Deep-Sea Mining and the Sustainability Paradox: Pathways to Balance Critical Material Demands and Ocean Conservation
Abstract
1. Introduction
2. Undersea Mineral Deposits
2.1. Polymetallic Nodules
2.2. Polymetallic Sulfides
2.3. Metal-Rich Crusts
2.4. Comparison of Deep-Sea Mineral Deposit Mining
3. Deep-Sea Mining Technologies
3.1. Nodule Collection Technologies
3.1.1. Crawler-Based Systems for Nodule Collection
3.1.2. Design Targets for Nodule Collection Systems
3.2. Vertical Transport Systems
3.3. Surface Processing and Handling
3.4. Environmental Monitoring Technologies
3.5. Alternative Mining Approaches
4. Challenges and Limitations of Deep-Sea Mining
4.1. Technological Challenges
4.2. Environmental Concerns
4.3. Economic Viability
4.4. Regulatory and Legal Barriers
4.4.1. Organizations and Initiatives
4.4.2. Actions Taken
4.5. Negative Social Implications
4.5.1. Public Opposition
4.5.2. Ethical Concerns
4.5.3. Social Inequity
4.6. Research Priorities and Strategic Challenges for the Future of Deep-Sea Mining
5. Pathways to Resolve the Paradox
5.1. Land-First Priority
5.2. Deep-Sea Mining
5.2.1. Environmental Protection Strategies
Pre-Mining Phase
Exploration Phase
Operational Phase
Post-Mining Phase
5.2.2. Technological and Operational Developments
5.2.3. Regulatory and Governance Frameworks
5.2.4. Scientific Precaution and Informed Decision-Making
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkby, J.; O’Keefe, P.; Timberlake, L. Sustainable Development: An Introduction. In The Earthscan Reader in Sustainable Development; Routledge: Abingdon-on-Thames, UK, 2023; pp. 1–14. [Google Scholar]
- Martins, L.S.; Guimarães, L.F.; Junior, A.B.B.; Tenório, J.A.S.; Espinosa, D.C.R. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manag. 2021, 295, 113091. [Google Scholar] [CrossRef] [PubMed]
- Bednarski, L. Lithium: The Global Race for Battery Dominance and the New Energy Revolution; Hurst Publishers: London, UK, 2021. [Google Scholar]
- Jula, P.A.; Mákszem, B.; Gaidamac, T.; Popa, D.-C.; Szabó, L. Tackling risks in the supply chain of rare earth-based permanent magnets used in electrical generators. In Proceedings of the International Conference on Clean Electrical Power (ICCEP’2023), Terrasini, Italy, 27–29 June 2023; pp. 852–857. [Google Scholar] [CrossRef]
- Szabó, L. A survey on modular variable reluctance generators for small wind turbines. IEEE Trans. Ind. Appl. 2019, 55, 2548–2557. [Google Scholar] [CrossRef]
- Popa, D.-C.; Szabó, L. Overcoming Catch-22 for rare earth metals in green transition: Solutions in electrical machine manufacturing. Renew. Sustain. Energy Rev. 2025, 207, 114917. [Google Scholar] [CrossRef]
- Artudean, D.; Aitonean, N.; Pârcălab, M.; Popa, D.-C.; Szabó, L. Strategic Resource Challenges in the Development of Smart Cities. In Proceedings of the International Conference on Automation, Quality and Testing, Robotics (AQTR’2024), Cluj-Napoca, Romania, 16–18 May 2024; IEEE: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- U.S. Geological Survey. 2022 Final List of Critical Minerals. Available online: https://www.govinfo.gov/content/pkg/FR-2022-02-24/pdf/2022-04027.pdf (accessed on 21 February 2025).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials; European Commission: Brussels, Belgium, 2023; Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:903d35cc-c4a2-11ed-a05c-01aa75ed71a1.0001.02/DOC_2&format=PDF (accessed on 25 May 2025).
- Chu, S. Critical Materials Strategy; Diane Publishing: Darby, PA, USA, 2011. [Google Scholar]
- Vandycke, N.; Viegas, J.M. Sustainable Mobility in a Fast-changing World: From Concept to Action; Sustainable Development Goals Series; Palgrave Macmillan: London, UK, 2022. [Google Scholar]
- Golroudbary, S.R.; Lundström, M.; Wilson, B.P. Synergy of green energy technologies through critical materials circularity. Renew. Sustain. Energy Rev. 2024, 191, 114180. [Google Scholar] [CrossRef]
- Li, C.; Mogollón, J.M.; Tukker, A.; Dong, J.; von Terzi, D.; Zhang, C.; Steubing, B. Future material requirements for global sustainable offshore wind energy development. Renew. Sustain. Energy Rev. 2022, 164, 112603. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Foley, A.; You, F.; Aviso, K.; Su, R.; Bokhari, A. Sustainable energy integration within the circular economy. Renew. Sustain. Energy Rev. 2023, 177, 113143. [Google Scholar] [CrossRef]
- Hmouda, A.M.; Orzes, G.; Sauer, P.C. Sustainable supply chain management in energy production: A literature review. Renew. Sustain. Energy Rev. 2024, 191, 114085. [Google Scholar] [CrossRef]
- Paulikas, D.; Katona, S.; Ilves, E.; Ali, S.H. Deep-sea nodules versus land ores: A comparative systems analysis of mining and processing wastes for battery-metal supply chains. J. Ind. Ecol. 2022, 26, 2154–2177. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef]
- Sharma, R. Deep-Sea Mining. Resource Potential, Technical and Environmental Considerations; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Kalungi, P.; Yao, Z.; Huang, H. Aspects of nickel, cobalt and lithium, the three key elements for Li-ion batteries: An overview on resources, demands, and production. Materials 2024, 17, 4389. [Google Scholar] [CrossRef] [PubMed]
- Grobe, H. Manganese Nodules from the Baltic Sea. Available online: https://commons.m.wikimedia.org/wiki/File:Manganese-nodule-02_hg.jpg (accessed on 4 March 2025).
