Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Weather Conditions
2.3. Experimental Design
- (1)
- The first N dose of 80 kg N ha−1 was applied at the end of winter, just before the start (regrowth) of winter wheat vegetation.
- (2)
- The second N dose of 70 kg N ha−1 was applied at the beginning of the shoot elongation phase (BBCH 31/32).
2.4. Plant Material Sampling and Analysis
2.5. Calculated Parameters
- Grain density, GD
- 2.
- Harvest index
- 3.
- Nitrogen accumulation in grain, GN
- 4.
- Nitrogen accumulation in straw, SN
- 5.
- Total accumulation of nitrogen in wheat biomass, TN
- 6.
- Nitrogen harvest index, NHI
- 7.
- Nitrogen unit accumulation in grain, NUA-GN
- 8.
- Nitrogen unit accumulation in total wheat biomass, NUA-TN
- 9.
- Nitrogen unit productivity—grain, NUP-GN
- 10.
- Nitrogen unit productivity—total N, NUP-TN
- 11.
- Partial factor productivity of fertilizer N, PFP-Nf
- 12.
- Agronomic nitrogen efficiency, ANE
- 13.
- Nitrogen recovery, R-GN
- 14.
- Nitrogen recovery, R-TN
- 15.
- Physiological nitrogen efficiency, PhNE-GN
- 16.
- Physiological nitrogen efficiency, PhNE-TN
- GY—grain yield, t ha−1;
- N—N content in grain or crop residues;
- g kg−1 DW, NAC—nitrogen control;
- Nf—treatments fertilized with nitrogen.
- Nu—nutrients: N, P, K, Mg, kg ha−1;
- in—nutrient input in applied fertilizers, kg ha−1;
- out—nutrient output in winter wheat biomass, kg ha−1.
- Nmin—the amount of mineral N in soil, kg N ha−1;
- s, h—sampling time, spring, harvest;
- TN—the amount of N in winter wheat biomass at harvest, kg N ha−1.
- N—mass of Nmin, kg ha−1;
- Mg (P, K)—content of available Mg, mg kg−1;
- b—nutrient balance, kg ha−1 or mg kg−1;
- s, h, bf—soil sampling dates: spring, harvest, and before winter wheat sowing.
2.6. Statistical Analysis
3. Results
3.1. Grain Yield and Yield Components
3.2. Nitrogen Accumulation−N Management Indicators
- (1)
- Grain nitrogen, GN:
- (2)
- Total nitrogen, TN:
3.3. Nitrogen Use Efficiency Indicators
- (1)
- Grain nitrogen, GN:
- (2)
- Total nitrogen, TN:
3.4. Crop Nutrient Balance
3.5. Soil Nutrient Balance
- AC; NNb was negative, meaning that the relative N increase was 50%.
- NPK-KK+Ki and NPK-KK+Ki+ES; NNb was negative, and the N increase was at least twice as low as AC.
- NPK-MOP+Ki and NPK-KK; NNb fluctuated around zero.
- NP+NPK-MOP; NNb was positive, which means that inorganic resources were not fully utilized by wheat.
- GN:
- 2.
- R-GN:
4. Discussion
4.1. Balanced Fertilization−Grain Yield–Yield Components−Stability
4.2. Balanced Fertilization−Control of Soil Fertility Sustainability
4.3. Balanced Fertilization−Evaluation of NUE Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronyms | Full name |
ANE | Agronomic nitrogen efficiency |
CRRR | Crop residue replacement ratio |
CNB | Crop nutrient balance |
GD | Grain density, number of grains per m2 |
GE | Number of grains per ear |
GY | Grain yield |
GN | Grain nitrogen, nitrogen accumulated in grain |
HI | Harvest index |
KK | Korn–Kali |
MOP | Muriate of potash |
NE | Number of ears per m2 |
NUA-GN | Nitrogen unit accumulation in grain |
NUA-TN | Nitrogen unit accumulation in total wheat biomass |
PFP-Nf | Partial factor productivity of fertilizer nitrogen |
PhNE-GN | Physiological nitrogen efficiency of N in grain |
PhNE-TN | Physiological nitrogen efficiency of N in winter wheat biomass |
NNb | Net nitrogen balance |
NUP-GN | Nitrogen unit productivity in grain nitrogen |
NUP-TN | Nitrogen unit productivity in total winter wheat biomass |
NHI | Nitrogen harvest index |
R-GN | Nitrogen recovery in grain nitrogen |
R-TN | Nitrogen recovery in total N in winter wheat biomass |
SN | Straw nitrogen—nitrogen accumulated in straw |
