368c6e102c4a876c13 (accessed on 1 June 2023).
- Dening, S. European Green City Index; Siemens AG: Munich, Germany, 2009. [Google Scholar]
- Juwana, I.; Perera, B.J.; Muttil, N. A water sustainability index for West Java. Part 1: Developing the conceptual framework. Water Sci. Technol. 2010, 62, 1629–1640. [Google Scholar] [CrossRef]
- Chaves, H.M.L.; Alipaz, S. An Integrated Indicator Based on Basin Hydrology, Environment, Life, and Policy: The Watershed Sustainability Index. Water Resour. Manage 2007, 21, 883–895. [Google Scholar] [CrossRef]
- Emerson, J.; Esty, D.C.; Levy, M.A.; Kim, C.H.; Mara, V.; de Sherbinin, A.; Srebotnjak, T. 2010 Environmental Performance Index; Yale Center for Environmental Law and Policy: New Haven, CT, USA, 2010; Available online: http://epi.yale.edu/ (accessed on 26 May 2025).
- Mititelu-Ionuş, O. Watershed Sustainability Index Development and Application: Case Study of the Motru River in Romania. Pol. J. Environ. Stud. 2017, 26, 2095–2105. [Google Scholar] [CrossRef]
- Rendrarpoetri, B.L.; Rustiadi, E.; Fauzi, A.; Pravitasari, A.E. Sustainability Assessment of the Upstream Bengawan Solo Watershed in Wonogiri Regency, Central Java Province, Indonesia. Sustainability 2024, 16, 1982. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green infrastructure: Smart Conservation for the 21st Century. Renew. Resour. J. 2002, 20, 12–17. Available online: http://www.sprawlwatch.org/greeninfrastructure.pdf (accessed on 2 June 2023).
- Buckley, M. Economic Benefits of Green Infrastructure: Chesapeake Bay Region; ECONorthwest: Portland, OR, USA, 2011. [Google Scholar]
- Caro, C.A.; Bladé, E. Water Resources Management: Green Watershed Index (GWI). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Volume 690, 2020 International Symposium on Water, Ecology and Environment, Beijing, China, 6–8 December 2020. [Google Scholar]
- Abdel-Basset, M.; Gamal, A.; Chakrabortty, R.K.; Ryan, M.; El-Saber, N. A Comprehensive Framework for Evaluating Sustainable Green Building Indicators under an Uncertain Environment. Sustainability 2021, 13, 6243. [Google Scholar] [CrossRef]
- Cegielska, K.; Kukulska-Kozieł, A.; Hernik, J. Green Neighbourhood Sustainability Index–A measure of the balance between anthropogenic pressure and ecological relevance. Ecol. Indic. 2024, 160, 111815. [Google Scholar] [CrossRef]
- Hall, B.; Kerr, M.L. 1991–1992 Green Index: A State-by-State Guide to the Nation’s Environmental Health, 1st ed.; Island Press: Washington, DC, USA, 1991; 170p. [Google Scholar]
- Covv, C.; Halstead, T.; Rowe, J. If the GDP is Up, why is America Down? Atl. Mon. 1995, 276, 5978. [Google Scholar]
- Lawn, P.A. A theoretical foundation to support the Index of Sustainable Economic Welfare (ISEW), Genuine Progress Indicator (GPI), and other related indexes. Ecol. Econ. 2003, 44, 105–118. [Google Scholar] [CrossRef]
- Lawn, P.A. An assessment of the valuation methods used to calculate the index of sustainable economic welfare (ISEW), genuine progress indicator (GPI), and sustainable net benefit index (SNBI). Environ. Dev. Sustain. 2005, 7, 185–208. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhao, H.H.; Cui, J.X.; Fan, D.; Lv, B.; Wang, G.; Li, Z.H.; Zhou, G.J. Evaluating green development level of nine cities within the Pearl River Delta, China. J. Clean. Prod. 2018, 174, 315–323. [Google Scholar] [CrossRef]
- Ahmadov, E. Water resources management to achieve sustainable development in Azerbaijan. Sustain. Futures 2020, 2, 100030. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Sadeghi, S.H.; Gholamalifard, M.; Davudirad, A.A. Watershed health assessment using the pressure–state–response (PSR) framework. Land Degrad. Dev. 2020, 31, 3–19. [Google Scholar] [CrossRef]
- Alaei, N.; Mostafazadeh, R.; Esmali Ouri, A.; Hazbavi, Z.; Sharari, M.; Huang, G. Spatial comparative analysis of landscape fragmentation metrics in a watershed with diverse land uses in Iran. Sustainability 2022, 14, 14876. [Google Scholar] [CrossRef]
- Azizi, E.; Nikoo, M.R.; Mostafazadeh, R.; Hazbavi, Z. Flood vulnerability analysis using different aggregation frameworks across watersheds of Ardabil province, northwestern Iran. Int. J. Disaster Risk Reduct. 2023, 91, 103680. [Google Scholar] [CrossRef]
- Dickens, C.; McCartney, M.; Tickner, D.; Harrison, I.J.; Pacheco, P.; Ndhlovu, B. Evaluating the global state of ecosystems and natural resources: Within and beyond the SDGs. Sustainability 2020, 12, 7381. [Google Scholar] [CrossRef]
- Ali, A. Monitoring, Evaluation and Learning of Natural Resources Management Projects, Part II. Project “Strengthening Natural Resources Management Capacities to Revitalize Agriculture in Fragile Contexts”. E-nugget. 2020. Available online: https://www.fao.org/3/cb2139en/cb2139en.pdf (accessed on 12 May 2023).
