Overview of Sustainable Maritime Transport Optimization and Operations
Abstract
1. Introduction
2. Research Methodology
2.1. Literature Search and Screening Process
2.2. Result Analysis
2.2.1. Research Distribution and Development Trends
2.2.2. Keyword Distribution and Cluster Analysis
3. Technical Aspects
3.1. Alternative Fuels
- (1)
- LNG
- (2)
- Methanol
- (3)
- Hydrogen
- (4)
- Ammonia
3.2. Energy Efficiency Technology
3.2.1. Optimization of Ship Energy Efficiency
- (1)
- Ship fuel consumption prediction model
- (2)
- Hybrid propulsion system
- (3)
- Ship hull design optimization
3.2.2. Port Energy Efficiency Optimization
- (1)
- Shore power (SP)
- (2)
- Shore-based equipment
- (3)
- Renewable Energy Integrated System
4. Management Aspects
4.1. Maritime Transport Company
4.1.1. Green Technology Investment
4.1.2. Operational Optimization
- (1)
- Speed optimization
- (2)
- Shorten the time of vessels in port
- (3)
- Multi-objective decision making
4.2. Port
5. Policy Aspects
5.1. International Organisation
- (1)
- IMO
- (2)
- EU
5.2. MBMs
- (1)
- Carbon tax
- (2)
- Flexible Compliance Mechanism (FCM)
5.3. Government Subsidies
5.4. The Collaborative Governance System of “Government-Port-Ship”
6. Conclusions and Future Research Perspectives
6.1. Conclusions
- (1)
- From the perspective of research topics, existing technical studies primarily focus on addressing emission reduction targets and improving energy efficiency under the context of energy transition. A majority of the literature quantitatively compares the cost-effectiveness and environmental performance of various technologies using system simulation, multi-objective optimization, and lifecycle assessment methods. However, a unified modeling paradigm or evaluation framework for sustainable maritime transport technologies has not yet been established, and their theoretical foundation remains in an exploratory stage. Although individual technologies demonstrate localized optimization value, system integration studies are relatively limited, particularly due to insufficient coupling analyses of alternative fuels, navigation strategies, port scheduling, and energy management. Furthermore, most studies assume deterministic operating conditions and inadequately address uncertainties prevalent within maritime transport systems, such as climate change and fluctuations in energy prices. Future technical research should incorporate uncertainty modeling and robust optimization approaches to enhance the practical adaptability and operability of models.
- (2)
- At the management level, there is widespread attention on improving the overall performance of maritime transport companies and ports while complying with regulatory constraints. The optimization of management strategies is predominantly conducted by constructing simulation models based on operational data or employing methods such as evolutionary game theory and system dynamics to analyze the evolution of strategies. Currently, the theoretical framework of sustainable maritime transport operations management is still in its preliminary development phase, lacking a unified understanding. Most studies treat green management as merely an extension of operational optimization, with a limited systematic construction of “green management mechanisms.” Regarding responses to uncertainty, only a few studies have introduced fuzzy parameters or stochastic optimization into port scheduling and resource management, indicating a lack of more universally applicable decision-making models under uncertain conditions. Future research should further strengthen the modeling of technology–management interactions and establish a robust optimization framework for green operations under uncertainty, thereby facilitating the practical implementation of intelligent and adaptive decision-making approaches.
- (3)
- At the policy level, existing studies mainly focus on how MBMs influence corporate behavior, as well as on the effectiveness of incentive policies, such as green subsidies and green corridors, in driving sustainable transitions. Methodologically, game-theoretic analysis, evolutionary model simulations, and empirical studies are the primary tools used, with particular attention to the incentivizing effects and feasibility of combined policy instruments across different environmental contexts. Current research primarily focuses on the short-term effects of policy tools on individual firms or specific technologies, with limited attention given to systematic investigations of multi-level policy synergies. Moreover, regional disparities and issues of policy adaptability persist in the formulation of green policies. There remains a lack of structural comparisons and stratified analyses addressing how such policies can effectively respond to the diversity in vessel types, maritime transport routes, and supply chain configurations.
6.2. Future Research Prospects
- (1)
- Blockchain technology
- (2)
- Big data analysis (BDA)
- (3)
- The sixth-generation port
- (4)
- Policy design
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Tan, Y.; Guan, X. Hub-and-spoke network design for container shipping considering disruption and congestion in the post COVID-19 era. Ocean Coast. Manag. 2022, 225, 106230. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Y.; Wang, Y. Green maritime navigation: A multi-objective voyage optimization approach based on data-driven heuristics and emission awareness. Ocean Eng. 2025, 318, 120138. [Google Scholar] [CrossRef]
- Sausen, R. Transport impacts on atmosphere and climate Preface. Atmos. Environ. 2010, 44, 4646–4647. [Google Scholar] [CrossRef]
- Khurmy, A.M.; Al Harbi, A.; Jameel, A.G.A.; Ahmad, N.; Ahmed, U. Conversion of Vacuum Residue from Refinery Waste to Cleaner Fuel: Technical and Economic Assessment. Sustainability 2023, 15, 15362. [Google Scholar] [CrossRef]
- IMO. IMO’s Work to Cut GHG Emissions from Ships. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Cutting-GHG-emissions.aspx (accessed on 6 April 2025).
- EU. Implementation of Marine Strategy Framework Directive. Available online: https://environment.ec.europa.eu/topics/marine-environment/implementation-marine-strategy-framework-directive_en (accessed on 6 April 2025).