- Mittal, N.; Anand, S. Techno-economic perspective on processing of polymetallic ocean nodules. In Environmental Issues of Deep-Sea Mining: Impacts, Consequences and Policy Perspectives; Sharma, R., Ed.; Springer: Cham, Switzerland, 2019; pp. 547–566. [Google Scholar]
- Cronan, D.S. Cobalt-Rich Crusts: Recognition and Preliminary Evaluations. In Deep-Sea Minerals Developments in the 20th Century; Springer: Berlin/Heidelberg, Germany, 2024; pp. 43–47. [Google Scholar]
- Hein, J.R.; Mizell, K. Deep-Ocean Polymetallic Nodules and Cobalt-Rich Ferromanganese Crusts in the Global Ocean. In The United Nations Convention on the Law of the Sea, Part XI Regime and the International Seabed Authority: A Twenty-Five Year Journey; Ascencio-Herrera, A., Nordquist, M.H., Eds.; Brill: Leiden, The Netherlands, 2022; pp. 177–197. [Google Scholar]
- Kuhn, T.; Wegorzewski, A.; Rühlemann, C.; Vink, A. Composition, Formation, and Occurrence of Polymetallic Nodules. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer: Cham, Switzerland, 2017; pp. 23–63. [Google Scholar]
- Borkovcová, K.; Novák, P. Possibilities of a direct synthesis of aluminum alloys with elements from deep-sea nodules. Materials 2022, 15, 4467. [Google Scholar] [CrossRef] [PubMed]
- Subin Raj, V.; Sarun Lal, M.; Gowri, R.; Ramesh, S.; Ramesh, N.; Ramesh, R.; Deepak, V.; Vadivelan, A.; Ramadass, G. Assessment of polymetallic nodules in the Central Indian Ocean Basin: Factors influencing distribution patterns through high-resolution autonomous underwater vehicle (AUV) survey. Geo-Mar. Lett. 2025, 45, 7. [Google Scholar] [CrossRef]
- Cronan, D.S. Deep-Sea Mining: Historical Perspectives. In Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management; Sharma, R., Ed.; Springer Nature: Cham, Switzerland, 2022; pp. 4–13. [Google Scholar]
- Fouquet, Y. SERPENTINE Cruise, RV Pourquoi Pas? Geo-Ocean. Available online: https://campagnes.flotteoceanographique.fr/campagnes/7030030/ (accessed on 8 March 2025).
- Petersen, S.; Krätschell, A.; Augustin, N.; Jamieson, J.; Hein, J.R.; Hannington, M.D. News from the seabed–Geological characteristics and resource potential of deep-sea mineral resources. Mar. Policy 2016, 70, 175–187. [Google Scholar] [CrossRef]
- Glasby, G.P. Manganese: Predominant Role of Nodules and Crusts. In Marine Geochemistry; Schulz, H.D., Zabel, M., Eds.; Springer Science & Business Media: Berlin, Germany, 2006; pp. 371–427. [Google Scholar]
- Okamoto, N.; Usui, A. Regional distribution of Co-rich ferromanganese crusts and evolution of the seamounts in the Northwestern Pacific. Mar. Georesources Geotechnol. 2014, 32, 187–206. [Google Scholar] [CrossRef]
- Ren, J.; He, G.; Deng, X.; Deng, X.; Yang, Y.; Yao, H.; Yang, S. Metallogenesis of Co-rich ferromanganese nodules in the northwestern Pacific: Selective enrichment of metallic elements from seawater. Ore Geol. Rev. 2022, 143, 104778. [Google Scholar] [CrossRef]
- Farran, S. Deep-sea mining and the potential environmental cost of ‘going green’ in the Pacific. Environ. Law Rev. 2022, 24, 173–190. [Google Scholar] [CrossRef]
- Szabó, L.; Artudean, D.; Jula, P.A. Unlocking Critical Materials for Sustainable Electric Technologies through Deep-Sea Mining. In Proceedings of the International Conference on Engineering of Modern Electric Systems (EMES’2025), Oradea, Romania, 29–30 May 2025; IEEE: New York, NY, USA, 2025. [Google Scholar] [CrossRef]
- Zhang, X.; Zuo, Y.; Wei, J.; Sha, F.; Yuan, Z.; Liu, X.; Xi, M.; Xu, J. A review on underwater collection and transportation equipment of polymetallic nodules in deep-sea mining. J. Mar. Sci. Eng. 2024, 12, 788. [Google Scholar] [CrossRef]
- File: Mining Implications Figure.Svg. Available online: https://commons.wikimedia.org/wiki/File:Mining_implications_figure.svg (accessed on 28 February 2025).