- Vandecasteele, I.; Mari Rivero, I.; Baranzelli, C.; Becker, W.; Dreoni, I.; Lavalle, C.; Batelaan, O. The Water Retention Index: Using land use planning to manage water resources in Europe. Sustain. Dev. 2018, 26, 122–131. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Hogeboom, R.J. The water footprint concept and water’s grand environmental challenges. One Earth 2020, 2, 218–222. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Beek, E. Water Resources Planning and Management: An Overview. In Water Resource Systems Planning and Management; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Dalavi, P.; Bhakar, S.R.; Rajput, J.; Gaddikeri, V.; Tiwari, R.K.; Shukla, A.; Vishwakarma, D.K. Modeling runoff in Bhima River catchment, India: A comparison of artificial neural networks and empirical models. Water Pract. Technol. 2024, 19, 2595–2612. [Google Scholar] [CrossRef]
- Coutagine, J. A new method of determining the runoff coefficient of small catchments. J. Hydrol. Hydromech. 1967, 5, 94–108. [Google Scholar]
- Ghabelnezam, E.; Mostafazadeh, R.; Esmali Ouri, A.; Hazbavi, Z. The Importance of Watershed Ecosystem Services with Emphasis on Runoff yield and Erosion Control. Hum. Environ. 2022, 62, 137–155. Available online: https://sanad.iau.ir/en/Article/847705 (accessed on 20 May 2023). (In Persian).
- Malvandi, H.; Moghanizade, R.; Abdoli, A. The use of biological indices and diversity indices to evaluate water quality of rivers in Mashhad, Iran. Biologia 2021, 76, 959–971. [Google Scholar] [CrossRef]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Tohidimoghadam, A.; PourSaeed, A.; Bijani, M.; Eshraghi Samani, R. Rural sustainable livelihood resilience to climate change: A strategic analysis. Environ. Sustain. Indic. 2023, 20, 100292. [Google Scholar] [CrossRef]
- Ullah, A.; Bavorova, M.; Ahmad Shah, A.; Kandel, G.P. Climate change and rural livelihoods: The potential of extension programs for sustainable development. Sustain. Dev. 2024, 32, 4992–5004. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, C.C.; García-Sánchez, I.M.; Vicente-Galindo, P.; Galindo-Villardón, P. Exploring relationships between environmental performance, e-government and corruption: A multivariate perspective. Sustainability 2019, 11, 6497. [Google Scholar] [CrossRef]
- Lu, P.; Sun, Y.; Steffen, N. Scenario-based performance assessment of green-grey-blue infrastructure for flood-resilient spatial solution: A case study of Pazhou, Guangzhou, greater Bay area. Landsc. Urban Plan. 2023, 238, 104804. [Google Scholar] [CrossRef]
- Ncube, S.; Arthur, S. Influence of Blue-Green and Grey Infrastructure Combinations on Natural and Human-Derived Capital in Urban Drainage Planning. Sustainability 2021, 13, 2571. [Google Scholar] [CrossRef]
- Rezaei Ghaleh, M.; Hagh Parast, F.; Maleki, A. Investigating the correlation between blue-green infrastructure and reduction of heat-related health effect under climate change (Case study: Qazvin City). Bagh-e Nazar. 2022, 19, 69–84. (In Persian) [Google Scholar] [CrossRef]
- Risch, E.; Gasperi, J.; Gromaire, M.C.; Chebbo, G.; Azimi, S.; Rocher, V.; Roux, P.; Rosenbaum, R.K.; Sinfort, C. Impacts from urban water systems on receiving waters–how to account for severe wet-weather events in LCA? Water Res. 2018, 128, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Maleki, N.; Shakeri Bostanabad, R.; Salehi komroudi, M.; Seiedabadi, S. Investigating the status of the combined water security index of Iranian Provinces in the Period of 2012-2017: Application of Multi-Criteria Analysis Methods. J. Water Sustain. Dev. 2021, 8, 21–32. (In Persian) [Google Scholar] [CrossRef]