SY | Straw yield |
TN | Total N mass in winter wheat at harvest |
Appendix A
Traits | NE | GE | GD | TGW | SY | TB | HI |
---|---|---|---|---|---|---|---|
GY | 0.47 * | 0.64 ** | 0.96 *** | 0.15 | 0.84 *** | 0.96 *** | 0.44 * |
NE | 1.00 | 0.30 | 0.36 | 0.41 | 0.74 *** | 0.63 ** | −0.32 |
GE | 1.00 | 0.77 *** | −0.46 * | 0.32 | 0.49 * | 0.62 ** | |
GD | 1.00 | −0.13 | 0.78 *** | 0.90 *** | 0.47 * | ||
TGW | 1.00 | 0.25 | 0.21 | −0.16 | |||
SY | 1.00 | 0.96 *** | −0.11 | ||||
TB | 1.00 | 0.17 |
Traits | SN | TN | NHI | PFP-Nf | NUP-GN | NUP-TN | NUA-GN | NUA-TN | GY | NE | GE | TGW | SY | HI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GN | 0.91 *** | 0.99 *** | 0.22 | 0.93 *** | −0.73 *** | −0.70 *** | 0.71 *** | 0.64 ** | 0.93 *** | 0.22 | 0.82 *** | −0.11 | 0.69 ** | 0.55 * |
SN | 1.00 | 0.95 *** | −0.16 | 0.82 *** | −0.70 *** | −0.80 *** | 0.69 ** | 0.73 *** | 0.82 *** | 0.26 | 0.75 *** | −0.20 | 0.74 *** | 0.29 |
TN | 1.00 | 0.12 | 0.92 *** | −0.74 *** | −0.74 *** | 0.71 *** | 0.68 ** | 0.92 *** | 0.23 | 0.81 *** | −0.13 | 0.72 *** | 0.49 * | |
NHI | 1.00 | 0.17 | −0.29 | 0.08 | 0.21 | −0.07 | 0.17 | −0.34 | 0.29 | 0.05 | −0.29 | 0.82 *** | ||
PFP-Nf | 1.00 | −0.44 * | −0.42 | 0.40 | 0.33 | 1.00 | 0.47 * | 0.64 ** | 0.15 | 0.84 *** | 0.44 * | |||
NUP-GN | 1.00 | 0.93 *** | −0.98 *** | −0.92 *** | −0.44 * | 0.35 | −0.85 *** | 0.56 ** | −0.12 | −0.61 ** | ||||
NUP-TN | 1.00 | −0.95 *** | −0.99 *** | −0.42 | 0.21 | −0.79 *** | 0.59 ** | −0.27 | −0.32 | |||||
NUA-GN | 1.00 | 0.96 *** | 0.40 | −0.34 | 0.83 *** | −0.58 ** | 0.12 | 0.53 * | ||||||
NUA-TN | 1.00 | 0.34 | −0.28 | 0.76 *** | −0.63 ** | 0.17 | 0.32 |
Traits | R-GN | R-TN | PhNE-GN | PhNE-TN | GY | NE | GE | TGW | SY | HI |
---|---|---|---|---|---|---|---|---|---|---|
ANE | 0.86 *** | 0.77 *** | 0.63 ** | 0.65 ** | 0.99 *** | 0.51 * | 0.06 | 0.65 ** | 0.80 ** | 0.35 |
R-GN | 1.00 | 0.94 *** | 0.16 | 0.24 | 0.86 *** | 0.17 | 0.38 | 0.35 | 0.49 * | 0.62 ** |
R-TN | 1.00 | 0.02 | 0.02 | 0.73 ** | 0.04 | 0.47 | 0.20 | 0.40 | 0.54 * | |
PhNE-GN | 1.00 | 0.96 *** | 0.63 *** | 0.75 *** | −0.52 * | 0.79 *** | 0.81 *** | −0.23 | ||
PhNE-TN | 1.00 | 0.69 ** | 0.72 ** | −0.46 | 0.82 *** | 0.76 *** | −0.06 | |||
GY | 1.00 | 0.52 * | 0.06 | 0.66 ** | 0.79 *** | 0.38 | ||||
NE | 1.00 | −0.76 *** | 0.52 * | 0.77 *** | −0.32 | |||||
GE | 1.00 | −0.41 | −0.33 | 0.56 * | ||||||
TGW | 1.00 | 0.63 ** | 0.09 | |||||||
SY | 1.00 | −0.26 |
Traits | N | Nb | NNb | P | Pb | K | Kb | Mg | Mgb |
---|---|---|---|---|---|---|---|---|---|
GY | 0.22 | 0.14 | 0.09 | −0.28 | −0.38 | −0.25 | 0.25 | 0.25 | 0.11 |
NE | 0.44 * | 0.21 | 0.14 | −0.73 *** | 0.08 | −0.58 ** | 0.55 * | 0.28 | 0.64 |
GE | −0.15 | −0.14 | 0.11 | 0.40 | −0.29 | 0.31 | −0.28 | 0.14 | −0.49 * |
TGW | 0.31 | 0.43 | −0.15 | −0.69 ** | −0.31 | −0.66 ** | 0.65 ** | 0.02 | 0.60 ** |
SY | 0.34 | 0.18 | 0.18 | −0.55 * | −0.11 | −0.55 * | 0.54 * | 0.38 | 0.36 |
HI | −0.14 | −0.05 | −0.03 | 0.37 | −0.54 * | 0.41 | −0.40 | −0.20 | −0.38 |
Nminh | 1.00 | −0.56 ** | 0.04 | −0.64 ** | 0.22 | −0.62 ** | 0.60 | 0.02 | 0.71 *** |
Nb | 1.00 | −0.10 | −0.24 | −0.44 * | −0.13 | 0.15 | 0.14 | −0.08 | |
NNb | 1.00 | 0.03 | 0.19 | −0.14 | 0.12 | 0.01 | 0.26 | ||
P | 1.00 | −0.01 | 0.89 *** | −0.87 *** | −0.26 | −0.81 *** | |||
Pb | 1.00 | −0.17 | 0.13 | 0.31 | 0.36 | ||||
K | 1.00 | −0.99 *** | −0.26 | −0.81 *** | |||||
Kb | 1.00 | 0.25 | 0.77 *** | ||||||
Mg | 1.00 | 0.05 |
Traits | N | Nb | NNb | P | Pb | K | Kb | Mg | Mgb |
---|---|---|---|---|---|---|---|---|---|
GN | −0.11 | 0.40 | −0.94 *** | −0.13 | −0.58 * | 0.06 | −0.04 | 0.17 | −0.28 |
SN | −0.40 | 0.52 * | −0.68 ** | 0.11 | −0.69 ** | 0.19 | −0.14 | −0.08 | −0.54 * |