- Baron, R.P. TMC and Allseas Achieve Historic Milestone: Nodules Collected from the Seafloor and Lifted to the Production Vessel Using 4 Km Riser During Pilot Trials in the Clarion Clipperton Zone for First Time Since the 1970s. Available online: https://investors.metals.co/news-releases/news-release-details/tmc-and-allseas-achieve-historic-milestone-nodules-collected (accessed on 9 March 2025).
- Launching the Pilot Nodule Collector Vehicle. Available online: https://ml.globenewswire.com/Resource/Download/db487784-f0a0-46c7-bc54-4bb2aa333dfa (accessed on 6 March 2025).
- Cheng, Y.; Dai, Y.; Zhang, Y.; Yang, C.; Liu, C. Status and prospects of the development of deep-sea polymetallic nodule-collecting technology. Sustainability 2023, 15, 4572. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Zhang, X.; Liu, J.; Rong, L.; Ma, Y. Research status of deep-sea polymetallic nodule collection technology. J. Mar. Sci. Eng. 2024, 12, 744. [Google Scholar] [CrossRef]
- Guo, X.; Fan, N.; Liu, Y.; Liu, X.; Wang, Z.; Xie, X.; Jia, Y. Deep seabed mining: Frontiers in engineering geology and environment. Int. J. Coal Sci. Technol. 2023, 10, 23. [Google Scholar] [CrossRef]
- Cui, W.; Lian, L.; Pan, G. Frontiers in deep-sea equipment and technology. J. Mar. Sci. Eng. 2023, 11, 715. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, K.; Du, Y.; Liu, X.; Shen, Y. Status of sustainability development of deep-sea mining activities. J. Mar. Sci. Eng. 2022, 10, 1508. [Google Scholar] [CrossRef]
- De Bruyne, K.; Stoffers, H.; Flamen, S.; De Beuf, H.; Taymans, C.; Smith, S.; Van Nijen, K. A Precautionary Approach to Developing Nodule Collector Technology. In Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management; Sharma, R., Ed.; Springer: Cham, Switzerland, 2022; pp. 137–165. [Google Scholar]
- A Battery in a Rock. Polymetallic Nodules Are the Cleanest Path Toward Electric Vehicles. Available online: https://metals.co/nodules (accessed on 28 February 2025).
- Bazzarello, L. Underwater Surveillance with Maritime Unmanned Systems: Usage of Artificial Intelligence Against the Threat of Mines. Ph.D. Thesis, University of Pisa, Pisa, Italy, 2023. Available online: https://etd.adm.unipi.it/theses/available/etd-12012023-104328/unrestricted/TesiBazzarello.pdf (accessed on 21 February 2025).
- Agarwala, N. Using robotics to achieve ocean sustainability during the exploration phase of deep seabed mining. Mar. Technol. Soc. J. 2023, 57, 130–150. [Google Scholar] [CrossRef]
- Jones, D.O.; Arias, M.B.; Van Audenhaege, L.; Blackbird, S.; Boolukos, C.; Bribiesca-Contreras, G.; Copley, J.T.; Dale, A.; Evans, S.; Fleming, B.F. Long-term impact and biological recovery in a deep-sea mining track. Nature 2025, 642, 112–118. [Google Scholar] [CrossRef] [PubMed]
- van Smirren, J.; Banks, A.; Foster, T.; Clarke, M.; Marsh, L.; Allen, K. Observing deep water sediment plumes using mobile and seabed deployed instrumentation. In Proceedings of the Offshore Technology Conference (OTC’2024), Houston, TX, USA, 6–8 May 2024; p. D021S023R006. [Google Scholar] [CrossRef]
- Li, T.; Tian, Y.; Xue, Y. Predicting the Future Development Trends of Intelligent Deep-sea Super-large Ocean Ranches Empowered by AI. Eng. Solut. Mech. Mar. Struct. Infrastruct. 2024, 1, 9. [Google Scholar]
- Ali, A.; Rani, M.S.; Pandiyan, S.; Shaheen, H. Exploring the Depths-Comprehensive Insights into Deep Sea Mining and Its Implications for Ecosystems, Technologies, and Sustainability. In Technological Advancements for Deep Sea Ecosystem Conservation and Exploration; Vignesh, U., Parvathi, R., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 149–174. [Google Scholar]
- Guo, Y. Resolving critical raw materials supply crisis with microwave/RF-assisted collection of seafloor nodules. IEEE Microw. Mag. 2025, 26, 83–94. [Google Scholar] [CrossRef]
- Du, K.; Xi, W.; Huang, S.; Zhou, J. Deep-sea mineral resource mining: A historical review, developmental progress, and insights. Min. Metall. Explor. 2024, 41, 173–192. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Petersen, J. The future of biomining: Towards sustainability in a metal-demanding world. In Biomining Technologies: Extracting and Recovering Metals from Ores and Wastes; Johnson, D.B., Bryan, C.G., Schlömann, M., Roberto, F.F., Eds.; Springer: Cham, Switzerland, 2023; pp. 295–314. [Google Scholar]
- Shu, W.-S.; Huang, L.-N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 2022, 20, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Štyriaková, D.; Štyriaková, I.; Šuba, J.; Baláž, P.; Abramowski, T. Bioleaching test of polymetallic nodule samples from the IOM exploration area. Minerals 2022, 12, 1373. [Google Scholar] [CrossRef]
- Leng, D.; Shao, S.; Xie, Y.; Wang, H.; Liu, G. A brief review of recent progress on deep sea mining vehicle. Ocean Eng. 2021, 228, 108565. [Google Scholar] [CrossRef]
- Williksen, F.S.Q. A Study of Deep Sea Mining Electrical Power System Topologies. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2452623/17043_FULLTEXT.pdf (accessed on 13 February 2025).