- Palacio, A.; Adenso-Diaz, B.; Lozano, S. A Decision-Making Model to Design a Sustainable Container Depot Logistic Network: The Case of the Port of Valencia. Transport 2018, 33, 119–130. [Google Scholar] [CrossRef]
- Park, S.; Lee, H.; Kim, D. Regulatory compliance and operational efficiency in maritime transport: Strategies and insights. Transp. Policy 2024, 155, 161–177. [Google Scholar] [CrossRef]
- Li, Z.; Wang, K.; Liang, H.; Wang, Y.; Ma, R.; Cao, J.; Huang, L. Marine alternative fuels for shipping decarbonization: Technologies, applications and challenges. Energy Convers. Manag. 2025, 329, 119641. [Google Scholar] [CrossRef]
- Voniati, G.; Dimaratos, A.; Koltsakis, G.; Ntziachristos, L. Ammonia as a Marine Fuel towards Decarbonization: Emission Control Challenges. Sustainability 2023, 15, 15565. [Google Scholar] [CrossRef]
- Rehmatulla, N.; Smith, T. The impact of split incentives on energy efficiency technology investments in maritime transport. Energy Policy 2020, 147, 111721. [Google Scholar] [CrossRef]
- Dinh, G.H.; Pham, H.T.; Nguyen, L.C.; Dang, H.Q.; Pham, N.D.K. Leveraging Artificial Intelligence to Enhance Port Operation Efficiency. Pol. Marit. Res. 2024, 31, 140–155. [Google Scholar] [CrossRef]
- Wang, X.; Wong, Y.D.; Li, K.X.; Yuen, K.F. Shipping industry’s sustainability communications to public in social media: A longitudinal analysis. Transp. Policy 2021, 110, 123–134. [Google Scholar] [CrossRef]
- Motlagh, H.R.S.; Zadeh, S.B.I.; Garay-Rondero, C.L. Towards International Maritime Organization Carbon Targets: A Multi-Criteria Decision-Making Analysis for Sustainable Container Shipping. Sustainability 2023, 15, 16834. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, R.; Wang, S. An efficient ranking-based data-driven model for ship inspection optimization. Transp. Res. Part C Emerg. Technol. 2024, 165, 104731. [Google Scholar] [CrossRef]
- Bayraktar, M.; Yuksel, O. A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations. Ocean Eng. 2023, 278, 114295. [Google Scholar] [CrossRef]
- Du, Z.; Chen, Q.; Guan, C.; Chen, H. Improvement and Optimization Configuration of Inland Ship Power and Propulsion System. J. Mar. Sci. Eng. 2023, 11, 135. [Google Scholar] [CrossRef]
- Bruzzone, A.; Sciomachen, A. Simulating Operating Performance of Alternative Configurations of LNG Bunkering Stations. Sustainability 2023, 15, 9940. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, H.; Li, F.; Wang, S.; Zhen, L. Optimal Selection of Multi-Fuel Engines for Ships Considering Fuel Price Uncertainty. Mathematics 2023, 11, 3621. [Google Scholar] [CrossRef]
- Guven, D. Assessing the environmental and economic viability of floating PV-powered green hydrogen: A case study on inland ferry operations in Türkiye. Appl. Energy 2025, 377, 124768. [Google Scholar] [CrossRef]
- Qu, J.; Feng, Y.; Zhu, Y.; Ge, K.; Chan, S.H.; Miao, B. Ammonia-fed solid oxide fuel cell-polygen system: Techno-economic analysis and optimization. Renew. Sustain. Energy Rev. 2025, 211, 115314. [Google Scholar] [CrossRef]
- Al-Yafei, H.; Aseel, S.; Alnouss, A.; Al-Kuwari, A.; Abdussamie, N.; Al Tamimi, T.; Al Mannaei, H.; Ibrahim, H.; Abu Hashim, N.; Al Delayel, B.; et al. Blue Ammonia and the Supply Chain Pioneering Sustainability Assessment for a Greener Future. Energies 2025, 18, 1137. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Z.; Zhou, S.; Zhang, M.; Shreka, M. The Influence of Pre-Chamber Parameters on the Performance of a Two-Stroke Marine Dual-Fuel Low-Speed Engine. J. Mar. Sci. Eng. 2024, 12, 1232. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, Y.; Wang, H.; Zhen, L. Joint Planning of Fleet Deployment, Ship Refueling, and Speed Optimization for Dual-Fuel Ships Considering Methane Slip. J. Mar. Sci. Eng. 2022, 10, 1690. [Google Scholar] [CrossRef]
- Al-Enazi, A.; Bicer, Y.; Okonkwo, E.C.; Al-Ansari, T. Evaluating the utilisation of clean fuels in maritime applications: A techno-economic supply chain optimization. Fuel 2022, 322, 124195. [Google Scholar] [CrossRef]
- Borelli, D.; Devia, F.; Schenone, C.; Silenzi, F.; Tagliafico, L.A. Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas. Energies 2021, 14, 3640. [Google Scholar] [CrossRef]
- Qi, J.; Wang, S. LNG Bunkering Station Deployment Problem—A Case Study of a Chinese Container Shipping Network. Mathematics 2023, 11, 813. [Google Scholar] [CrossRef]
- Orysiak, E.; Shuper, M. Determination of Demand for LNG in Poland. Energies 2024, 17, 4414. [Google Scholar] [CrossRef]
- Iannaccone, T.; Landucci, G.; Scarponi, G.E.; Bonvicini, S.; Cozzani, V. Inherent safety assessment of alternative technologies for LNG ships bunkering. Ocean Eng. 2019, 185, 100–114. [Google Scholar] [CrossRef]
- Nubli, H.; Sohn, J.M.; Prabowo, A.R. Layout optimization for safety evaluation on LNG-fueled ship under an accidental fuel release using mixed-integer nonlinear programming. Int. J. Nav. Archit. Ocean Eng. 2022, 14, 100443. [Google Scholar] [CrossRef]
- Gray, N.; O’Shea, R.; Smyth, B.; Lens, P.N.L.; Murphy, J.D. An assessment of decarbonisation pathways for intercontinental deep-sea shipping using power-to-X fuels. Appl. Energy 2024, 376, 124163. [Google Scholar] [CrossRef]