- Crossman, N.D.; Nedkov, S.; Brander, L. Discussion Paper 7: Water Flow Regulation for Mitigating River and Coastal Flooding. Paper Submitted to the Expert Meeting on Advancing the Measurement of Ecosystem Services for Ecosystem Accounting, New York, 2019 and Subsequently Revised. Version of 1 April 2019. Available online: https://seea.un.org/events/expert-meeting-advancing-measurement-ecosystem-services-ecosystem-accounting (accessed on 14 April 2023).
- McGarigal, K.; Cushman, S.A.; Ene, E. Spatial Pattern Analysis Program for Categorical and Continuous Maps, FRAGSTATS v4; University of Massachusetts: Amherst, MA, USA, 2012. [Google Scholar]
- Brodny, J.; Tutak, M. A multi-criteria measurement and assessment of human capital development in EU-27 countries: A 10-year perspective. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100394. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Fisher, L.A.; Meixner, T.; Le Tourneau, F.-M.; Postillion, F. Stakeholder participation, indicators, assessment, and decision-making: Applying adaptive management at the watershed scale. Environ. Monit. Assess. 2022, 194, 156. [Google Scholar] [CrossRef]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Climate Change and Rural Livelihoods in Developing Countries. In Socio-Economic Issues of Climate Change; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Lopez Porras, G.; Stringer, L.C.; Quinn, C.H. Corruption and conflicts as barriers to adaptive governance: Water governance in dryland systems in the Rio del Carmen watershed. Sci. Total Environ. 2019, 10, 519–530. [Google Scholar] [CrossRef]
- Moeinifar, M.; Givarian, H.; Rabiei Mondajin, M.R.; Momeni, M. Indicators and Components for Developing a Model of Anti-Corruption Policy in Iran (With an Electronic Government Approach). Int. J. Innov. Manag. Organ. Behav. 2023, 3, 77–83. [Google Scholar] [CrossRef]
- Taghva, M.R.; Masnavi, H.; Taghavifard, M.T.; Zarandi, S. E-Governance Development Model Towards Anti-Corruption in Iran. Public Manag. Res. 2023, 16, 163–190. (In Persian) [Google Scholar] [CrossRef]
Sub-Watershed | Area (ha) | Area (%) | Land Use (ha) | Mean Elevation (M) | |||||
---|---|---|---|---|---|---|---|---|---|
Residential | Rainfed Agriculture | Orchard | Rangeland | Rocky land | Irrigated Agriculture | ||||
R1 | 1146.3 | 6.30 | 10.30 | 944.80 | 17.00 | 37.40 | 136.80 | 0.00 | 2129.44 |
R2-1-1 | 842.5 | 4.63 | 3.50 | 546.30 | 55.20 | 199.70 | 37.90 | 0.00 | 1807.92 |
R2-1-2-1 | 909.4 | 5.00 | 0.70 | 197.60 | 2.30 | 611.50 | 97.40 | 0.00 | 1916.61 |
R2-1-2-2-1 | 1121.2 | 6.16 | 4.30 | 51.20 | 36.90 | 945.70 | 63.60 | 19.50 | 1972.65 |
R2-1-2-2-int | 582.8 | 3.20 | 0.00 | 127.10 | 12.70 | 439.80 | 3.20 | 0.00 | 2100.93 |
R2-1-2-3 | 489.9 | 2.69 | 2.30 | 139.90 | 6.70 | 336.90 | 4.00 | 0.00 | 1663.82 |
R2-1-2-int | 2098.6 | 11.53 | 12.20 | 1318.80 | 110.10 | 513.90 | 143.20 | 0.00 | 2033.07 |
R2-1-int | 1129 | 6.21 | 10.10 | 730.20 | 248.90 | 110.00 | 29.80 | 0.00 | 1628.60 |
R2-2-1 | 944.2 | 5.19 | 0.00 | 69.90 | 43.70 | 713.80 | 116.70 | 0.00 | 1544.93 |
R2-2-2 | 742.9 | 4.08 | 0.00 | 59.60 | 0.00 | 592.10 | 91.20 | 0.00 | 1714.98 |