- Ullah, I.; Ali, F.; Sharafian, A.; Ali, A.; Naeem, H.Y.; Bai, X. Optimizing underwater connectivity through multi-attribute decision-making for underwater IoT deployments using remote sensing technologies. Front. Mar. Sci. 2024, 11, 1468481. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Wu, X.; Zhu, P.; Yang, L. Optimizing energy efficiency in deep-sea mining: A study on swirling flow transportation of double-size mineral particles. Energies 2024, 17, 4240. [Google Scholar] [CrossRef]
- French, R. Museums Victoria Photo: Batfish (Coelophrys micropa). Available online: https://museumsvictoria.com.au/media/18534/boggle-eye-batfish.jpeg (accessed on 9 March 2025).
- Dalbéra, J.-P. L’exposition Abysses au Museum (Paris). Available online: https://www.flickr.com/photos/dalbera/2272136582/sizes/l/ (accessed on 6 March 2025).
- McCauley, D.; Amon, D. The Risks of Deep-Sea Mining Are Not Fully Understood—Here’s Why That Matters. Available online: https://www.weforum.org/stories/2022/07/take-a-deep-dive-into-how-deep-sea-mining-could-threaten-our-oceans/ (accessed on 16 February 2024).
- Peacock, T.; Ouillon, R. The fluid mechanics of deep-sea mining. Annu. Rev. Fluid Mech. 2023, 55, 403–430. [Google Scholar] [CrossRef]
- Muñoz-Royo, C.; Ouillon, R.; El Mousadik, S.; Alford, M.H.; Peacock, T. An in situ study of abyssal turbidity-current sediment plumes generated by a deep seabed polymetallic nodule mining preprototype collector vehicle. Sci. Adv. 2022, 8, eabn1219. [Google Scholar] [CrossRef] [PubMed]
- Vanreusel, A.; Hilario, A.; Ribeiro, P.A.; Menot, L.; Arbizu, P.M. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 2016, 6, 26808. [Google Scholar] [CrossRef] [PubMed]
- Deep Sea Mining. Available online: https://www.arcticwwf.org/threats/deep-sea-mining/ (accessed on 4 March 2025).
- Williams, R.; Erbe, C.; Duncan, A.; Nielsen, K.; Washburn, T.; Smith, C. Noise from deep-sea mining may span vast ocean areas. Science 2022, 377, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Hauton, C.; Brown, A.; Thatje, S.; Mestre, N.C.; Bebianno, M.J.; Martins, I.; Bettencourt, R.; Canals, M.; Sanchez-Vidal, A.; Shillito, B. Identifying toxic impacts of metals potentially released during deep-sea mining—A synthesis of the challenges to quantifying risk. Front. Mar. Sci. 2017, 4, 368. [Google Scholar] [CrossRef]
- Sitlhou, L.; Chakraborty, P. Comparing deep-sea polymetallic nodule mining technologies and evaluating their probable impacts on deep-sea pollution. Mar. Pollut. Bull. 2024, 206, 116762. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, A.K.; Smith, A.J.; de Jonge, D.S.; Hahn, T.; Schroedl, P.; Silverstein, M.; Andrade, C.; Edwards, R.L.; Lough, A.J.; Woulds, C.; et al. Evidence of dark oxygen production at the abyssal seafloor. Nat. Geosci. 2024, 17, 737–739. [Google Scholar] [CrossRef]
- Hautala, L. Deep Sea “Dark Oxygen” Poses Questions for Mining. Metallic Seafloor Nodules May Play a Vital Role in Marine Ecosystems. IEEE Spectr. 2024, 61, 10–11. [Google Scholar] [CrossRef]
- Aguzzi, J.; Thomsen, L.; Flögel, S.; Robinson, N.J.; Picardi, G.; Chatzievangelou, D.; Bahamon, N.; Stefanni, S.; Grinyó, J.; Fanelli, E. New technologies for monitoring and upscaling marine ecosystem restoration in deep-sea environments. Engineering 2024, 34, 195–211. [Google Scholar] [CrossRef]
- Amon, D.J.; Gollner, S.; Morato, T.; Smith, C.R.; Chen, C.; Christiansen, S.; Currie, B.; Drazen, J.C.; Fukushima, T.; Gianni, M. Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Mar. Policy 2022, 138, 105006. [Google Scholar] [CrossRef]
- Lins, L.; Zeppilli, D.; Menot, L.; Michel, L.N.; Bonifácio, P.; Brandt, M.; Pape, E.; Rossel, S.; Uhlenkott, K.; Macheriotou, L.; et al. Toward a reliable assessment of potential ecological impacts of deep-sea polymetallic nodule mining on abyssal infauna. Limnol. Oceanogr. Methods 2021, 19, 626–650. [Google Scholar] [CrossRef]
- Singh, T.R.P. A Comparative Economic Scenario of Nodule Mining in Pacific and Indian Oceans, Associated Challenges and Their Prospects. In Deep-Sea Mining and the Water Column. Advances, Monitoring and Related Issues; Sharma, R., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 571–587. [Google Scholar]
- Manganese X PEA Outlines Battery Hill Mine with $486m NPV, 25% IRR. Available online: https://www.mining.com/manganese-x-pea-outlines-battery-hill-mine-with-us486m-npv-25-irr/ (accessed on 16 April 2025).
