Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport
Abstract
1. Introduction
2. Petro-Hydraulic Tests
2.1. Core Plug-Scale Tests
2.2. Field Hydrogeology: Hydro-Geophysics and Tracer Tests
2.2.1. Fluid Logs
2.2.2. Quantitative Flow Log Analysis
2.2.3. Borehole Hydraulic Tests with Active Line Sources Logs
2.2.4. Tracer Tests
3. Hydraulic Tests for Contaminant Transport Modeling
3.1. Equivalent Porous Medium
3.2. Discrete Fracture Network
4. Future Research Pathways
5. Conclusions
- The porous matrix plays a key role in diffusion of contaminants in the blocks created by the fracture network. The hydraulic properties of the matrix can be determined using a variety of core plug-scale tests for characterization of the porosity (Archimedes’ method, mercury porosimetry, and NMR), pore network connectivity (Archimedes’ method, mercury porosimetry, and NMR), and hydraulic conductivity (laboratory mini-permeameter).
- The effective number of flowing fractures can be high in lithified and turbiditic sandstones, and the most sensitive borehole hydro-geophysical techniques (FLUTe transmissivity profiles, straddle packer tests, and active line source temperature logs) have highlighted that 40% of fractures are hydraulically active in this litho-type. This percentage contrasts with the lower and unreal percentages (9 to 20%) detected using traditional fluid logging in the fractured sandstones of Great Britain, North America, and Taiwan. The effective number of hydraulically active fractures characterized using advanced hydro-geophysics must be used to represent advection and diffusion in discrete fracture network models with some practical use in the water industry (e.g., NAPSAC by AMEC).
- Well-to-well tracer tests can be used to measure flow velocities and to determine the effective porosity, which is a required parameter for equivalent porous medium models that track particles in sandstone aquifers using a variety of numerical codes, some of which are commonly used in industry (e.g., MODFLOW, MODPATH, MT3DMS). This type of tracer test has revealed low (~ 10−2 to 10−4) values of effective porosity that fit fractured flow systems for some lithified sandstones in northern and eastern Europe.
- Either the (i) combination of borehole hydro-geophysical tests (FLUTe transmissivity profiles, straddle packer tests, and active line source temperature logs) and core plug-scale tests, including the DFN-M approach, or (ii) traditional tracer tests have been examined in this review. DFN-M characterization determines both the porosities of the matrix and fractures, but the observation scale is limited to the single-borehole scale. Well-to-well tracer tests cannot differentiate the two porosities of the sandstone, but the volume tested is much larger. Hence, hydrogeologists employed in this industry and various agencies should combine borehole hydro-geophysics and tracer testing to characterize either the matrix or fracture porosities and cover the minimum representative volume to achieve a reliable representation of contaminant transport in fractured sandstones.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitworth, L.G.; Turner, A.J. Rock socket piles in the Sherwood Sandstone of Central Birmingham Title of the article. In Proceedings of the Conference on Piling and Deep Foundations, London, UK, 15–18 May 1989; Institution of Civil Engineers: London, UK, 1989; pp. 327–334. [Google Scholar]