R2-2-3 | 1313.2 | 7.22 | 0.00 | 570.10 | 0.00 | 724.80 | 18.20 | 0.00 | 1479.09 |
R2-2-int | 2061.8 | 11.33 | 18.90 | 1031.70 | 223.70 | 683.60 | 104.20 | 0.00 | 1579.92 |
R2-int | 178.6 | 0.98 | 0.00 | 74.90 | 37.50 | 0.00 | 66.20 | 0.00 | 1402.51 |
R3-1 | 1269 | 6.97 | 0.60 | 749.30 | 0.60 | 492.30 | 26.20 | 0.00 | 1415.51 |
R3-2 | 489.4 | 2.69 | 0.00 | 398.70 | 0.00 | 53.30 | 37.30 | 0.00 | 1418.93 |
R3-int | 768 | 4.22 | 6.00 | 538.70 | 43.10 | 62.50 | 117.60 | 0.00 | 1337.67 |
R-int | 2107.25 | 11.58 | 2.30 | 57.40 | 0.60 | 1390.30 | 657.10 | 0.00 | 1288.62 |
Total | 18,194.05 | 100 | 71.20 | 7606.20 | 839.00 | 7907.60 | 1750.60 | 19.50 | 1650.37 |
No. | Indicator * | Abbreviation | Source |
---|---|---|---|
1 | Infrastructure maintenance | IM | Health Department of Razey, Education Department of Razey, General Office of Natural Resources and Watershed Management of Ardabil Province, Iran, and Field Visit |
2 | Effectiveness in public water management | EPWM | Coutagine formula [45], Soil and Water Laboratory, and General Office of Natural Resources and Watershed Management of Ardabil Province, Iran |
3 | Water vulnerability | WV | Coutagine formula [45] |
4 | Water retention index | WRI | INVEST software |
5 | Water stress | WS | Coutagine formula [45] |
6 | Water footprint | WF | Water and Wastewater Department of Meshginshahr and Razey |
7 | Water self-sufficiency | WSS | Coutagine formula [45] |
8 | Water saving and efficient use programs | WSE | Water and Wastewater Department of Meshginshahr and Razey |
9 | Simpson’s biodiversity index | BD | Fragstat 3.16.1 software |
10 | Environmental productivity | EP | General Office of Natural Resources and Watershed Management of Ardabil Province, Iran |
11 | Recycling | R | Municipality and Village Councils of Razey |
12 | Landscape attractiveness | LA | Statistical Center of Iran |
13 | Human Capital | HC | Water and Wastewater Department of Meshginshahr and Razey |
14 | Population participation | PP | General Office of Natural Resources and Watershed Management of Ardabil Province, Iran |
15 | Adaptation to climate change | ACC | General Office of Natural Resources and Watershed Management of Ardabil Province, Iran, and field visit |
16 | Knowledge management and information quality system | KM | General Office of Natural Resources and Watershed Management of Ardabil Province, Iran |
17 | Corruption control | CC | Transparency International Association |
Score | Category |
---|---|
0–5 | Unsustainable |
6–8 | Semi-sustainable |
9–10 | Sustainable |
Score | How to Evaluate |
---|---|
0 | Designated and desired criteria for green watershed management have not been met. |
2 | Activities for achieving green watershed management have been started. |
4 | Operational plans for achieving green watershed management have been completed. |
6 | Approaches to the development of executive measures for achieving green watershed management have been initiated. |
8 | Measures for achieving green watershed management have been partially implemented. |
10 | Fully compliant with green management criteria, and the intended measures have been fully implemented. |
Sub-Watershed | Indicators * | GWI | Category | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IM | EPWM | WV | WRI | WS | WF | WSS | WSE | BD | EP | R | LA | HC | PP | ACC | KM | CC | ||||