- Planet Tracker. Deep Sea Mining, Financial Risk & Reward, Greenwashing, Policy, Equity. In The Sky High Cost of Deep Sea Mining; Planet Tracker: London, UK, 2023; Available online: https://planet-tracker.org/wp-content/uploads/2023/06/Deep-Sea-Mining.pdf (accessed on 16 April 2025).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://undocs.org/en/A/RES/70/1 (accessed on 12 February 2025).
- Pedersen, C.S. The UN sustainable development goals (SDGs) are a great gift to business! Procedia CIRP 2018, 69, 21–24. [Google Scholar] [CrossRef]
- United Nations. The Paris Agreement; United Nations: New York, NY, USA, 2015; Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 22 February 2025).
- UN Office for Disaster Risk Reduction. What Is the Sendai Framework for Disaster Risk Reduction? UN Office for Disaster Risk Reduction: New York, NY, USA, 2015; Available online: https://www.undrr.org/media/16176/download (accessed on 21 February 2025).
- Lodge, M. The International Seabed Authority and deep seabed mining. UN Chron. 2017, 54, 44–46. [Google Scholar] [CrossRef]
- Ryabinin, V.; Barbière, J.; Haugan, P.; Kullenberg, G.; Smith, N.; McLean, C.; Troisi, A.; Fischer, A.; Aricò, S.; Aarup, T. The UN decade of ocean science for sustainable development. Front. Mar. Sci. 2019, 6, 470. [Google Scholar] [CrossRef]
- Intergovernmental Oceanographic Commission of UNESCO. The United Nations Decade of Ocean Science for Sustainable Development (2021–2030): Implementation Plan; Intergovernmental Oceanographic Commission of UNESCO: Paris, France, 2021; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000377082 (accessed on 23 February 2025).
- International Seabed Authority (ISA). Decision of the Council of the International Seabed Authority Relating to Amendments to the Regulations on Prospecting and Exploration for Polymetallic Nodules in the Area and Related Matters; International Seabed Authority (ISA): Kingston, Jamaica, 2013; Available online: https://www.isa.org.jm/wp-content/uploads/2022/04/isba-19c-17_0-2.pdf (accessed on 21 February 2025).
- International Seabed Authority (ISA). Decision of the Assembly of the International Seabed Authority Relating to the Regulations on Prospecting and Exploration for Polymetallic Sulphides in the Area; International Seabed Authority (ISA): Kingston, Jamaica, 2010; Available online: https://www.isa.org.jm/wp-content/uploads/2022/04/isba-16a-12rev1_0.pdf (accessed on 21 February 2025).
- International Seabed Authority (ISA). Decision of the Assembly of the International Seabed Authority Relating to the Regulations on Prospecting and Exploration for Cobalt-Rich Ferromanganese Crusts in the Area; International Seabed Authority (ISA): Kingston, Jamaica, 2012; Available online: https://www.isa.org.jm/wp-content/uploads/2022/04/isba-18a-11_0.pdf (accessed on 21 February 2025).
- The Mining Code: Recommendations. Available online: https://www.isa.org.jm/mining-code-recommendations/ (accessed on 12 February 2025).
- Blanchard, C.; Harrould-Kolieb, E.; Jones, E.; Taylor, M.L. The current status of deep-sea mining governance at the International Seabed Authority. Mar. Policy 2023, 147, 105396. [Google Scholar] [CrossRef]
- Matcha, G. The new age of mining: ISA’s vision of the deep seabed mining. Penn State J. Law Int. Aff. 2024, 12, 101–127. [Google Scholar]
- Willaert, K. Under pressure: The impact of invoking the two year rule within the context of deep sea mining in the area. Int. J. Mar. Coast. Law 2021, 36, 505–513. (In English) [Google Scholar] [CrossRef]
- Ali, S.H. Environmental governance and moratoria debates on sea nodules mining. Mar. Technol. Soc. J. 2021, 55, 108–109. [Google Scholar] [CrossRef]
- Murdock, R. Deep Sea Mining and the Green Transition. Available online: https://hir.harvard.edu/deep-sea-mining-and-the-green-transition/ (accessed on 19 February 2025).