TN | −0.20 | 0.46 | −0.94 *** | −0.08 | −0.65 ** | 0.10 | −0.07 | 0.12 | −0.374 |
NHI | 0.11 | −0.03 | −0.58 * | −0.07 | −0.13 | 0.09 | −0.11 | 0.27 | −0.03 |
PFP-Nf | 0.18 | 0.55 * | −0.62 ** | −0.65 ** | −0.50 * | −0.44 | 0.44 | 0.25 | 0.24 |
NUP-GN | 0.50 * | 0.14 | 0.53 * | −0.78 *** | 0.23 | −0.80 *** | 0.76 *** | 0.09 | 0.86 *** |
NUP-TN | 0.54 * | 0.18 | 0.33 | −0.84 | 0.14 | −0.79 *** | 0.75 *** | 0.20 | 0.86 *** |
NUA-GN | −0.44 | −0.26 | −0.44 | 0.81 *** | −0.09 | 0.79 *** | −0.78 *** | −0.13 | −0.77 *** |
NUA-TN | −0.52 * | −0.25 | −0.29 | 0.87 *** | −0.07 | 0.80 ** | −0.76 *** | −0.20 | −0.83 *** |
Traits | N | Nb | NNb | P | Pb | K | Kb | Mg | Mgb |
---|---|---|---|---|---|---|---|---|---|
ANE | 0.17 | 0.57 * | −0.64 ** | −0.64 ** | −0.58 * | −0.430 | 0.43 | 0.19 | 0.19 |
R-GN | −0.02 | 0.43 | −0.91 *** | −0.27 | −0.58 * | −0.07 | 0.08 | 0.18 | −0.16 |
R-TN | −0.21 | 0.48 * | −0.92 *** | −0.07 | −0.71 ** | 0.11 | −0.08 | 0.07 | −0.41 |
PhNE-GN | 0.49 * | 0.35 | 0.13 | −0.89 *** | −0.16 | −0.82 *** | 0.80 *** | 0.09 | 0.74 *** |
PhNE-TN | 0.54 * | 0.28 | 0.07 | −0.90 *** | −0.08 | −0.81 *** | 0.77 *** | 0.19 | 0.79 *** |
References
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhang, Y.; Xu, G. How does nitrogen shape plant architecture. J. Exp. Bot. 2020, 71, 4415–4427. [Google Scholar] [CrossRef] [PubMed]
- Ötvös, K.; Marconi, M.; Vega, A.; O’brian, J.; Johnston, A.; Abualla, R.; Antonielli, L.; Montesinos, J.C.; Zhang, Y.; Yan, S.; et al. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J. 2021, 40, e106862. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.L. Root phenotypes for improved capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef] [PubMed]
- Klepper, B.; Rickman, R.W.; Waldman, S.; Chevalier, P. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 1998, 100, 341–347. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Łukowiak, R. Nitrogen gap amelioration is a core for sustainable intensification of agriculture—A concept. Agronomy 2021, 11, 419. [Google Scholar] [CrossRef]
- Asseng, S.; Guarin, J.R.; Raman, M.; Monje, O.; Kiss, G.; Despomnier, D.D.; Meggers, F.M.; Gaither, P.P.G. Wheat yield potential in controlled—Environment vertical farms. Proc. Natl. Acad. Sci. USA 2020, 117, 19131–19135. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Szczepaniak, W.; Przygocka-Cyna, K.; Biber, M.; Spiżewski, T. Sources of nutrients for the growing ear of winter wheat in the Critical Cereal Window. Agronomy 2024, 14, 3018. [Google Scholar] [CrossRef]
- Johnston, A.M.; Bruulsema, T.W. 4R nutrient stewarship for improved nutrient use efficiency. Procedia Engin. 2014, 83, 365–370. [Google Scholar] [CrossRef]
- Grzebisz, W.; Diatta, J.; Barłóg, P.; Biber, M.; Potarzycki, J.; Łukowiak, R.; Przygocka-Cyna, K.; Szczepaniak, W. Soil fertility clock─crop rotation as a paradigm in nitrogen fertilizer productivity control. Plants 2022, 11, 2841. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; 899p. [Google Scholar]
- Krouk, G.; Kiba, T. Nitrogen and phosphorus interactions in plants: From agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 2020, 57, 104–109. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, G.K.; Bennett, E.M.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.R.J. Nutrition of the Oilseed Rape Crop; Applied Science Publishers Ltd.: London, UK, 1980; 158p. [Google Scholar]
- Grzebisz, W.; Szczepaniak, W.; Barłóg, P.; Przygocka-Cyna, K.; Potarzycki, J. Phosphorus sources for winter oilseed rape (Brassica napus L.) during reproductive growth—Magnesium sulfate management impact on P use efficiency. Arch. Agron. Soil Sci. 2018, 64, 1646–1662. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 5 April 2025).