- Tomos, B.A.D.; Stamford, L.; Welfle, A.; Larkin, A. Decarbonising international shipping—A life cycle perspective on alternative fuel options. Energy Convers. Manag. 2024, 299, 117848. [Google Scholar] [CrossRef]
- Kyrimis, S.; Raja, R.; Armstrong, L.-M. Enhancing the methanol yield of industrial-scale fixed bed reactors using computational fluid dynamics models. Fuel 2024, 368, 131511. [Google Scholar] [CrossRef]
- Dotto, A.; Satta, F.; Campora, U. Energy, environmental and economic investigations of cruise ships powered by alternative fuels. Energy Convers. Manag. 2023, 285, 117011. [Google Scholar] [CrossRef]
- Bora, N.; Singh, A.K.; Pal, P.; Sahoo, U.K.; Seth, D.; Rathore, D.; Bhadra, S.; Sevda, S.; Venkatramanan, V.; Prasad, S.; et al. Green ammonia production: Process technologies and challenges. Fuel 2024, 369, 131808. [Google Scholar] [CrossRef]
- Kim, Y.; Hong, S.; Ha, E.; Park, G.; Kim, J. Weld Zone Analysis Based on FCAW Mechanical Characteristics and Heat Transfer Analysis of 316L Stainless Steel for Liquefied Hydrogen Tanks. Materials 2024, 17, 2630. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-H.; An, J.-H.; Lee, C.-J. Numerical modeling and optimization of thermal insulation for liquid hydrogen storage tanks. Energy 2024, 291, 130143. [Google Scholar] [CrossRef]
- Lv, H.; Chen, G.; Gao, X.; Xu, Q.; Zhao, Y.; Su, S.; Xia, L.; Zhang, G.; Hu, K. Study on the methodology for evaluating the filling quality of type III hydrogen storage cylinders. Int. J. Hydrogen Energy 2023, 48, 36825–36835. [Google Scholar] [CrossRef]
- Ikuerowo, T.; Bade, S.O.; Akinmoladun, A.; Oni, B.A. The integration of wind and solar power to water electrolyzer for green hydrogen production. Int. J. Hydrogen Energy 2024, 76, 75–96. [Google Scholar] [CrossRef]
- Lanni, D.; Di Cicco, G.; Minutillo, M.; Cigolotti, V.; Perna, A. Techno-economic assessment of a green liquid hydrogen supply chain for ship refueling. Int. J. Hydrogen Energy 2025, 97, 104–116. [Google Scholar] [CrossRef]
- Christodoulou, A.; Dong, T.; Schonborn, A.; Olcer, A.I.; Dalaklis, D. Linking the employment of alternative marine fuels to a carbon price for shipping. Mar. Policy 2025, 171, 106452. [Google Scholar] [CrossRef]
- Drazdauskas, M.; Lebedevas, S. Numerical Study on Optimization of Combustion Cycle Parameters and Exhaust Gas Emissions in Marine Dual-Fuel Engines by Adjusting Ammonia Injection Phases. J. Mar. Sci. Eng. 2024, 12, 1340. [Google Scholar] [CrossRef]
- Yang, R.; Yue, Z.; Zhang, S.; Lv, Z.; Yao, M. Ammonia thermal atmosphere compression ignition combustion mode to achieve efficient combustion and low greenhouse gas emissions. Energy Convers. Manag. 2025, 325, 119427. [Google Scholar] [CrossRef]
- Yang, M.; Lam, J.S.L. Operational and economic evaluation of ammonia bunkering—Bunkering supply chain perspective. Transp. Res. Part D Transp. Environ. 2023, 117, 103666. [Google Scholar] [CrossRef]
- Pfeifer, M.; Holtz, D.; Mueller, K. Energy Efficient Transshipment of Ammonia: A Numerical Study of Various Terminal Concepts. Energy Technol. 2025, 13, 2300869. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, S.; Han, A.; Yang, M.; Tkalich, P.; Liu, M. Bunkering for change: Knowledge preparedness on the environmental aspect of ammonia as a marine fuel. Sci. Total Environ. 2024, 907, 167677. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; He, Y.; Fan, A. Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships. Renew. Sustain. Energy Rev. 2023, 173, 113068. [Google Scholar] [CrossRef]
- Bilgili, L. A systematic review on the acceptance of alternative marine fuels. Renew. Sustain. Energy Rev. 2023, 182, 113367. [Google Scholar] [CrossRef]
- Lagouvardou, S.; Lagemann, B.; Psaraftis, H.N.; Lindstad, E.; Erikstad, S.O. Marginal abatement cost of alternative marine fuels and the role of market-based measures. Nat. Energy 2023, 8, 1209–1220. [Google Scholar] [CrossRef]
- Leifsson, L.P.; Saevarsdottir, H.; Sigurosson, S.P.; Vesteinsson, A. Grey-box modeling of an ocean vessel for operational optimization. Simul. Model. Pract. Theory 2008, 16, 923–932. [Google Scholar] [CrossRef]
- Yang, Z.; Qu, W.; Zhuo, J. Optimization of Energy Consumption in Ship Propulsion Control under Severe Sea Conditions. J. Mar. Sci. Eng. 2024, 12, 1461. [Google Scholar] [CrossRef]
- Al-Messabi, N.; Cindy, G.; Li, Y. Heuristic grey-box modelling for photovoltaic power systems. Syst. Sci. Control Eng. 2016, 4, 235–246. [Google Scholar] [CrossRef]
- Xie, X.; Sun, B.; Li, X.; Olsson, T.; Maleki, N.; Ahlgren, F. Fuel Consumption Prediction Models Based on Machine Learning and Mathematical Methods. J. Mar. Sci. Eng. 2023, 11, 738. [Google Scholar] [CrossRef]
- Pintelas, E.; Livieris, I.E.; Pintelas, P. A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and White-Box Intrinsic Interpretability. Algorithms 2020, 13, 17. [Google Scholar] [CrossRef]
- Ammar, N.R.; Seddiek, I.S. Hybrid/dual fuel propulsion systems towards decarbonization: Case study container ship. Ocean Eng. 2023, 281, 114962. [Google Scholar] [CrossRef]