- Canada’s Position on Seabed Mining in Areas Beyond National Jurisdiction. Available online: https://www.canada.ca/en/global-affairs/news/2023/07/canadas-position-on-seabed-mining-in-areas-beyond-national-jurisdiction.html (accessed on 9 March 2024).
- Mika, T. Deep Sea Dilemma: Cook Islanders Weigh the Cost of Mineral Riches. Available online: https://www.cookislandsnews.com/internal/features/in-depth/deep-sea-dilemma-cook-islanders-weigh-the-cost-of-mineral-riches/ (accessed on 21 February 2025).
- Popa, D.-C.; Szabó, L. Securing Rare Earth Permanent Magnet Needs for Sustainable Energy Initiatives. Materials 2024, 17, 5442. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.H. Deep-sea mining opponents: There’s no free lunch when it comes to clean energy. Nature 2024, 626, 480. [Google Scholar] [CrossRef] [PubMed]
- Hallgren, A.; Hansson, A. Conflicting narratives of deep sea mining. Sustainability 2021, 13, 5261. [Google Scholar] [CrossRef]
- Kasanawaqa, V.; Namuaira, A.; Mara, S. Deep-sea mining in Pacific small island developing states: The role of civil society organizations. In Handbook of Civil Society and Social Movements in Small States; Briguglio, L., Briguglio, M., Bunwaree, S., Slatter, C., Eds.; Routledge: London, UK, 2023; pp. 93–104. [Google Scholar]
- Diver, C. The Pacific Islands region and seabed mining. In Routledge Handbook of Seabed Mining and the Law of the Sea; Tassin, V., Ed.; Routledge: London, UK, 2023; pp. 314–323. [Google Scholar]
- Hvinden, I.S. To mine or not to mine the deep seabed? The relative influence of competing NGO views in defining “serious harm” to the marine environment. Marit. Stud. 2024, 23, 11. [Google Scholar] [CrossRef]
- Agarwala, N. Advances by China in deep Seabed mining and its security implications for India. Aust. J. Marit. Ocean Aff. 2021, 13, 94–112. [Google Scholar] [CrossRef]
- de Freitas Netto, S.V.; Sobral, M.F.F.; Ribeiro, A.R.B.; Soares, G.R.d.L. Concepts and forms of greenwashing: A systematic review. Environ. Sci. Eur. 2020, 32, 19. [Google Scholar] [CrossRef]
- Alam, L.; Pradhoshini, K.P.; Flint, R.A.; Sumaila, U.R. Deep-sea mining and its risks for social-ecological systems: Insights from simulation-based analyses. PLoS ONE 2025, 20, e0320888. [Google Scholar] [CrossRef] [PubMed]
- Deep-Sea Mining Risks Leads Study to Urge Shift to Circular Solutions. Available online: https://oceans.ubc.ca/2025/04/14/deep-sea-mining-risks-leads-study-to-urge-shift-to-circular-solutions/ (accessed on 21 June 2025).
- Dingwall, J. International Law and Corporate Actors in Deep Seabed Mining; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Morgera, E. Participation of Indigenous peoples in decision making over deep-seabed mining. Am. J. Int. Law 2024, 118, 93–97. [Google Scholar] [CrossRef]
- Howard, P.; Parker, G.; Jenner, N.; Holland, T. An Assessment of the Risks and Impacts of Seabed Mining on Marine Ecosystems; Fauna and Flora International: Cambridge, UK, 2020; Volume 336, Available online: https://www.fauna-flora.org/wp-content/uploads/2023/05/FFI_2020_The-risks-impacts-deep-seabed-mining_Report.pdf (accessed on 27 February 2025).
- Szabó, L.; Fodor, D. The key role of 3D printing technologies in the further development of electrical machines. Machines 2022, 10, 330. [Google Scholar] [CrossRef]
- Rezaei, M.; Nekahi, A.; Feyzi, E.; MR, A.K.; Nanda, J.; Zaghib, K. Advancing the Circular Economy by Driving Sustainable Urban Mining of End-of-Life Batteries and Technological Advancements. Energy Storage Mater. 2025, 75, 104035. [Google Scholar] [CrossRef]
- Cerrillo-Gonzalez, M.d.M.; Villen-Guzman, M.; Vereda-Alonso, C.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Towards sustainable lithium-ion battery recycling: Advancements in circular hydrometallurgy. Processes 2024, 12, 1485. [Google Scholar] [CrossRef]
- Nnaemeka, I.C.; Nonso, U.C.; Ikechukwu, O.M.; Anezichukwu, A.F.; Ikechukwu, N.A.; Chukwudi, E.B.; Chisom, M.K.; Ifeanyichukwu, O.T.; Chinelo, O.S. Examining the efficiency of microbe-assisted metal extraction: A review of bio-hydrometallurgical leaching techniques. Hybrid Adv. 2025, 9, 100407. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- El Jalbout, S.; Keivanpour, S. Development of a body of knowledge for design for disassembly and recycling of high-tech products: A case study on lithium-ion batteries. J. Ind. Prod. Eng. 2024, 41, 19–39. [Google Scholar] [CrossRef]