- Grzebisz, W.; Čermák, P.; Rroco, E.; Szczepaniak, W.; Potarzycki, J.; Füleky, G. Potassium impact on nitrogen use efficiency in potato—A case study from the Central-East Europe. Plant Soil Environ. 2017, 63, 422–427. [Google Scholar] [CrossRef]
- Grzebisz, W.; Potarzycki, J. The in-season nitrogen concentration in the potato tuber as the yield driver. Agron. J. 2020, 112, 1287–1308. [Google Scholar] [CrossRef]
- Barraclough, P.B. The growth and activity of winter wheat roots in the field: Nutrient uptakes of high-yielding crops. J. Agric. Sci. Camb. 1986, 106, 45–52. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Camberato, J.J.; Murrel, S.T.; Vyn, T.J. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agron. J. 2013, 10593, 7830. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundries? Agric. Ecosys. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Agronomic Handbook; CRC Press LLC: Boca Raton, FL, USA, 2003; 450p. [Google Scholar]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Rawat, J.; Pandey, N.; Saxena, J. Role of Potassium in Plant Photosynthesis, Transport, Growth and Yield. In Role of Potassium in Abiotic Stress; Iqbal, N., Umar, S., Eds.; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Guo, Z.; Chen, D.; Schnurbusch, T. Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front. Plant Sci. 2018, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, K.E.; Webb, A.A.R. Circadian Rhythms in Stomata: Physiological and Molecular Aspects. In Rhythms in Plants; Mancuso, S., Shabala, S., Eds.; Springer: Cham, Switzerland, 2015; pp. 231–255. [Google Scholar]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ nutrition in plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zheng, Q.S.; Shen, Q.R.; Guo, S.W. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1019–1037. [Google Scholar] [CrossRef] [PubMed]
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef]
- Grzebisz, W.; Zielewicz, W.; Przygocka-Cyna, K. Deficiencies of secondary nutrients in crop plants—A real challenge to improve nitrogen management. Agronomy 2023, 13, 66. [Google Scholar] [CrossRef]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Klikocka, H.; Marks, M. Sulphur and nitrogen fertilization as a potential means of agronomic biofortification to improve the content and uptake of microelements in spring wheat grain DM. J. Chem. 2018, 2018, 9326820. [Google Scholar] [CrossRef]
- Härdter, R.; Rex, M.; Orlovius, K. Effects of different Mg fertilizer sources on the magnesium availability in soils. Nutr. Cycl. Agroecos. 2004, 70, 249–259. [Google Scholar] [CrossRef]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A.; Moon, Y.-S.; Abdin, M.Z. Sulphur—A general overview and interaction with nitrogen. Aust. J. Crop Sci. 2010, 4, 523–529. [Google Scholar]
- Grant, C.; Hawkesford, M.J. Sulfur. In Handbook od Plant Nutrition, 2nd ed.; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2015; pp. 261–304. [Google Scholar]
- The Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; RS Policy Document; The Royal Society: London, UK, 2009; p. 86. [Google Scholar]
- Wallace, A.; Wallace, G.A. Closing the Crop—Yield Gap through Better Soil and Better Management; Wallace Laboratories: Los Angeles, CA, USA, 2003; p. 162. [Google Scholar]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Potarzycki, J. A realistic approach to calculating the nitrogen use efficiency index in cereals with winter wheat (Triticum aestivum L.) as an example. Agronomy 2025, 15, 161. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Com. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Kęsik, K. Application of the Mehlich 3 method in the fertilizer advisory system. Stud. I Rap. IUNG-PIB 2016, 48, 95–104. (In Polish) [Google Scholar]
- Trávník, K.; Zbíral, J.; Nemec, P. Agrochemical Soil Testing—Mehlich III; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 1999. [Google Scholar]
- Zbíral, J. Determination of plant-available micronutrients by the Mehlich 3 soil extractant—A proposal of critical values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef]