Weight | 0.030 | 0.006 | 0.109 | 0.005 | 0.109 | 0.000 | 0.015 | 0.150 | 0.004 | 0.262 | 0.000 | 0.000 | 0.191 | 0.098 | 0.022 | 0.000 | 0.000 | |||
R1 | 0.18 | 0.03 | 0.87 | 0.02 | 0.87 | 0.00 | 0.03 | 0.90 | 0.00 | 0.52 | 0.00 | 0.00 | 0.95 | 0.69 | 0.07 | 0.00 | 0.00 | 5.13 | Semi-sustainable | |
R2-1-1 | 0.12 | 0.03 | 0.43 | 0.02 | 0.43 | 0.00 | 0.06 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.57 | 0.69 | 0.09 | 0.00 | 0.00 | 2.91 | Unsustainable | |
R2-1-2-1 | 0.05 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.43 | ||
R2-1-2-2-1 | 0.03 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.14 | 0.15 | 0.00 | 1.31 | 0.00 | 0.00 | 0.00 | 0.10 | 0.09 | 0.00 | 0.00 | 1.89 | ||
R2-1-2-2-int | 0.06 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.11 | 0.00 | 0.00 | 0.49 | ||
R2-1-2-3 | 0.01 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.79 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 1.07 | ||
R2-1-2-int | 0.19 | 0.04 | 0.54 | 0.02 | 0.54 | 0.00 | 0.09 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.57 | 0.69 | 0.11 | 0.00 | 0.00 | 3.25 | ||
R2-1-int | 0.24 | 0.04 | 0.22 | 0.02 | 0.22 | 0.00 | 0.11 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 1.53 | 0.69 | 0.22 | 0.00 | 0.00 | 3.87 | ||
R2-2-1 | 0.03 | 0.05 | 0.54 | 0.02 | 0.54 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 1.35 | ||
R2-2-2 | 0.03 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | ||
R2-2-3 | 0.07 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.43 | ||
R2-2-int | 0.16 | 0.03 | 0.11 | 0.02 | 0.11 | 0.00 | 0.12 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 | 0.20 | 0.00 | 0.00 | 1.29 | ||
R2-int | 0.13 | 0.03 | 0.54 | 0.01 | 0.54 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 1.41 | ||
R3-1 | 0.13 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.04 | 0.00 | 0.00 | 0.69 | ||
R3-2 | 0.07 | 0.05 | 0.65 | 0.01 | 0.65 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.69 | 0.09 | 0.00 | 0.00 | 2.25 | ||
R3-int | 0.18 | 0.01 | 0.76 | 0.01 | 0.76 | 0.00 | 0.03 | 0.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.57 | 0.69 | 0.13 | 0.00 | 0.00 | 3.59 | ||
R-int | 0.12 | 0.03 | 0.00 | 0.04 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.42 | ||
Total | 0.11 | 0.04 | 0.27 | 0.02 | 0.27 | 0.00 | 0.11 | 0.15 | 0.00 | 0.44 | 0.00 | 0.00 | 0.84 | 0.29 | 0.10 | 0.00 | 0.00 | 2.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irani, A.; Jahdi, R.; Hazbavi, Z.; Mostafazadeh, R.; Esmali Ouri, A. Characterizing the Green Watershed Index (GWI) in the Razey Watershed, Meshginshahr County, NW Iran. Sustainability 2025, 17, 6841. https://doi.org/10.3390/su17156841
Irani A, Jahdi R, Hazbavi Z, Mostafazadeh R, Esmali Ouri A. Characterizing the Green Watershed Index (GWI) in the Razey Watershed, Meshginshahr County, NW Iran. Sustainability. 2025; 17(15):6841. https://doi.org/10.3390/su17156841
Chicago/Turabian StyleIrani, Akbar, Roghayeh Jahdi, Zeinab Hazbavi, Raoof Mostafazadeh, and Abazar Esmali Ouri. 2025. "Characterizing the Green Watershed Index (GWI) in the Razey Watershed, Meshginshahr County, NW Iran" Sustainability 17, no. 15: 6841. https://doi.org/10.3390/su17156841
APA StyleIrani, A., Jahdi, R., Hazbavi, Z., Mostafazadeh, R., & Esmali Ouri, A. (2025). Characterizing the Green Watershed Index (GWI) in the Razey Watershed, Meshginshahr County, NW Iran. Sustainability, 17(15), 6841. https://doi.org/10.3390/su17156841