- Daw, G.P.; Howell, F.T.; Woodhead, J.A. The effect of applied stress upon the permeability of some Permian and Triassic sandstones of northern England. Int. J. Rock Mechan. Min. Sci. Abst. 1974, 12, 537–542. [Google Scholar] [CrossRef]
- Yates, J.G.J. The material strength of sandstones of the Sherwood Sandstone Group of north Staffordshire with reference to microfabric. Q. J. Eng. Geol. Hydrogeol. 1992, 25, 107–113. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1979. [Google Scholar]
- Allen, D.J.; Brewerton, L.J.; Coleby, L.M.; Gibbs, B.R.; Lewis, M.A.; MacDonald, A.M.; Wagstaff, S.J.; Williams, A.T. The Physical Properties of Major Aquifers in England and Wales; British Geological Survey Technical Report, WD/97/34; British Geological Survey: Nottingham, UK, 1997. [Google Scholar]
- Yan, T.; Zhu, C.; Li, Q.; Xu, Q. Investigating Disaster Mechanisms Triggered by Abrupt Overburden Fracture Alterations in Close-Seam Mining Beneath an Exceptionally Tick Sandstone Aquifer. Sustainability 2023, 15, 13845. [Google Scholar] [CrossRef]
- Filippini, M.; Amorosi, A.; Dinelli, E.; Segadelli, E.; Landi, L.; Casati, T.; Gargini, A. Depositional environment of shallow-marine arenites in the Northern Apennines (Italy) affects aquifer performance: An interpretative key to groundwater management in a climate change scenario. J. Hydrol. Reg. Stud. 2025, 57, 102183. [Google Scholar] [CrossRef]
- Parker, B.L.; Gillham, R.W.; Cherry, J.A. Diffusive disappearance of immiscible-phase organic liquids in fractured geological media. Groundwater 1994, 32, 805–820. [Google Scholar] [CrossRef]
- Guadagnini, L.; Guadagnini, A.; Tartakowski, D.M. Probabilistic reconstruction of geological facies. J. Hydrol. 2004, 294, 57–67. [Google Scholar] [CrossRef]
- Franzetti, S.; Guadagnini, A. Probabilistic estimation of well catchments in heterogeneous aquifers. J. Hydrol. 1996, 174, 149–171. [Google Scholar] [CrossRef]
- Bloomfiled, J.P.; Williams, A.T. An empirical liquid permeability—Gas permeability correlation for use in aquifer properties studies. Q. J. Eng. Geol. Hydrogeol. 1995, 28, 143–150. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, J.; Quin, F.; Li, Y.; Wang, X.; Li, L.; Liu, X. Spatiotemporal Variability of Soil Erosion in the Pisha Sandstone Region: Influences of Precipitation and Vegetation. Sustainability 2024, 16, 9313. [Google Scholar] [CrossRef]
- Sun, L.; Lou, P.; Pan, C.; Ji, P. Mechanical Properties and DEM-Based Simulation of Double-Fractured Sandstone Under Cyclic Loading and Unloading. Sustainability 2024, 16, 9000. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Aydin, A. Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar. Pet. Geol. 2000, 17, 797–814. [Google Scholar] [CrossRef]
- Gutmanis, J.C.; Lanion, G.W.; Winn, T.J.; Watson, C.R. Fluid flow in faults: A study of fault hydrogeology in Triassic sandstone and Ordovician volcaniclastic rocks at Sellafield, north-west England. Proc. Yorks. Geol. Soc. 1998, 52, 159–175. [Google Scholar] [CrossRef]
- Antonellini, M.A.; Aydin, A.; Pollard, D.D. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah. J. Struct. Geol. 1994, 16, 941–959. [Google Scholar] [CrossRef]
- Antonellini, M.A.; Pollard, D.D. Distinct element modeling of deformation bands in sandstone. J. Struct. Geol. 1995, 17, 1165–1182. [Google Scholar] [CrossRef]
- Bense, V.F.; Gleeson, T.; Loveless, S.E.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth-Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
- Cilona, A.; Aydin, A.; Likerman, J.; Parker, B.; Cherry, J.A. Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: Implications for their effects on groundwater flow and contaminant transport. J. Struct. Geol. 2016, 85, 95–114. [Google Scholar] [CrossRef]