- PN-EN ISO 20483:2014-02; Cereal Grains and Pulses—Determination of Nitrogen Content and Conversion to Crude Protein—Kjeldahl Method. PKN: Warsaw, Poland, 2015; p. 24.
- Szczepaniak, W.; Nowicki, B.; Bełka, D.; Kazimierowicz, A.; Kulwicki, M.; Grzebisz, W. Effect of foliar application of micronutrients and fungicides on the nitrogen use efficiency in winter wheat. Agronomy 2022, 12, 257. [Google Scholar] [CrossRef]
- Wilding, L.P.; Dress, L.R. Spatial variability and pedology. In Pedogenesis and Soil Taxonomy; Wilding, L.P., Smeck, N., Hall, G.F., Eds.; Elsevier: Wageningen, The Netherlands, 1983; pp. 83–116. [Google Scholar]
- Smith, G. Step away from stepwise. J. Big Data 2018, 5, 32. [Google Scholar] [CrossRef]
- Schröder, J.J.; Schulte, R.P.O.; Cremer, R.E.; Delgado, A.; van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; et al. The elusive role of soil quality in nutrient cycling: A review. Soil Use Manag. 2016, 32, 476–486. [Google Scholar] [CrossRef]
- Ahrends, H.E.; Siebert, S.; Rezaei, E.E.; Seidel, S.J.; Hüging, H.; Ewert, F.; Döring, T.; Rueda-Ayala, V.; Eugster, W.; Gaiser, T. Nutrient supply affects the yield stability of major European crops─A 50 year study. Environ. Res. Lett. 2020, 16, 014003. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Iwańska, M.; Wnuk, A.; Oleksiak, T. The analysis of wheat yield variability based on experimental data from 2008–2018 to understand the yield gap. Agriculture 2022, 12, 32. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Sec. 2015, 493, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniak, W.; Barłóg, P.; Łukowiak, R.; Przygocka-Cyna, K. Effect of balanced nitrogen fertilization in four-year rotation on plant productivity. J. Cent. Eur. Agric. 2013, 14, 64–77. [Google Scholar] [CrossRef]
- Hlisnikovsky, L.; Menšik, L.; Kunzová, E. The development of winter wheat yield and quality under different fertilizer regimes and soil-climatic conditions in the Czech Republic. Agronomy 2020, 10, 1160. [Google Scholar] [CrossRef]
- Messaoudi, A.; Labdelli, F.; Rebouh, N.Y.; Djerbaoui, M.; Kucher, D.E.; Hadjout, S.; Ouaret, W.; Zakharova, O.A.; Latati, M. Investigating the potassium fertilization effect on morphological and agrophysical indicators of durum wheat under Mediterranean rain-fed conditions. Agriculture 2023, 13, 1142. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium fertilization improves crop yield in most production systems: A meta–analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed]
- Potarzycki, J. Influence of nitrogen and magnesium fertilization at the flag leaf stage of winter wheat development on the yield and grain quality. Fertil. Fertil. 2008, 32, 100–121. [Google Scholar]
- EL-Metwally, A.E.; Abdalla, F.E.; Saady, A.M.; Safina, S.A.; EI-Sawy, S.S. Response of wheat to magnesium and copper foliar feeding under sandy soil conditions. J. Am. Sci. 2010, 6, 818–823. [Google Scholar]
- Grzebisz, W.; Potarzycki, J. Effect of magnesium fertilization systems on grain yield formation by winter wheat (Triticum aestivum L.) during the grain filling period. Agronomy 2022, 12, 12. [Google Scholar] [CrossRef]
- González, F.G.; Miralles, D.J.; Slafer, G.A. Wheat floret survival as related to pre-anthesis spike growth. J. Exp. Bot. 2011, 62, 4889–4901. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Wu, Y.; Zhou, Y.; Ren, X.; Shao, Y.; Feng, W.; Zhu, Y.; Wang, Y.; Guo, T. Grain number response to pre-anthesis dry matter and nitrogen in improving wheat yield in the Huang-Huai Plain. Sci. Rep. 2018, 8, 7126. [Google Scholar] [CrossRef]
- Serrago, R.A.; Alzueta, I.; Savin, R.; Slafer, G.A. Understanding grain yield responses to source–sink ratios during grain filling in wheat and barley under constraining environments. Field Crops Res. 2013, 150, 42–51. [Google Scholar] [CrossRef]
- Slafer, G.A.; Garcia, G.A.; Serrago, R.A.; Miralles, D.J. Physiological drivers of responses of grains per m2 to environmental and genetic factors in wheat. Field Crops Res. 2022, 285, 108593. [Google Scholar]