- Mallick, S.; Patel, A.; Paranthaman, M.P.; Mugumya, J.H.; Kim, S.; Rasche, M.L.; Jiang, M.; Lopez, H.; Gupta, R.B. An overview of various critical aspects of low-cobalt/cobalt-free Li-ion battery cathodes. Sustain. Energy Fuels 2025, 9, 724–738. [Google Scholar] [CrossRef]
- Sharma, R. (Ed.) Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Wang, C.; Liu, D.; Chen, J.; Li, C.; Yu, Y. Preliminary assessment of environmentally friendly mining options based on various mineral resources—A case study of the Clarion-Clipperton fracture zone in Pacific. Sustainability 2024, 16, 7872. [Google Scholar] [CrossRef]
- Durden, J.M.; Lallier, L.E.; Murphy, K.; Jaeckel, A.; Gjerde, K.; Jones, D.O. Environmental Impact Assessment process for deep-sea mining in ‘the Area’. Mar. Policy 2018, 87, 194–202. [Google Scholar] [CrossRef]
- Harvey, M.S.; Ralph, G.M.; Polidoro, B.A.; Maxwell, S.M.; Carpenter, K.E. Identifying key biodiversity areas as marine conservation priorities in the greater Caribbean. Biodivers. Conserv. 2021, 30, 4039–4059. [Google Scholar] [CrossRef]
- Jaeckel, A. Strategic environmental planning for deep seabed mining in the area. Mar. Policy 2020, 114, 103423. [Google Scholar] [CrossRef]
- Paterson, G.L.J. Deep Sea Mining: Environmental Monitoring Assessment Challenges; International Seabed Authority (ISA): Kingston, Jamaica, 2020; Available online: https://www.isa.org.jm/wp-content/uploads/2022/12/GPaterson-1.pdf (accessed on 21 February 2025).
- Spearman, J.; Taylor, J.; Crossouard, N.; Cooper, A.; Turnbull, M.; Manning, A.; Lee, M.; Murton, B. Measurement and modelling of deep sea sediment plumes and implications for deep sea mining. Sci. Rep. 2020, 10, 5075. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Feng, Y.; Li, H.; Xue, Z.; Ma, R.; Li, Y. Research advances, challenges and perspectives for recovering valuable metals from deep-sea ferromanganese minerals: A comprehensive review. Sep. Purif. Technol. 2023, 315, 123626. [Google Scholar] [CrossRef]
- Orcutt, B.N.; Bradley, J.A.; Brazelton, W.J.; Estes, E.R.; Goordial, J.M.; Huber, J.A.; Jones, R.M.; Mahmoudi, N.; Marlow, J.J.; Murdock, S. Impacts of deep-sea mining on microbial ecosystem services. Limnol. Oceanogr. 2020, 65, 1489–1510. [Google Scholar] [CrossRef]
- Vare, L.L.; Baker, M.C.; Howe, J.A.; Levin, L.A.; Neira, C.; Ramirez-Llodra, E.Z.; Reichelt-Brushett, A.; Rowden, A.A.; Shimmield, T.M.; Simpson, S.L. Scientific considerations for the assessment and management of mine tailings disposal in the deep sea. Front. Mar. Sci. 2018, 5, 17. [Google Scholar] [CrossRef]
- Cuvelier, D.; Gollner, S.; Jones, D.O.; Kaiser, S.; Arbizu, P.M.; Menzel, L.; Mestre, N.C.; Morato, T.; Pham, C.; Pradillon, F. Potential mitigation and restoration actions in ecosystems impacted by seabed mining. Front. Mar. Sci. 2018, 5, 467. [Google Scholar] [CrossRef]
- Jones, D.O.; Ardron, J.A.; Colaço, A.; Durden, J.M. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar. Policy 2020, 118, 103312. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, S. The development history and latest progress of deep-sea polymetallic nodule mining technology. Minerals 2021, 11, 1132. [Google Scholar] [CrossRef]
- Eureka 1 Autonomous Underwater Vehicle: A Landmark in Sustainable Harvesting. Available online: https://impossiblemetals.com/technology/eureka-1-autonomous-underwater-vehicle-a-landmark-in-sustainable-harvesting/ (accessed on 2 March 2025).
- Zhang, Y.; Dai, Y.; Zhu, X. Numerical investigation of recommended operating parameters considering movement of polymetallic nodule particles during hydraulic lifting of deep-sea mining pipeline. Sustainability 2023, 15, 4248. [Google Scholar] [CrossRef]
- Zhao, G.; Xiao, L.; Yue, Z.; Liu, M.; Peng, T.; Zhao, W. Performance characteristics of nodule pick-up device based on spiral flow principle for deep-sea hydraulic collection. Ocean Eng. 2021, 226, 108818. [Google Scholar] [CrossRef]
- Gallucci, M. Autonomous Robots Could Mine the Deep Seafloor. Pliant Energy Says Its C-Ray Robot Could be a Less Invasive Tool for Ocean Mining. Available online: https://spectrum.ieee.org/autonomous-robots-could-mine-the-deep-seafloor (accessed on 2 March 2025).