- Del Sole, L.; Antonellini, M. Strengthening effect of compactive shear bands and associated carbonate nodules in arkose sandstone: A natural analog of composite multilayer. Earth 2019, 115, 12. [Google Scholar]
- Del Sole, L.; Antonellini, M.; Soliva, R.; Ballas, G.; Balsamo, F.; Viola, G. Structural control on fluid flow and shallow diagenesis: Insights from calcite cementation along deformation bands in porous sandstones. Solid Earth Discuss. 2020, 11, 2169–2195. [Google Scholar] [CrossRef]
- Antonellini, M.; Del Sole, L.; Mollema, P.N. Effects of outcrop-scale structural and diagenetic heterogeneities on flow and mass transport in a porous sandstone aquifer. Mar. Petrol. Geol. 2025, 177, 107406. [Google Scholar] [CrossRef]
- Selroos, J.O.; Walker, D.D.; Ström, A.; Gylling, B.; Follin, S. Comparison of alternative modelling approaches for groundwater flow in fractured rock. J. Hydol. 2002, 257, 174–188. [Google Scholar] [CrossRef]
- Neuman, S.P. Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 2005, 13, 124–147. [Google Scholar] [CrossRef]
- Hitchmough, A.M.; Riley, M.S.; Herbert, A.W.; Tellam, J.H. Estimating the hydraulic properties of the fracture network in a sandstone aquifer. J. Contam. Hydrol. 2007, 93, 38–57. [Google Scholar] [CrossRef] [PubMed]
- Bigi, S.; Battaglia, M.; Alemanni, A.; Lombardi, S.; Campana, A.; Borisova, E.; Loizzo, M. CO2 flow through a fractured rock volume: Insights from field data, 3D fractures representation and fluid flow modeling. Int. J. Greenh. Gas Con. 2013, 18, 183–199. [Google Scholar] [CrossRef]
- Hsu, S.M.; Ke, C.C.; Lin, Y.T.; Huang, C.C.; Wang, Y.S. Unravelling preferential flow paths and estimating groundwater potential in a fractured metamorphic aquifer in Taiwan by using borehole logs and hybrid DFN/EPM model. Environ. Earth Sci. 2019, 78, 150. [Google Scholar] [CrossRef]
- Romano, V.; Bigi, S.; Carnevale, F.; Hyman, J.D.H.; Karra, S.; Valocchi, A.J.; Tartarello, M.C.; Battaglia, M. Hydraulic characterization of a fault zone from fracture distribution. J. Struct. Geol. 2020, 135, 104036. [Google Scholar] [CrossRef]
- Gellasch, C.A.; Bradbury, K.R.; Hart, D.J.; Bahr, J.M. Characterization of fracture connectivity in a siliciclastic bedrock aquifer near a public supply well (Wisconsin, USA). Hydrogeol. J. 2013, 2, 383–399. [Google Scholar] [CrossRef]
- Morin, R.H.; Carleton, G.B.; Poirier, S. Fractured-aquifer hydrogeology from geophysical logs; the Passaic Formation, New Jersey. Groundwater 1997, 35, 328–338. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J.; Mountney, N.P. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities. J. Contam. Hydrol. 2016, 194, 36–58. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J.; Mountney, N.P. Characterization of a fluvial aquifer at a range of depths and scales. The Triassic St Bees Sandstone Formation, Cumbria, UK. Hydrogeol. J. 2018, 26, 565–591. [Google Scholar] [CrossRef]
- Bouch, J.E.; Hough, E.; Kemp, S.J.; McKervey, J.A.; Williams, G.M.; Greswell, R.B. Sedimentary and diagenetic environments of the Wildmoor Sandstone Formation (UK): Implications for groundwater and contaminant transport, and sand production. Geol. Soc. Spec. Publ. 2006, 263, 129–153. [Google Scholar] [CrossRef]
- Lo, H.C.; Chen, P.J.; Chou, P.Y.; Hsu, S.M. The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition. J. Appl. Geophys. 2014, 105, 248–258. [Google Scholar] [CrossRef]