- Chin, C.S.; Tan, Y.-J.; Kumar, M.V. Study of Hybrid Propulsion Systems for Lower Emissions and Fuel Saving on Merchant Ship during Voyage. J. Mar. Sci. Eng. 2022, 10, 393. [Google Scholar] [CrossRef]
- Moon, S.-W.; Ruy, W.-S.; Park, K.-P. A Study on Fishing Vessel Energy System Optimization Using Bond Graphs. J. Mar. Sci. Eng. 2024, 12, 903. [Google Scholar] [CrossRef]
- Yuksel, O.; Goksu, B. Effects of transportation of electric vehicles by a RoPax ship on carbon intensity and energy efficiency. Sustain. Energy Technol. Assess. 2025, 75, 104238. [Google Scholar] [CrossRef]
- Domachowski, Z. Minimizing Greenhouse Gas Emissions from Ships Using a Pareto Multi-Objective Optimization Approach. Pol. Marit. Res. 2021, 28, 96–101. [Google Scholar] [CrossRef]
- Tang, R.; Wu, Z.; Li, X. Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application. Energy 2018, 162, 697–714. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, D.; Huang, X.; Yan, X.; Dou, P.; Ji, R. Comparative investigations on hull line optimization based on traditional and fully parametric methods for saving energy. Front. Energy Res. 2024, 12, 1359957. [Google Scholar] [CrossRef]
- Choi, H.-J.; Park, D.-W.; Choi, M.-S. Study on Optimized Hull Form of Basic Ships Using Optimization Algorithm. J. Mar. Sci. Technol. 2015, 23, 60–68. [Google Scholar] [CrossRef]
- Huang, F.; Yang, C. Hull form optimization of a cargo ship for reduced drag. J. Hydrodyn. 2016, 28, 173–183. [Google Scholar] [CrossRef]
- Zhang, B.-J.; Zhang, C.; She, W.-X. The Minimum Wave Resistance of Hull Form Design Method Based on CFD Method. J. Ship Prod. Des. 2020, 36, 161–170. [Google Scholar] [CrossRef]
- Park, S.-W.; Kim, S.-H.; Kim, Y.-I.; Lee, I. Hull Form Optimization Study Based on Multiple Parametric Modification Curves and Free Surface Reynolds-Averaged Navier-Stokes (RANS) Solver. Appl. Sci. 2022, 12, 2428. [Google Scholar] [CrossRef]
- Zha, Z.; Li, B.; Zhou, X.; Wang, C.; Zhou, Q.; Hu, J. A pointwise weighting prediction variance-high-dimensional model representation model-based global optimization approach for ship hull parametric design. Eng. Optim. 2024, 1–33. [Google Scholar] [CrossRef]
- Hou, Y.H. Hull form uncertainty optimization design for minimum EEOI with influence of different speed perturbation types. Ocean Eng. 2017, 140, 66–72. [Google Scholar] [CrossRef]
- Nazemian, A.; Ghadimi, P. CFD-based optimization of a displacement trimaran hull for improving its calm water and wavy condition resistance. Appl. Ocean Res. 2021, 113, 102729. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, W.; Wan, D. Resistance and wake distortion optimization of JBC considering ship-propeller interaction. Ocean Eng. 2022, 244, 110376. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Del Papa, G.; Giuzio, G.F.; Palombo, A. Reducing carbon footprint in ports through electrification and flexible energy management of ships. Energy Convers. Manag. 2025, 332, 119742. [Google Scholar] [CrossRef]
- Rogosic, M.; Stanivuk, T.; Lucaci, D. A Study on the Application of Shore-Side Power as a Method to Reduce the Emissions of Greenhouse Gases by Cruise Ships. J. Mar. Sci. Eng. 2025, 13, 453. [Google Scholar] [CrossRef]
- Vaishnav, P.; Fischbeck, P.S.; Morgan, M.G.; Corbett, J.J. Shore Power for Vessels Calling at US Ports: Benefits and Costs. Environ. Sci. Technol. 2016, 50, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, Y.; Zhu, J.; Huang, D.; Yin, C.; Li, J. Collaborative Optimization of Shore Power and Berth Allocation Based on Economic, Environmental, and Operational Efficiency. J. Mar. Sci. Eng. 2025, 13, 776. [Google Scholar] [CrossRef]
- Pesa, T.; Krcum, M.; Kero, G.; Soda, J. Ferry Electrification Energy Demand and Particle Swarm Optimization Charging Scheduling Model Parameters Analysis. Appl. Sci. 2025, 15, 3002. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Chang, W.-M. Impacts of electric rubber-tired gantries on green port performance. Res. Transp. Bus. Manag. 2013, 8, 67–76. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, C.; Zeng, Q.; Qu, X. Integrated energy management and operations planning in oil-electric hybrid container terminals considering multi-energy supply. Adv. Eng. Inform. 2024, 60, 102391. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Y.; Heilig, L.; Lalla-Ruiz, E.; Voss, S. Deployment and retrofit strategy for rubber-tyred gantry cranes considering carbon emissions. Comput. Ind. Eng. 2021, 161, 107645. [Google Scholar] [CrossRef]
- Yu, D.; Li, D.; Sha, M.; Zhang, D. Carbon-efficient deployment of electric rubber-tyred gantry cranes in container terminals with workload uncertainty. Eur. J. Oper. Res. 2019, 275, 552–569. [Google Scholar] [CrossRef]
- Di Ilio, G.; Di Giorgio, P.; Tribioli, L.; Bella, G.; Jannelli, E. Preliminary design of a fuel cell/battery hybrid powertrain for a heavy-duty yard truck for port logistics. Energy Convers. Manag. 2021, 243, 114423. [Google Scholar] [CrossRef]