- Potarzycki, J.; Grzebisz, W.; Szczepaniak, W. Magnesium fertilization increases nitrogen use efficiency in winter wheat (Triticum aestivum L.). Plants 2022, 11, 2600. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Szczepaniak, W.; Potarzycki, J.; Łukowiak, R. Sustainable management of soil potassium—A crop rotation oriented concept. In Soil Fertility; Issaka, R.N., Ed.; InTech: London, UK, 2012; 38p. [Google Scholar]
- Yawson, D.O.; Amoach, K.K.; Asare, P.A.; Techie-Menson, J.; Afutu, E.; Atiah, K.; Sanieri, A.K.; Sare-Larbi, S.; Adu, M.O. A meta-analysis of modifications of root system traits of crop plants to potassium (K) deprivation. In Plant Roots; Yildirim, E., Turan, M., Ekinci, M., Eds.; InTech: London, UK, 2021; 27p. [Google Scholar]
- Kuchenbuch, R.; Claassesn, N.; Jungk, A. Potassium availability in relation to soil moisture. II. Calculation by means of a mathemantical model simulation model. Plant Soil 1986, 95, 233–243. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Klikocka, H.; Szczepaniak, W. Energy crises—Alternative use of winter bread wheat grain depending on protein content. Agronomy 2023, 13, 861. [Google Scholar] [CrossRef]
- Burton, A.; Levy Haner, L.; Schaad, N.; Strebel, S.; Vuille-dit-Bille, N.; de Figueiredo Bongiovani, P.; Holzkamper, A.; Pellet, D.; Herrera, J.M. Evaluating nitrogen fertilization strategies to optimize yield and grain nitrogen in top winter wheat varieties across Switzerland. Field Crops Res. 2024, 307, 109251. [Google Scholar] [CrossRef]
Soil Characteristics | Growing Seasons | ||
---|---|---|---|
2015/2015 | 2016/2017 | 2017/2018 | |
pH 1 | 6.1 ± 0.2 | 6.1 ± 0.3 | 5.7 ± 0.2 |
Corg 2, g kg−1 | 15.8 ± 3.3 | 16.0 ± 2.6 | 15.9 ± 2.8 |
N mineral, kg ha−1 | 66 ± 16 | 64 ± 18 | 48 ± 14 |
P 5, mg kg−1 | 210 ± 15VH 4 | 212 ± 20VH | 286 ± 32VH |
K 5, mg kg−1 | 145 ± 15L | 152 ± 12L | 155 ± 16M |
Mg 5, mg kg−1 | 120 ± 11H | 97 ± 10M | 91 ± 12M |
Ca 6, mg kg−1 | 740 ± 125L | 1195 ± 130L | 840 ± 95L |
Cu 7, mg kg−1 | 0.9 ± 0.4L | 2.2 ± 0.5M | 1.4 ± 0.6L |
Zn 7, mg kg−1 | 2.4 ± 0.9M | 4.1 ± 1.2H | 4.8 ± 1.4M |
Mn 7, mg kg−1 | 36 ± 12M | 57 ± 16M | 54 ± 14M |
Fe 7, mg kg−1 | 299 ± 66M | 285 ± 58M | 365 ± 84M |
Months | 2015/2016 | 2016/2017 | 2017/2018 | Long-Term 1961–2015 | ||||
---|---|---|---|---|---|---|---|---|
T 1 | P 2 | T | P | T | P | T | P | |
September | 17.9 | 57.9 | 17.4 | 9.9 | 13.8 | 60.7 | 13.3 | 67.3 |
October | 5.8 | 40.6 | 8.4 | 76.6 | 11.1 | 79.4 | 8.5 | 48.8 |
November | 8.1 | 21.7 | 3.3 | 31.8 | 5.4 | 51.7 | 3.7 | 40.7 |
December | 5.8 | 45.1 | 2.2 | 37.6 | 2.7 | 31.3 | 0.0 | 45.5 |
January | 5.9 | 38.0 | −2.4 | 12.5 | 2.1 | 57.6 | −1.6 | 47.7 |
February | −1.7 | 28.5 | 1.2 | 30.4 | −2.5 | 3.7 | −0.6 | 40.2 |
March | 3.7 | 33.9 | 7.1 | 40.5 | 0.7 | 20.6 | 2.9 | 32.3 |
April | 4.1 | 31.2 | 7.9 | 25.7 | 12.9 | 65.3 | 8.1 | 39.2 |
May | 8.8 | 29.7 | 14.0 | 49.2 | 17.1 | 19.2 | 13.2 | 37.4 |
Juni | 15.3 | 76.1 | 17.6 | 106.0 | 19.1 | 31.5 | 16.6 | 57.4 |
July | 18.0 | 94.8 | 18.4 | 160.8 | 20.7 | 134.9 | 18.3 | 63.8 |
Treatment (Acronyms) | Fertilization Variants | N | P2O5 | K2O | MgO |
---|---|---|---|---|---|
[kg ha−1] | |||||
AC | Absolute Control—AC | 0 | 0 | 0 | 0 |
NP | NP | 150 | 40 | 0 | 0 |
NPK-MOP | NPK–MOP | 150 | 40 | 80 | 0 |
NPK-MOP+Ki | NPK–MOP+Kieserite | 150 | 40 | 80 | 30 |
NPK-KK | NPK–Korn–Kali | 150 | 40 | 80 | 12 |
NPK-KK+Ki | NPK–Korn–Kali+Kieserite | 150 | 40 | 80 | 12 + 18 |
NPK-KK+Ki+ES | NPK–Korn–Kali+Kieserite+EPSO Top | 150 | 40 | 80 | 12 + 18 + 6.4 |
Application | Maximum Concentration | Rate [kg ha−1] | BBCH Code | Description |
---|---|---|---|---|
1st | 5% (5 kg in 100 dm3 of water) | 10 | 19 | Nine leaves unfolded (autumn) |
2nd | 15 | 30 | Beginning of stem elongation | |
3rd | 15 | 55 | Early ear emergence |
Factor | Level of Factor | GY | NE | GE | GD | TGW | SY | TB | HI |
---|---|---|---|---|---|---|---|---|---|
t ha−1 | No. Ears m−2 | No. Grains Ears−1 | No. Grains m−2 × 1000 | g | t ha−1 | % | |||
Year | 2015/2016 | 6.8 b | 524.8 a | 27.6 b | 14.2 b | 48.1 a | 8.4 a | 15.2 a | 44 b |
(Y) | 2016/2017 | 7.3 a | 475.9 a | 32.7 b | 15.4 a | 47.4 ab | 8.1 a | 15.4 a | 47 a |
2017/2018 | 5.7 c | 405.9 b | 34.3 b | 13.5 b | 42.7 b | 6.4 b | 12.1 a | 48 a | |
Fc, p | 125 *** | 15.8 *** | 10.7 *** | 20.2 *** | 36.0 *** | 18.5 *** | 45.4 *** | 5.6 ** | |