- Sha, F.; Xi, M.; Wen, Z.; Chen, X.; Zuo, Y.; Xu, J.; Zhang, M.; Niu, H. A review on plumes generation and evolution mechanism during deep-sea polymetallic nodules mining. Ocean Eng. 2024, 298, 117188. [Google Scholar] [CrossRef]
- Jiang, M.; Chen, B.; Li, K. Analysis of Fluid Suction Characteristics of Polyhedral Particles in Deep-Sea Hydraulic Collection Method. J. Mar. Sci. Eng. 2024, 12, 1543. [Google Scholar] [CrossRef]
- Eke, C.; Frank, U.; Ahaji, V.; Ezeh, P.; Amadi, C.; Okeke, O. Dredging of Harbours and Rivers: Review of Practices and Associated Environmental Impacts. IIARD Int. J. Geogr. Environ. Manag. 2023, 9, 22–36. [Google Scholar] [CrossRef]
- Mons, I.; Mansfeld, A.; Boulais, O.; Veedu, V.; Mrozewski, S.; Elshahawi, H. Distributed real-time plume monitoring for deep sea mineral extraction. In Proceedings of the Offshore Technology Conference (OTC’2022), Houston, TX, USA, 2–5 May 2022; p. D021S019R003. [Google Scholar]
- Chen, Q.; Yang, J.; Zhao, W.; Tao, L.; Mao, J.; Lu, C. AI-based dynamic avoidance in deep-sea mining. Ocean Eng. 2024, 311, 118945. [Google Scholar] [CrossRef]
- Almeida, J.; Ferreira, A.; Matias, B.; Dias, A.; Martins, A.; Silva, F.; Oliveira, J.; Sousa, P.; Moreira, M.; Miranda, T. Air and underwater survey of water enclosed spaces for vamos! project. In Proceedings of the MTS/IEEE OCEANS’16 Conference, Monterey, CA, USA, 19–23 September 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Cuff, M. Deep-Sea Life Is Still Recovering from Mining Activity 40 Years Ago. Available online: https://www.newscientist.com/article/2469747-deep-sea-life-is-still-recovering-from-mining-activity-40-years-ago/ (accessed on 2 March 2025).
- Zhang, Q.; Chen, X.; Luan, L.; Sha, F.; Liu, X. Technology and equipment of deep-sea mining: State of the art and perspectives. Earth Energy Sci. 2024, 1, 65–84. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, W.; Wang, L. State of the art and current trends on the metal corrosion and protection strategies in deep sea. J. Mater. Sci. Technol. 2024, 215, 192–213. [Google Scholar] [CrossRef]
- The Mining Code: Draft Exploitation Regulations. Available online: https://www.isa.org.jm/the-mining-code/draft-exploitation-regulations-2/ (accessed on 9 March 2025).
- International Seabed Authority (ISA). The Contribution of the International Seabed Authority to the Achievement of the 2030 Agenda for Sustainable Development; International Seabed Authority (ISA): Kingston, Jamaica, 2020; Available online: https://www.isa.org.jm/wp-content/uploads/2021/02/ISA_Contribution_to_the_SDGs_2021.pdf (accessed on 27 February 2025).
- International Seabed Authority (ISA). Environmental Impact Assessments. International Seabed Authority (ISA): Kingston, Jamaica. Available online: https://www.isa.org.jm/protection-of-the-marine-environment/environmental-impact-assessments/ (accessed on 25 February 2025).
- International Seabed Authority (ISA). Action Plan for Marine Scientific Research in Support of the United Nations Decade of Ocean Science for Sustainable Development. International Seabed Authority (ISA): Kingston, Jamaica. Available online: https://www.isa.org.jm/wp-content/uploads/2022/07/ISA_MSR_Action_Plan.pdf (accessed on 21 February 2025).
Metrics | Deep-Sea Mining | Land-Based Mining |
---|---|---|
Yearly production (mtpa) | 3 | 0.068 |
Operation time (years) | 20 | 47 |
Capital costs—CAPEX (millions USD) | 4000 | 350 |
Operation costs—OPEX (USD/t) | 16.66 | 122 |
Annual gross revenue (millions USD) | 783.2 | 175 |
Payback period (years) | 5.1 | 2 |
CAPEX ratio | 5.11 | 2 |
Total gross revenue (million USD) | 15,664 | 8319 |
Total net revenue (million USD) | 14,664.4 | 7929.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, L. Deep-Sea Mining and the Sustainability Paradox: Pathways to Balance Critical Material Demands and Ocean Conservation. Sustainability 2025, 17, 6580. https://doi.org/10.3390/su17146580
Szabó L. Deep-Sea Mining and the Sustainability Paradox: Pathways to Balance Critical Material Demands and Ocean Conservation. Sustainability. 2025; 17(14):6580. https://doi.org/10.3390/su17146580
Chicago/Turabian StyleSzabó, Loránd. 2025. "Deep-Sea Mining and the Sustainability Paradox: Pathways to Balance Critical Material Demands and Ocean Conservation" Sustainability 17, no. 14: 6580. https://doi.org/10.3390/su17146580
APA StyleSzabó, L. (2025). Deep-Sea Mining and the Sustainability Paradox: Pathways to Balance Critical Material Demands and Ocean Conservation. Sustainability, 17(14), 6580. https://doi.org/10.3390/su17146580