- Pivetta, D.; Dall’Armi, C.; Sandrin, P.; Bogar, M.; Taccani, R. The role of hydrogen as enabler of industrial port area decarbonization. Renew. Sustain. Energy Rev. 2024, 189, 113912. [Google Scholar] [CrossRef]
- Sifakis, N.; Konidakis, S.; Tsoutsos, T. Hybrid renewable energy system optimum design and smart dispatch for nearly Zero Energy Ports. J. Clean. Prod. 2021, 310, 127397. [Google Scholar] [CrossRef]
- Yu, S.; Huang, Z.; Tang, D.; Ma, W.; Guerrero, J.M. The Role of Integrated Multi-Energy Systems Toward Carbon-Neutral Ports: A Data-Driven Approach Using Empirical Data. J. Mar. Sci. Eng. 2025, 13, 477. [Google Scholar] [CrossRef]
- Xia, D.; He, J.; Chi, F.; Dou, Z.; Yang, Z.; Liu, C. Shore Power Optimal Scheduling Based on Gridding of Hybrid Energy Supply System. Sustainability 2022, 14, 16250. [Google Scholar] [CrossRef]
- Colarossi, D.; Principi, P. Optimal sizing of a photovoltaic/energy storage/cold ironing system: Life Cycle cost approach and environmental analysis. Energy Convers. Manag. 2023, 291, 117255. [Google Scholar] [CrossRef]
- Iqbal, R.; Liu, Y.; Zeng, Y.; Zhang, Q.; Zeeshan, M. Comparative study based on techno-economics analysis of different shipboard microgrid systems comprising PV/wind/fuel cell/battery/diesel generator with two battery technologies: A step toward green maritime transportation. Renew. Energy 2024, 221, 119670. [Google Scholar] [CrossRef]
- Gutierrez-Romero, J.E.; Esteve-Perez, J.; Zamora, B. Implementing Onshore Power Supply from renewable energy sources for requirements of ships at berth. Appl. Energy 2019, 255, 113883. [Google Scholar] [CrossRef]
- Mo, A.; Zhang, Y.; Xiong, Y.; Ma, F.; Sun, L. Energy-Logistics Cooperative Optimization for a Port-Integrated Energy System. Mathematics 2024, 12, 1917. [Google Scholar] [CrossRef]
- Vichos, E.; Sifakis, N.; Tsoutsos, T. Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports. Energy 2022, 241, 122878. [Google Scholar] [CrossRef]
- Prause, F.; Prause, G.; Philipp, R. Inventory Routing for Ammonia Supply in German Ports. Energies 2022, 15, 6485. [Google Scholar] [CrossRef]
- Banaei, M.; Boudjadar, J.; Khooban, M.-H. Stochastic Model Predictive Energy Management in Hybrid Emission-Free Modern Maritime Vessels. IEEE Trans. Ind. Inform. 2021, 17, 5430–5440. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Liu, D. Optimization of Carbon Emission Reduction Investment for Replacement Fuel Ships Based on the Shipowners’ Perspective. Atmosphere 2025, 16, 141. [Google Scholar] [CrossRef]
- Wang, H.; Yan, R.; Au, M.H.; Wang, S.; Jin, Y.J. Federated learning for green shipping optimization and management. Adv. Eng. Inform. 2023, 56, 101994. [Google Scholar] [CrossRef]
- Cariou, P. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping? Transp. Res. Part D: Transp. Environ. 2011, 16, 260–264. [Google Scholar] [CrossRef]
- Farkas, A.; Degiuli, N.; Martić, I.; Grlj, C.G. Is slow steaming a viable option to meet the novel energy efficiency requirements for containerships? J. Clean. Prod. 2022, 374, 133915. [Google Scholar] [CrossRef]
- Degiuli, N.; Martic, I.; Grlj, C.G. Slow Steaming as a Sustainable Measure for Low-Carbon Maritime Transport. Sustainability 2024, 16, 11169. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, S.; Peng, J. Operational efficiency optimization method for ship fleet to comply with the carbon intensity indicator (CII) regulation. Ocean Eng. 2023, 286, 115487. [Google Scholar] [CrossRef]
- Sun, C.; Wang, H.; Liu, C.; Zhao, Y. Dynamic Prediction and Optimization of Energy Efficiency Operational Index (EEOI) for an Operating Ship in Varying Environments. J. Mar. Sci. Eng. 2019, 7, 402. [Google Scholar] [CrossRef]
- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. Ship speed prediction based on machine learning for efficient shipping operation. Ocean Eng. 2022, 245, 110449. [Google Scholar] [CrossRef]
- Norlund, E.K.; Gribkovskaia, I. Environmental performance of speed optimization strategies in offshore supply vessel planning under weather uncertainty. Transp. Res. Part D-Transp. Environ. 2017, 57, 10–22. [Google Scholar] [CrossRef]
- Wang, H.; Lang, X.; Mao, W.; Zhang, D.; Storhaug, G. Effectiveness of 2D optimization algorithms considering voluntary speed reduction under uncertain metocean conditions. Ocean Eng. 2020, 200, 107063. [Google Scholar] [CrossRef]
- Li, X.; Sun, B.; Jin, J.; Ding, J. Speed Optimization of Container Ship Considering Route Segmentation and Weather Data Loading: Turning Point-Time Segmentation Method. J. Mar. Sci. Eng. 2022, 10, 1835. [Google Scholar] [CrossRef]
- Luo, X.; Yan, R.; Wang, S. Ship sailing speed optimization considering dynamic meteorological conditions. Transp. Res. Part C Emerg. Technol. 2024, 167, 104827. [Google Scholar] [CrossRef]
- Winnes, H.; Styhre, L.; Fridell, E. Reducing GHG emissions from ships in port areas. Res. Transp. Bus. Manag. 2015, 17, 73–82. [Google Scholar] [CrossRef]
- Nguyen, S.; Leman, A.; Xiao, Z.; Fu, X.; Zhang, X.; Wei, X.; Zhang, W.; Li, N.; Zhang, W.; Qin, Z. Blockchain-Powered Incentive System for JIT Arrival Operations and Decarbonization in Maritime Shipping. Sustainability 2023, 15, 15686. [Google Scholar] [CrossRef]