Fertilization | AC | 3.7 d | 432.0 | 19.0 b | 7.8 a | 47.9 a | 5.2 b | 8.9 b | 43 b |
variants | NP | 6.4 c | 459.7 | 32.8 a | 14.1 c | 45.1 b | 8.1 a | 14.4 a | 45 ab |
(FVs) | NPK-MOP | 6.8 bc | 513.0 | 29.4 a | 14.6 bc | 46.3 b | 7.8 a | 14.6 a | 47 ab |
NPK-MOP+Ki | 7.2 ab | 465.5 | 35.6 a | 16.1 a | 44.9 b | 8.0 a | 15.2 a | 47 ab | |
NPK-KK | 7.2 ab | 454.1 | 35.3 a | 15.5 ab | 46.6 b | 8.1 a | 15.3 a | 47 ab | |
NPK-KK+Ki | 7.3 a | 453.4 | 34.9 a | 15.7 ab | 46.8 b | 7.9 a | 15.2 a | 48 a | |
NPK-KK+Ki+ES | 7.5 a | 504.4 | 33.8 a | 16.6 a | 45.0 b | 8.5 a | 16.0 a | 47 ab | |
Fc, p | 154 *** | 1.4 ns | 13.2 *** | 80.8 *** | 2.4 * | 8.5 *** | 34.9 *** | 2.6 * | |
Source variation for the studied interaction | |||||||||
Y × FV | *** | ns | ns | *** | ** | * | *** | 2.7 ** | |
Average | 6.6 | 468.9 | 31.5 | 14.4 | 46.1 | 7.7 | 14.2 | 0.46 | |
Standard deviation | 1.5 | 66.8 | 6.9 | 3.1 | 3.1 | 1.6 | 3.0 | 0.03 | |
Coefficient of variation, % | 22.9 | 14.3 | 21.8 | 21.9 | 6.8 | 20.6 | 20.8 | 7.4 |
Factor | Level of Factor | GN | SN | TN | NHI | PFP-Nf | NUP-GN | NUP-TN | NUA-GN | NUA-TN |
---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 | % | kg grain kg−1 Nfk | kg grain kg−1 GN | kg grain kg−1 TN | kg N t−1 grain | kg N t−1 TB | ||||
Year | 2015/2016 | 117.3 b | 43.0 b | 160.3 b | 71.5 | 45.1 b | 63.0 a | 43.6 a | 17.1 b | 23.6 c |
(Y) | 2016/2017 | 139.5 a | 51.6 a | 191.1 a | 73.6 | 48.5 a | 53.4 b | 39.4 b | 18.9 ab | 25.8 b |
2017/2018 | 118.7 b | 45.6 ab | 164.3 b | 72.7 | 38.2 c | 50.2 b | 36.5 b | 20.4 a | 28.3 a | |
Fc. p | 10.5 *** | 3.8 * | 16.8 *** | 0.7 ns | 125 *** | 9.4 *** | 12.1 *** | 10.1 *** | 17.3 *** | |
Fertilization | AC | 53.7 a | 20.3 b | 74.0 a | 72.7 | − | 70.1 a | 50.2 a | 14.7 b | 20.2 b |
variants | NP | 119.7 b | 50.4 a | 170.1 b | 70.0 | 42.5 b | 55.4 b | 37.9 b | 18.7 ab | 26.6 ab |
(FV) | NPK-MOP | 124.5 bc | 49.9 a | 174.4 b | 71.0 | 45.0 bc | 56.2 ab | 39.4 b | 18.5 ab | 26.0 ab |
NPK-MOP+Ki | 141.5 a–c | 50.3 a | 191.8 ab | 73.6 | 48.1 ab | 52.3 b | 38.2 b | 19.8 a | 26.9 ab | |
NPK-KK | 137.5 a–c | 48.1 a | 185.7 ab | 74.0 | 48.0 a | 54.0 b | 39.4 b | 19.2 ab | 25.9 ab | |
NPK-KK+Ki | 149.0 ab | 53.6 a | 202.6 a | 73.5 | 49.0 a | 50.0 b | 36.6 b | 20.4 a | 27.8 a | |
NPK-KK+Ki+ES | 150.3 a | 54.4 a | 204.7 a | 73.5 | 50.1 a | 50.7 | 37.2 b | 20.3 a | 27.7 a | |
Fc. p | 32.7 *** | 11.9 *** | 52.1 *** | 0.6 ns | 154 *** | 4.3 ** | 8.7 *** | 5.8 *** | 9.1 *** | |
Source variation for the studied interaction | ||||||||||
Y × FV | ns | ns | ns | ns | *** | ns | ns | ns | ns | |
Average | 125.2 | 46.7 | 171.9 | 72.6 | 47.1 | 55.5 | 39.8 | 18.8 | 25.9 | |
Standard deviation | 34.4 | 12.6 | 46.1 | 3.1 | 6.5 | 8.9 | 5.8 | 2.5 | 3.4 | |
Coefficient of variation, % | 27.5 | 26.9 | 26.8 | 4.3 | 13.7 | 16.0 | 14.5 | 13.1 | 13.2 |
Factor | Level of Factor | ANE | R-GN | R-TN | PhNE-GN | PhNE-TN |
---|---|---|---|---|---|---|
kg grain kg−1 Nf | %Nf in GN | %Nf in TN | kg grain kg−1 GN | kg grain kg−1 TN | ||
Year | 2015/2016 | 23.2 b | 51.4 b | 63.3 b | 50.1 a | 38.2 a |
(Y) | 2016/2017 | 30.5 a | 67.8 a | 96.6 a | 45.4 a | 32.0 b |
2017/2018 | 13.7 c | 47.6 b | 68.6 b | 29.3 b | 20.4 c | |
Fc, p | 131 *** | 14.5 *** | 30.8 *** | 25.0 *** | 44.8 *** | |
Fertilization | NP | 17.8 c | 44.0 c | 64.1 c | 42.2 | 28.1 |
variants | NPK-MOP | 20.4 bc | 47.2 bc | 67.0 bc | 45.2 | 31.7 |
(FVs) | NPK-MOP+Ki | 23.5 ab | 58.4 a–c | 78.5 a–c | 40.7 | 30.5 |
NPK-KK | 23.4 ab | 55.9 a–c | 74.5 a–c | 43.9 | 32.9 | |
NPK-KK+Ki | 24.3 ab | 63.6 ab | 85.7 ab | 38.5 | 28.7 | |
NPK-KK+Ki+ES | 25.5 a | 64.4 a | 87.2 a | 39.2 | 29.2 | |
Fc, p | 7.6 *** | 4.4 ** | 4.4 ** | 0.7 ns | 1.0 ns | |
Source variation for the studied interaction | ||||||
Y × FVs | ** | ns | ns | ns | ns | |
Average | 22.5 | 55.6 | 76.2 | 41.6 | 30.2 | |
Standard deviation | 7.9 | 12.8 | 18.0 | 9.9 | 8.0 | |
Coefficient of variation, % | 35.2 | 23.0 | 23.6 | 23.8 | 26.7 |
Factor | Level of Factor | Ncb | Pcb | Kcb | Mgcb | Nr | Pr | Kr | Mgr |
---|---|---|---|---|---|---|---|---|---|
kg ha−1 | - | ||||||||
Year | 2015/2016 | −36.0 a | −20.0 b | −65.0 b | −6.1 a | 0.69 b | 0.56 b | 1.21 b | −1.68 b |