- Bairos, K.; Quinn, P.; Pehme, P.; Parker, B.L. Enumerating hydraulically active fractures using multiple, high-resolution datasets to inform plume transport in a sandstone aquifer. J. Hydrol. 2023, 619, 129362. [Google Scholar] [CrossRef]
- Barker, A.P.; Newton, R.J.; Bottrell, S.H.; Tellam, J.H. Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Appl. Geochem. 1998, 13, 735–749. [Google Scholar] [CrossRef]
- Streetly, H.R.; Hamilton, A.C.L.; Betts, C.; Tellam, J.H.; Herbert, A.W. Reconnaissance tracer tests in the Triassic sandstone aquifer north of Liverpool, UK. Q. J. Eng. Geol. Hydrogeol. 2002, 35, 167–178. [Google Scholar] [CrossRef]
- Meus, P.; Willems, L. Tracer tests to infer the drainage of the multiple porosity aquifer of Luxembourg Sandstone (Grand-Duchy of Luxembourg): Implications for drinking water protection. Hydrogel. J. 2021, 29, 461–480. [Google Scholar] [CrossRef]
- Kůrková, I.; Bruthans, J.; Balák, F.; Slavík, M.; Schweigstillová, J.; Bruthansová, J.; Mikus, P.; Vojtisek, J.; Grundloch, J. Factors controlling evolution of karst conduits in sandy limestone and calcareous sandstone (Turnov area, Czech Republic). J. Hydrol. 2019, 574, 1062–1073. [Google Scholar] [CrossRef]
- Pehme, P.; Crow, H.; Parker, B.; Russell, H. Evaluation of slim-hole NMR logging for hydrogeologic insights into dolostone and sandstone aquifers. J. Hydrol. 2022, 610, 127809. [Google Scholar] [CrossRef]
- Allen, D.J.; Bloomfield, J.P.; Gibbs, B.R.; Wagstaff, S.J. Fracturing and the Hydrogeology of the Permo-Triassic Sandstones in England and Wales; British Geological Survey Technical Report, WD/98/1; British Geological Survey: Nottingham UK, 1998. [Google Scholar]
- Medici, G.; West, L.J.; Mountney, N.P.; Welch, M. Permeability of rock discontinuities and faults in the Triassic Sherwood Sandstone Group (UK): Insights for management of fluvio-aeolian aquifers worldwide. Hydrogeol. J. 2018, 27, 2835–2855. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J.; Mountney, N.P. Sedimentary flow heterogeneities in the Triassic UK Sherwood Sandstone Group: Insights for hydrocarbon exploration. Geol. J. 2019, 54, 1361–1378. [Google Scholar] [CrossRef]
- Tellam, J.H.; Barker, R.D. Towards prediction of saturated-zone pollutant movement in groundwaters in fractured permeable-matrix aquifers: The case of the UK Permo-Triassic sandstones. Geol. Soc. Spec. Publ. 2006, 263, 1–48. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J. Review of groundwater flow and contaminant transport modelling approaches for the Sherwood Sandstone aquifer, UK; insights from analogous successions worldwide. Q. J. Eng. Geol. Hydrogeol. 2022, 55, qjegh2021-176. [Google Scholar] [CrossRef]
- Tucker, M.E. Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology 1982, 10, 7–12. [Google Scholar] [CrossRef]
- Tucker, M.E. Diagenesis, geochemistry, and origin of a Precambrian dolomite; the Beck Spring Dolomite of eastern California. J. Sediment. Res. 1983, 53, 1097–1119. [Google Scholar] [CrossRef]
- Moss, S.J.; Tucker, M.E. Dolomitization associated with transgressive surfaces—A mid-Cretaceous example. Sediment. Geol. 1996, 107, 11–20. [Google Scholar] [CrossRef]
- Sajed, O.K.M.; Glover, P.W.; Collier, R.E.L. Reservoir quality estimation using a new ternary diagram approach applied to carbonate formations in north-western Iraq. J. Petrol. Sci. Eng. 2021, 196, 108024. [Google Scholar] [CrossRef]
- Parker, B.L.; Bairos, K.; Maldaner, C.H.; Chapman, S.W.; Turner, C.M.; Burns, L.S.; Plett, J.; Carter, R.; Cherry, J.A. Metolachlor dense nonaqueous phase liquid source conditions and plume attenuation in a dolostone water supply aquifer. Geol. Soc. Spec. Publ. 2019, 479, 207–236. [Google Scholar] [CrossRef]