- Yang, S.; Shen, H.; Zhong, Z.; Qian, X.; Wang, Y. Collaborative Scheduling for Yangtze Riverport Channels and Berths Using Multi-Objective Optimization. Appl. Sci. 2024, 14, 6514. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, X.; Ge, Y.-E.; Du, Y. Deep Q-network and knowledge jointly-driven ship operational efficiency optimization in a seaport. Transp. Res. Part E Logist. Transp. Rev. 2025, 197, 104046. [Google Scholar] [CrossRef]
- Guo, Z.; Cao, Z.; Wang, W.; Jiang, Y.; Xu, X.; Feng, P. An integrated model for vessel traffic and deballasting scheduling in coal export terminals. Transp. Res. Part E Logist. Transp. Rev. 2021, 152, 102409. [Google Scholar] [CrossRef]
- Zheng, H.; Fan, X.; Tang, C. Integrated optimization of berth allocation problem with berth shifting strategies and ballast water management for dry bulk ports. Ocean Eng. 2024, 309, 118430. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, X.; Chen, K. An efficient heuristic algorithm for solving a multi-vessel quay crane scheduling problem in container terminals. Int. J. Shipp. Transp. Logist. 2023, 16, 454–477. [Google Scholar] [CrossRef]
- Cheaitou, A.; Cariou, P. Greening of maritime transportation: A multi-objective optimization approach. Ann. Oper. Res. 2019, 273, 501–525. [Google Scholar] [CrossRef]
- Dulebenets, M.A. Multi-objective collaborative agreements amongst shipping lines and marine terminal operators for sustainable and environmental-friendly ship schedule design. J. Clean. Prod. 2022, 342, 130897. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.; Miao, Z.; Chen, J. Governmental subsidy policies and supply chain decisions with carbon emission limit and consumer’s environmental awareness. Rairo-Oper. Res. 2019, 53, 1675–1689. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Juan, C.-J.; Ng, M. Evaluation of green strategies in maritime liner shipping using evolutionary game theory. J. Clean. Prod. 2021, 279, 123268. [Google Scholar] [CrossRef]
- Fernando, Y.; Jasmi, M.F.A.; Shaharudin, M.S. Maritime green supply chain management: Its light and shadow on the bottom line dimensions of sustainable business performance. Int. J. Shipp. Transp. Logist. 2019, 11, 60–93. [Google Scholar] [CrossRef]
- ISO 50001:2018; Energy Management Systems—Requirements with Guidance for Use. International Organization for Standardization: Geneva, Switzerland, 2018.
- Venturini, G.; Iris, C.; Kontovas, C.A.; Larsen, A. The multi-port berth allocation problem with speed optimization and emission considerations. Transp. Res. Part D Transp. Environ. 2017, 54, 142–159. [Google Scholar] [CrossRef]
- Pham, T.Y.; Nguyen, P.N. A Data-Driven framework for predicting ship berthing time and optimizing port operations at Tan Cang Cat Lai Port, Vietnam. Case Stud. Transp. Policy 2025, 20, 101441. [Google Scholar] [CrossRef]
- Fan, A.; Yang, J.; Yang, L.; Liu, W.; Vladimir, N. Joint optimisation for improving ship energy efficiency considering speed and trim control. Transp. Res. Part D Transp. Environ. 2022, 113, 103527. [Google Scholar] [CrossRef]
- Yang, D.; Liao, S.; Lun, Y.H.V.; Bai, X. Towards sustainable port management: Data-driven global container ports turnover rate assessment. Transp. Res. Part E Logist. Transp. Rev. 2023, 175, 103169. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, C.; Li, Z.; Xu, Y.; Gan, L. Optimization of anchor position allocation considering efficiency and safety demand. Ocean Coast. Manag. 2023, 241, 106644. [Google Scholar] [CrossRef]
- Li, B.; Afkhami, P.; Khayamim, R.; Borowska-Stefanska, M.; Wisniewski, S.; Fathollahi-Fard, A.M.; Ozkul, S.; Dulebenets, M.A. An intelligent hyperheuristic algorithm for the berth allocation and scheduling problem at marine container terminals. Transp. Res. Part E Logist. Transp. Rev. 2025, 198, 104104. [Google Scholar] [CrossRef]
- Xu, F.; Ren, H.; Duan, Y.; Li, Y.; Zhu, T. Joint optimization of ship traffic organization and berth allocation in a seaport with one-way channel. Ocean Eng. 2025, 326, 120843. [Google Scholar] [CrossRef]
- Huang, L.; Wen, Y.; Geng, X.; Zhou, C.; Xiao, C.; Zhang, F. Estimation and spatio-temporal analysis of ship exhaust emission in a port area. Ocean Eng. 2017, 140, 401–411. [Google Scholar] [CrossRef]
- Yin, C.; Ke, Y.; Chen, J.; Liu, M. Interrelations between sea hub ports and inland hinterlands: Perspectives of multimodal freight transport organization and low carbon emissions. Ocean Coast. Manag. 2021, 214, 105919. [Google Scholar] [CrossRef]
- Lin, S.; Zhen, L.; Wang, W.; Tan, Z. Green berth and yard space allocation under carbon tax policy in tidal ports. Marit. Policy Manag. 2023, 50, 1080–1101. [Google Scholar] [CrossRef]