(Y) | 2016/2017 | −63.2 b | −8.9 a | −65.5 b | −7.1 a | 0.90 b | 1.28 a | 1.12 b | −0.65 ab |
2017/2018 | −36.2 a | −20.4 b | −49.7 a | −11.8 b | 1.91 a | 0.50 b | 1.79 a | 0.32 a | |
Fc, p | 42.3 *** | 96.4 *** | 9.1 *** | 53.9 *** | 53.9 *** | 72.3 *** | 52.4 *** | 9.5 *** | |
Fertilization | AC | −74.0 e | −18.4 b | −59.1 a | −10.4 c | 0.27 c | 0.37 b | 0.65 c | 0.59 a |
variants | NP | −14.3 a | −13.0 a | −107.9 b | −17.9 e | 0.77 bc | 1.02 a | 0.67 c | 0.57 a |
(FVs) | NPK-MOP | −30.3 b | −15.1 ab | −40.8 b | −17.2 e | 2.32 a | 0.96 a | 2.19 a | 0.55 a |
NPK-MOP+Ki | −43.4 b–d | −16.2 ab | −55.1 b | −2.5 b | 1.34 ab | 0.80 a | 1.42 b | 1.50 a | |
NPK-KK | −39.8 bc | −16.5 ab | −53.9 b | −13.2 d | 1.33 ab | 0.82 a | 1.40 b | 0.84 a | |
NPK-KK+Ki | −55.1 cd | −16.7 ab | −56.5 b | −0.5 b | 1.07 ab | 0.76 a | 1.41 b | −4.84 b | |
NPK-KK+Ki+ES | −59.3 de | −19.1 b | −47.1 b | 3.4 a | 1.07 ab | 0.76 a | 1.87 a | −3.91 b | |
Fc, p | 28.8 *** | 3.9 *** | 23.2 ** | 173 *** | 21.1 *** | 7.1 *** | 54.4 *** | 26.8 *** | |
Source variation for the studied interaction | |||||||||
Y × FV | *** | * | *** | *** | *** | ** | *** | *** | |
Average | −45.2 | −16.4 | −60.1 | −8.3 | 1.17 | 0.78 | 1.37 | −0.67 | |
Standard deviation | 25.8 | 6.1 | 25.1 | 8.6 | 1.16 | 0.45 | 0.71 | 4.16 | |
Coefficient of variation. % | −57.1 | −37.3 | −41.7 | −103.4 | 99.22 | 57.51 | 51.83 | −619.86 |
Factor | Level of Factor | N | Nb | Nin | Nout | NNb | P | Pb | K | Kb | Mg | Mgb |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2015/2016 | 26.8 a | 39.2 b | 194.6 | 187.1 b | 7.49 a | 169.2 c H 1 | 40.8 a | 87.5 c L | 57.5 a | 92.9 H | 27.1 a |
(Y) | 2016/2017 | 17.0 b | 47.0 a | 192.6 | 208.1 a | −15.5 b | 194.3 b H | 17.7 b | 116.2 b M | 35.8 b | 90.6 H | 6.4 b |
2017/2018 | 11.6 c | 36.4 b | 176.6 | 175.9 b | 0.69 a | 250.2 a VH | 35.8 a | 149.7 a H | 5.3 c | 90.7 H | 0.3 c | |
Fc. p | 35.0 *** | 17.6 *** | 17.6 *** | 15.4 *** | 8.0 *** | 348 *** | 29.9 *** | 186 *** | 132 *** | 2.0 ns | 232 *** | |
Fertilization | AC | 15.2 | 44.1 | 59.3 | 89.2 c | −29.8 c | 198.5 H | 37.5 | 119.2 ab H | 31.4 a | 90.2 H | 12.4 a |
variants | NP | 21.0 | 38.3 | 209.3 | 191.1 b | 18.2 a | 201.1 H | 34.9 | 104.9 b H | 45.8 a | 91.1 H | 11.6 a |
(FVs) | NPK-MOP | 17.6 | 41.8 | 209.3 | 192.0 b | 17.3 a | 208.9 VH | 27.1 | 121.7 a H | 29.0 b | 92.7 H | 10.0 a |
NPK-MOP+Ki | 18.6 | 40.7 | 209.3 | 210.4 ab | −1.1 ab | 205.6 H | 30.4 | 117.0 ab H | 33.6 | 90.9 H | 11.7 a | |
NPK-KK | 19.6 | 39.7 | 209.3 | 205,3 ab | 4.0 ab | 207.6 VH | 28.4 | 124.3 a H | 26.4 b | 90.3 H | 12.3 a | |
NPK-KK+Ki | 21.0 | 38.3 | 209.3 | 223.6 a | −14.3 bc | 208.4 VH | 27.6 | 120.6 ab H | 30.0 b | 90.2 H | 12.5 a | |
NPK-KK+Ki+ES | 16.2 | 43.1 | 209.3 | 221.0 a | −11.6 bc | 202.0 H | 34.0 | 117.0 H | 33.7 a | 94.2 H | 8.5 b | |
Sourece variation for the studied interaction | ||||||||||||
Fc. p | 1.3 ns | 1.2 ns | 1.3 ns | 53.0 *** | 7.5 *** | 1.4 ns | 1.5 ns | 3.2 ** | 3.4 * | 1.2 ns | 1.4 * | |
Y × FV | *** | *** | *** | ns | ns | ns | ns | *** | *** | * | * | |
Average | 18.5 | 40.9 | 187.9 | 190.4 | −2.5 | 204.6 | 31.4 | 117.8 | 32.9 | 91.4 | 11.3 | |
Standard deviation | 4.1 | 3.2 | 54.4 | 47.5 | 22.4 | 19.8 | 6.6 | 15.5 | 13.4 | 1.4 | 6.7 | |
Coefficient of variation.% | 22.1 | 7.8 | 29.0 | 24.9 | 911 | 9.7 | 21.1 | 13.2 | 40.7 | 1.5 | 59.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrzejewska, A.; Przygocka-Cyna, K.; Grzebisz, W. Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably. Sustainability 2025, 17, 6705. https://doi.org/10.3390/su17156705
Andrzejewska A, Przygocka-Cyna K, Grzebisz W. Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably. Sustainability. 2025; 17(15):6705. https://doi.org/10.3390/su17156705
Chicago/Turabian StyleAndrzejewska, Agnieszka, Katarzyna Przygocka-Cyna, and Witold Grzebisz. 2025. "Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably" Sustainability 17, no. 15: 6705. https://doi.org/10.3390/su17156705
APA StyleAndrzejewska, A., Przygocka-Cyna, K., & Grzebisz, W. (2025). Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably. Sustainability, 17(15), 6705. https://doi.org/10.3390/su17156705