- Medici, G.; Munn, J.D.; Parker, B.L. Delineating aquitard characteristics within a Silurian dolostone aquifer using high-density hydraulic head and fracture datasets. Hydrogeol. J. 2024, 32, 1663–1691. [Google Scholar] [CrossRef]
- Pehme, P.E.; Greenhouse, J.P.; Parker, B.L. The active line source temperature logging technique and its application in fractured rock hydrogeology. J. Environ. Eng. Geophys. 2007, 12, 307–322. [Google Scholar] [CrossRef]
- Pehme, P.E.; Parker, B.L.; Cherry, J.A.; Greenhouse, J.P. Improved resolution of ambient flow through fractured rock with temperature logs. Groundwater 2010, 48, 191–205. [Google Scholar] [CrossRef]
- Pehme, P.; Parker, B.L.; Cherry, J.A.; Blohm, D. Detailed measurement of the magnitude and orientation of thermal gradients in lined boreholes for characterizing groundwater flow in fractured rock. J. Hydrol. 2014, 513, 101–114. [Google Scholar] [CrossRef]
- Quinn, P.; Cherry, J.A.; Parker, B.L. Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured-rock boreholes. Hydrogeol. J. 2012, 20, 1529. [Google Scholar] [CrossRef]
- Munn, J.D.; Maldaner, C.H.; Coleman, T.I.; Parker, B.L. Measuring fracture flow changes in a bedrock aquifer due to open hole and pumped conditions using active distributed temperature sensing. Water Resour. Resear. 2020, 56, e2020WR027229. [Google Scholar] [CrossRef]
- Hartmann, S.; Odling, N.E.; West, L.J. A multi-directional tracer test in the fractured Chalk aquifer of E. Yorkshire, UK. J. Contam. Hydrol. 2007, 94, 315–331. [Google Scholar] [CrossRef] [PubMed]
- West, L.J.; Odling, N.E. Characterization of a multilayer aquifer using open well dilution tests. Groundwater 2007, 45, 74–84. [Google Scholar] [CrossRef]
- Keim, D.M.; West, L.J.; Odling, N.E. Convergent flow in unsaturated fractured chalk. Vadose Zone J. 2012, 11, vzj2011-0146. [Google Scholar] [CrossRef]
- Odling, N.E.; West, L.J.; Hartmann, S.; Kilpatrick, A. Fractional flow in fractured chalk; a flow and tracer test revisited. J. Contam. Hydrol. 2013, 147, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Agbotui, P.Y.; West, L.J.; Bottrell, S.H. Characterisation of fractured carbonate aquifers using ambient borehole dilution tests. J. Hydrol. 2020, 589, 125191. [Google Scholar] [CrossRef]
- Berkowitz, B. Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 2002, 25, 861–884. [Google Scholar] [CrossRef]
- Zghibi, A.; Zouhri, L.; Chenini, I.; Merzougui, A.; Tarhouni, J. Modelling of the groundwater flow and of tracer movement in the porous and fissured media: Chalk Aquifer (Northern part of Paris Basin, France). Hydrol. Process. 2016, 30, 1916–1928. [Google Scholar] [CrossRef]
- Pokar, M.; West, L.J.; Odling, N.E. Petrophysical characterization of the Sherwood sandstone from East Yorkshire, UK. Geol. Soc. Lond. Spéc. Publ. 2006, 263, 103–118. [Google Scholar] [CrossRef]
- Lamy-Chappuis, B.; Angus, D.; Fisher, Q.; Grattoni, C.; Yardley, B.W. Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophys. Resear. Lett. 2014, 41, 399–406. [Google Scholar] [CrossRef]
- Rosenbrand, E.; Haugwitz, C.; Jacobsen, P.S.M.; Kjøller, C.; Fabricius, I.L. The effect of hot water injection on sandstone permeability. Geothermics 2014, 50, 155–166. [Google Scholar] [CrossRef]
- Hossain, Z.; Grattoni, C.A.; Solymar, M.; Fabricius, I.L. Petrophysical properties of greensand as predicted from NMR measurements. Petrol. Geosci. 2011, 17, 11–125. [Google Scholar] [CrossRef]