- Lu, H.; Lu, X. Joint Optimization of Berths and Quay Cranes Considering Carbon Emissions: A Case Study of a Container Terminal in China. J. Mar. Sci. Eng. 2025, 13, 148. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, M.; Shi, J.; Li, W.; Sui, Y.; Dou, Y. Overall Scheduling Model for Vessels Scheduling and Berth Allocation for Ports with Restricted Channels That Considers Carbon Emissions. J. Mar. Sci. Eng. 2022, 10, 1757. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Wang, Z.; Zheng, J.; Sheng, D. Modeling and solving the joint berth allocation and vessel sequencing problem with speed optimization in a busy seaport. Transp. Res. Part E Logist. Transp. Rev. 2025, 197, 104089. [Google Scholar] [CrossRef]
- Liu, D.; Ge, Y.-E. Modeling assignment of quay cranes using queueing theory for minimizing CO2 emission at a container terminal. Transp. Res. Part D Transp. Environ. 2018, 61, 140–151. [Google Scholar] [CrossRef]
- Hu, H.; Mo, J.; Zhen, L. Improved Benders decomposition for stochastic yard template planning in container terminals. Transp. Res. Part C Emerg. Technol. 2021, 132, 103365. [Google Scholar] [CrossRef]
- Fereidoonian, F.; Sadjadi, S.J.; Heydari, M.; Mirzapour Al-e-Hashem, S.M.J. A timely efficient and emissions-aware multiobjective truck-sharing integrated scheduling model in container terminals. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2024, 238, 982–1008. [Google Scholar] [CrossRef]
- Czermanski, E.; Oniszczuk-Jastrznbek, A.; Zaucha, J.; Pawlowska, B.; Matczak, M.; Szydlowski, L. Preconditions of new container terminal location in the Maritime Spatial Planning framework. A case study for the Central Port Concept in Gdansk. Mar. Policy 2021, 130, 104585. [Google Scholar] [CrossRef]
- Di Vaio, A.; Varriale, L. Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations. Sustainability 2018, 10, 783. [Google Scholar] [CrossRef]
- Lu, C.-S.; Shang, K.-C.; Lin, C.-C. Examining sustainability performance at ports: Port managers’ perspectives on developing sustainable supply chains. Marit. Policy Manag. 2016, 43, 909–927. [Google Scholar] [CrossRef]
- Bonamano, S.; Madonia, A.; Piazzolla, D.; de Mendoza, F.P.; Piermattei, V.; Scanu, S.; Marcelli, M. Development of a Predictive Tool to Support Environmentally Sustainable Management in Port Basins. Water 2017, 9, 898. [Google Scholar] [CrossRef]
- Cavalli, L.; Lizzi, G.; Guerrieri, L.; Querci, A.; De Bari, F.; Barbieri, G.; Ferrini, S.; Di Meglio, R.; Cardone, R.; Tardo, A.; et al. Addressing Efficiency and Sustainability in the Port of the Future with 5G: The Experience of the Livorno Port. A Methodological Insight to Measure Innovation Technologies’ Benefits on Port Operations. Sustainability 2021, 13, 12146. [Google Scholar] [CrossRef]
- Fedorenko, R.V.; Khmeleva, G.A. Preferential Treatment as a Tool for Managing the Coastal Area Sustainable Development: The Case of the Vladivostok Free Port. J. Mar. Sci. Eng. 2021, 9, 329. [Google Scholar] [CrossRef]
- Le, T.T.; Nguyen, H.P.; Rudzki, K.; Rowinski, L.; Bui, V.D.; Truong, T.H.; Le, H.C.; Pham, N.D.K. Management Strategy for Seaports Aspiring to Green Logistical Goals of IMO: Technology and Policy Solutions. Pol. Marit. Res. 2023, 30, 165–187. [Google Scholar] [CrossRef]
- Gasparotti, C.; Benec Mincu, G.-M.; Nitu, C.; Raileanu, A.; Turcanu, A. Ports Digitization—A Challenge for Sustainable Development. Rom. J. Econ. Forecast. 2023, 26, 143–160. [Google Scholar]
- Liu, T.-K.; Chen, Y.-S. Assessing sustainable decarbonization strategies for green shipping using tugboat owner investment in hybrid power systems in ports in Taiwan. Sustain. Dev. 2024, 32, 4440–4454. [Google Scholar] [CrossRef]
- Su, Z.; Liu, Y.; Gao, Y.; Park, K.-S.; Su, M. Critical Success Factors for Green Port Transformation Using Digital Technology. J. Mar. Sci. Eng. 2024, 12, 2128. [Google Scholar] [CrossRef]
- Chen, J.-R.; Choi, J.-W.; Seo, Y.-J. Environmental efficiency assessment of coastal ports in China: Implications for sustainable port management. Mar. Pollut. Bull. 2025, 211, 117436. [Google Scholar] [CrossRef] [PubMed]
- Svindland, M. The environmental effects of emission control area regulations on short sea shipping in Northern Europe: The case of container feeder vessels. Transp. Res. Part D Transp. Environ. 2018, 61, 423–430. [Google Scholar] [CrossRef]
- Wang, S.; Dan, Z.; Lu, Z.; Lee, C.-Y. Liner Shipping Service Planning Under Sulfur Emission Regulations. Transp. Sci. 2021, 55, 491–509. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, P.; Wang, Y. How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area. Transp. Policy 2025, 160, 138–153. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, L.; Bai, X. Cargo selection, route planning, and speed optimization in tramp shipping under carbon intensity indicator (CII) regulations. Transp. Res. Part E Logist. Transp. Rev. 2025, 194, 103948. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, Y.; Cai, R. Dynamic Optimization of Tramp Ship Routes for Carbon Intensity Compliance and Operational Efficiency. Sustainability 2025, 17, 2280. [Google Scholar] [CrossRef]
- Franz, S.; Campion, N.; Shapiro-Bengtsen, S.; Bramstoft, R.; Keles, D.; Munster, M. Requirements for a maritime transition in line with the Paris Agreement. iScience 2022, 25, 105630. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, M.; Zhao, F.; Ji, Y.; Han, F. Status and prospects in technical standards of hydrogen-powered ships for advancing maritime zero-carbon transformation. Int. J. Hydrogen Energy 2024, 62, 925–946. [Google Scholar] [CrossRef]