- Kou, Z.; Wang, H.; Alvarado, V.; Nye, C.; Bagdonas, D.A.; McLaughlin, J.F.; Quillinan, S.A. Effects of carbonic acid-rock interactions on CO2/Brine multiphase flow properties in the upper Minnelusa sandstones. SPE J. 2023, 28, 754–767. [Google Scholar] [CrossRef]
- Ren, Q.; Li, L.; Cai, L.; Feng, J.; Li, M.; Wang, X. Geomechanical Response Characteristics of Different Sedimentary Hydrodynamic Cycles—Exampled by Xujiahe Formation of Upper Triassic, Western Sichuan Basin. Sustainability 2024, 16, 4304. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Li, H. Numerical Modelling of CO2 Injection and Storage in Low Porosity and Low Permeability Saline Aquifers: A Design for the Permian Shiqianfeng Formation in the Yulin Area, Ordos Basin. Sustainability 2024, 16, 10593. [Google Scholar] [CrossRef]
- Zinszner, B.; Pellerin, F.M. A Geoscientist’s Guide to Petrophysics; Editions Technip: Paris, France, 2007. [Google Scholar]
- Kennedy, M. Practical Petrophysics; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Tiab, D.; Donaldson, E.C. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Paillet, F.L. 1998. Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water. Resour. Res. 1998, 34, 997–1010. [Google Scholar] [CrossRef]
- Paillet, F.L. A field technique for estimating aquifer parameters using flow log data. Groundwater 2000, 38, 510–521. [Google Scholar] [CrossRef]
- Day-Lewis, F.D.; Johnson, C.D.; Paillet, F.L.; Halford, K.J. A computer program for flow-log analysis of single holes (FLASH). Groundwater 2011, 49, 926–931. [Google Scholar] [CrossRef]
- Witherspoon, P.A.; Wang, J.S.; Iwai, K.; Gale, J.E. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Resear. 1980, 16, 1016–1024. [Google Scholar] [CrossRef]
- Quinn, P.M.; Cherry, J.A.; Parker, B.L. Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock. Water Resour. Resear. 2011, 47, W09533. [Google Scholar] [CrossRef]
- Ren, S.; Gragg, S.; Zhang, Y.; Carr, B.J.; Yao, G. Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming. J. Hydrol. 2018, 561, 780–795. [Google Scholar] [CrossRef]
- Medici, G.; Ling, F.; Shang, J. Review of discrete fracture network characterization for geothermal energy extraction. Front. Earth Sci. 2023, 11, 1328397. [Google Scholar] [CrossRef]
- Paillet, F. Integrating surface geophysics, well logs and hydraulic test data in the characterization of heterogeneous aquifers. J. Environ. Eng. Geophys. 1995, 1, 1–13. [Google Scholar] [CrossRef]
- Parker, A.H.; West, L.J.; Odling, N.E.; Bown, R.T. A forward modeling approach for interpreting impeller flow logs. Groundwater 2010, 48, 79–91. [Google Scholar] [CrossRef]
- Cherry, J.A.; Parker, B.L.; Keller, C. A new depth-discrete multilevel monitoring approach for fractured rock. Groundw. Monit. Remediat. 2007, 27, 57–70. [Google Scholar] [CrossRef]
- Meyer, J.R.; Beth, L.P.; Daron, G.A.; Shikaze, S.G.; Weaver, L.; Merritt, G.; Lucas Ribeiro, A.F.S.; Morgan, C.A.; Runkel, A.C. Rock core VOC profiles diagnostic of aquitard occurrence and integrity in a multi-layered sedimentary rock aquifer flow system. J. Hydrol. 2023, 626, 130347. [Google Scholar] [CrossRef]
- Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H. Structure of the San Fernando Valley region, California: Implications for seismic hazard and tectonic history. Geosphere 2011, 7, 528–572. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction. Environ. Sci. Pollut. Res. 2021, 28, 43050–43063. [Google Scholar] [CrossRef]
- Staněk, M.; Géraud, Y. Granite microporosity changes due to fracturing and alteration: Secondary mineral phases as proxies for porosity and permeability estimation. Solid Earth 2019, 10, 251–274. [Google Scholar] [CrossRef]
- Medici, G.; West, L.J. Reply to discussion on ‘Review of groundwater flow and contaminant transport modelling approaches for the Sherwood Sandstone aquifer, UK; insights from analogous successions worldwide’ by Medici and West (QJEGH, 55, qjegh2021-176). Q. J. Eng. Geol. Hydrogeol. 2023, 56, qjegh2022-097. [Google Scholar] [CrossRef]
- Davison, R.M.; Lerner, D.N. Evaluating natural attenuation of groundwater pollution from a coal-carbonisation plant: Developing a local-scale model using MODFLOW, MODTMR and MT3D. Water Environ. J. 2000, 14, 419–426. [Google Scholar] [CrossRef]
- Bottrell, S.H.; West, L.J.; Yoshida, K. Combined isotopic and modelling approach to determine the source of saline groundwaters in the Selby Triassic sandstone aquifer, UK. Geol. Soc. Spec. Publ. 2006, 263, 325–338. [Google Scholar] [CrossRef]
- Zhang, H.; Hiscock, K.M. Modelling the impact of forest cover on groundwater resources: A case study of the Sherwood Sandstone aquifer in the East Midlands, UK. J. Hydrol. 2010, 392, 136–149. [Google Scholar] [CrossRef]
- Foster, S.; West, L.; Bottrell, S.; Hildyard, M.W. A DFN approach to evaluating the hydrogeological significance of lithostatic unloading in fractured strata around open-pit workings. In Proceedings of the 2nd International Discrete Fracture Network Engineering Conference Extended Abtracts, Seattle, WA, USA, 27–29 June 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Schulze-Makuch, D.; Carlson, D.A.; Cherkauer, D.S.; Malik, P. Scale dependency of hydraulic conductivity in heterogeneous media. Groundwater 1999, 37, 904–919. [Google Scholar] [CrossRef]
- Kuchuk, F.; Biryukov, D.; Fitzpatrick, T. Fractured-reservoir modeling and interpretation. SPE J. 2014, 20, 983–1004. [Google Scholar] [CrossRef]
- Demirel, S.; Irving, J.; Roubinet, D. Comparison of REV size and tensor characteristics for the electrical and hydraulic conductivities in fractured rock. Geophys. J. Int. 2019, 216, 1953–1973. [Google Scholar] [CrossRef]
- McKoy, M.L.; Sams, N.W. Tight Gas Reservoir Simulation: Modeling Discrete Irregular Strata-Bound Fracture Networks and Network Flow, Including Dynamic Recharge from the Matrix; US Department of Energy’s Federal Energy Technology Center Publication: Washington, DC, USA, 1997.
- Pierce, A.A.; Chapman, S.W.; Zimmerman, L.K.; Hurley, J.C.; Aravena, R.; Cherry, J.A.; Parker, B.L. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. J. Contam. Hydrol. 2018, 212, 96–114. [Google Scholar] [CrossRef]
- Morgan, C. Fracture Network Characterization of an Aquitard Surface Within the Wonewoc Sandstone Using Digital Outcrop Photogrammetry and Discrete Fracture Network (DFN) Modelling. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2019. [Google Scholar]
- Pilato, T. Exploring the Statistical Method of Moments for Solute Transport in Fractured Porous Rock Aquifers: Bridging the Gap Between Local and Regional Scales. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2021. [Google Scholar]
- Miller, I.; Lee, G.; Dershowitz, W.; Sharp, G. MAFIC–Matrix/Fracture Interaction Code with Solute Transport; User Documentation, Version 1.5, Report 923-1089; Golder Associates: Seattle, WA, USA, 1994. [Google Scholar]
- Smythe, D.K. Inadequate Regulation of the Geological Aspects of Shale Exploitation in the UK. Intern. J. Environ. Res. Public Health 2020, 17, 6946. [Google Scholar] [CrossRef] [PubMed]
- Van Riet, B.; Six, S.; Walraevens, K.; Vandenbohede, A.; Hermans, T. Assessing the impact of fractured zones imaged by ERT on groundwater model prediction: A case study in a chalk aquifer in voort (Belgium). Front. Water 2021, 3, 783983. [Google Scholar] [CrossRef]
- Gan, H.; Liu, Z.; Wang, G.; Liao, Y.; Wang, X.; Zhang, Y.; Zhao, J.; Liu, Z. Permeability and porosity changes in sandstone reservoir by geothermal fluid reinjection: Insights from a laboratory study. Water 2022, 14, 3131. [Google Scholar] [CrossRef]
- Wei, B.; Nie, X.; Zhang, Z.; Ding, J.; Shayireatehan, R.; Ning, P.; Deng, D.; Cao, Y. Productivity equaequation of fractured vertical well with gas–water co-production in high-water-cut tight sandstone gas reservoir. Processes 2023, 11, 3123. [Google Scholar] [CrossRef]
- Parker, B.L.; Gillham, R.W.; Wanner, P. A novel laboratory method for determining the diffusive mass flux of dense non-aqueous phase liquids (DNAPLs) into natural clays. J. Contam. Hydrol. 2025, 274, 104651. [Google Scholar] [CrossRef]
- Lee, C.C.; Lee, C.H.; Yeh, H.F.; Lin, H.I. Modeling spatial fracture intensity as a control on flow in fractured rock. Environ. Earth Sci. 2011, 63, 1199–1211. [Google Scholar] [CrossRef]
- Morelli, G.L. Estimating the Volumetric Fracture Intensity P32 Through a New Analytical Approach. Rock Mechan. Rock Eng. 2024, 57, 6085–6103. [Google Scholar] [CrossRef]
Code | Geological Formation/Group, Country | Depositional Paleo-Environment | Epoch | Reference |
---|---|---|---|---|
1 | Mount Simon Sandstone Formation, WI—US | Alluvial/Fluvial/Marine | Cambrian | [30] |
2 | Passaic Sandstone Formation, NJ—US | Beach/Alluvial/Fluvial | Triassic | [31] |
3 | Pantano Formation, Italy | Shallow marine | Neogene | [7] |
4 | St. Bees Sandstone Formation/Sherwood Sandstone Group, UK | Fluvial | Traissic | [32,33] |
5 | Helsby and Wilmslow Sandstone formations/Sherwood Sandstone Group, UK | Aeolian/Fluvial | Triassic | [20] |
6 | Wildmoore Sandstone Formation/Sherwood Sandstone Group, UK | Fluvial | Triassic | [34] |
7 | Tachien Sandstone Formation, Taiwan | Fluvial | Triassic | [35] |
8 | Chatsworth Sandstone Formation, CA—US | Turbiditic | Cretaceous | [36] |
9 | Kidderminster Sandstone Formation/Sherwood Sandstone Group, UK | Fluvial | Triassic | [5] |
10 | undivided Sherwood Sandstone Group, UK | Fluvial | Triassic | [5] |
11 | Helsby and Wilmslow Sandstone formations, Sherwood Sandstone Group, UK | Aeolian/Fluvial | Triassic | [37,38] |
12 | Luxembourg Sandstone Group, Luxembourg | Shallow marine | Jurassic | [39] |
13 | Jizera Sandstone Formation, Czech Republic | Shallow marine/fluvial | Cretaceous | [40] |
14 | Nepean Formation, ON—Canada | Fluvial | Cambrian/Ordovician | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agbotui, P.Y.; Firouzbehi, F.; Medici, G. Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport. Sustainability 2025, 17, 6469. https://doi.org/10.3390/su17146469
Agbotui PY, Firouzbehi F, Medici G. Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport. Sustainability. 2025; 17(14):6469. https://doi.org/10.3390/su17146469
Chicago/Turabian StyleAgbotui, Prodeo Yao, Farnam Firouzbehi, and Giacomo Medici. 2025. "Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport" Sustainability 17, no. 14: 6469. https://doi.org/10.3390/su17146469
APA StyleAgbotui, P. Y., Firouzbehi, F., & Medici, G. (2025). Review of Effective Porosity in Sandstone Aquifers: Insights for Representation of Contaminant Transport. Sustainability, 17(14), 6469. https://doi.org/10.3390/su17146469