- Ismail, A.M.; Ballini, F.; Olcer, A.I.; Alamoush, A.S. Integrating ports into green shipping corridors: Drivers, challenges, and pathways to implementation. Mar. Pollut. Bull. 2024, 209, 117201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Feng, C. Evolutionary game model for decarbonization of shipping under green shipping corridor. Int. J. Low-Carbon Technol. 2024, 19, 2502–2511. [Google Scholar] [CrossRef]
- Song, Z.-Y.; Chhetri, P.; Ye, G.; Lee, P.T.-W. Green maritime logistics coalition by green shipping corridors: A new paradigm for the decarbonisation of the maritime industry. Int. J. Logist.-Res. Appl. 2025, 28, 363–379. [Google Scholar] [CrossRef]
- Zhou, X.; Dai, L.; Hu, H.; Zhang, M. An environmental and economic investigation of shipping network configuration considering the maritime emission trading scheme. Ocean Coast. Manag. 2024, 249, 107013. [Google Scholar] [CrossRef]
- Marrero, A.; Martinez-Lopez, A. Decarbonization of Short Sea Shipping in European Union: Impact of market and goal based measures. J. Clean. Prod. 2023, 421, 138481. [Google Scholar] [CrossRef]
- Raza, Z. Effects of regulation-driven green innovations on short sea shipping’s environmental and economic performance. Transp. Res. Part D Transp. Environ. 2020, 84, 102340. [Google Scholar] [CrossRef]
- Lagouvardou, S.; Psaraftis, H.N. Implications of the EU Emissions Trading System (ETS) on European container routes: A carbon leakage case study. Marit. Transp. Res. 2022, 3, 100059. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Li, N. The evasion strategy options for competitive ocean carriers under the EU ETS. Transp. Res. Part E Logist. Transp. Rev. 2024, 183, 103439. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C. Sailing speed optimization in voyage chartering ship considering different carbon emissions taxation. Comput. Ind. Eng. 2015, 89, 108–115. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, A.; Yu, Q. Exploring the Carbon Abatement Strategies in Shipping Using System Dynamics Approach. Sustainability 2023, 15, 13907. [Google Scholar] [CrossRef]
- Li, Y.; Su, X.; Bai, M. A stochastic dynamic programming model for the optimal policy mix of the carbon tax and decarbonization subsidy. J. Environ. Manag. 2024, 353, 120242. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Wang, X.; Tian, X.; Chen, Z.; Chen, K. Green scheduling model of shuttle tanker fleet considering carbon tax and variable speed factor. J. Clean. Prod. 2019, 234, 1134–1143. [Google Scholar] [CrossRef]
- Lan, X.; Zuo, X.; Tao, Q. Container Shipping Optimization under Different Carbon Emission Policies: A Case Study. Sustainability 2023, 15, 8388. [Google Scholar] [CrossRef]
- He, S.; Xie, H.; Feng, Y. The Optimization of Fleet Deployment for Container Liner Shipping under the Carbon Tax and Energy Efficiency Operation Indicator. Asce-Asme J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2024, 10, 04024056. [Google Scholar] [CrossRef]
- He, Y.; Zhu, Y. Comprehensive Benefit Analysis of Port Shore Power Based on Carbon Trading. Energies 2023, 16, 2755. [Google Scholar] [CrossRef]
- Meng, L.; Wang, X.; Jin, J.; Han, C. Optimization Model for Container Liner Ship Scheduling Considering Disruption Risks and Carbon Emission Reduction. J. Mar. Sci. Eng. 2023, 11, 1449. [Google Scholar] [CrossRef]
- Li, D.-C.; Yang, H.-L. Economic feasibility of LNG-fuelled river ships: Carbon tax schemes perspective. Transp. Res. Part D Transp. Environ. 2024, 132, 104235. [Google Scholar] [CrossRef]
- Dominioni, G.; Petit, C.A. Carbon Pricing for International Shipping and Border Carbon Adjustment Mechanisms: A Case for Regulatory Cooperation. Eur. J. Risk Regul. 2025, 16, 133–148. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S. The shore power deployment problem for maritime transportation. Transp. Res. Part E Logist. Transp. Rev. 2020, 135, 101883. [Google Scholar] [CrossRef]
- Han, B.; Zheng, M.; Fan, L.; Shi, W. Mechanism of governance pressures, green production and collaboration on the performance of maritime supply chain: Evidence from the moderating effect of government subsidies1. Res. Transp. Bus. Manag. 2022, 43, 100820. [Google Scholar] [CrossRef]
- Li, M.; Luan, J.; Li, X.; Jia, P. An Analysis of the Impact of Government Subsidies on Emission Reduction Technology Investment Strategies in Low-Carbon Port Operations. Systems 2024, 12, 134. [Google Scholar] [CrossRef]
- Yang, L.; Chen, D.; Chen, Y.; Zhang, Z. Analyzing the Impact of Government Subsidies on Carbon Emission Mitigation Considering Carriers’ Price-and-Service Competition and Green Shippers. Systems 2025, 13, 249. [Google Scholar] [CrossRef]
- Xu, L.; Di, Z.; Chen, J.; Shi, J.; Yang, C. Evolutionary game analysis on behavior strategies of multiple stakeholders in maritime shore power system. Ocean Coast. Manag. 2021, 202, 105508. [Google Scholar] [CrossRef]
- Qi, J.; Wang, H.; Zheng, J. Promoting Liquefied Natural Gas (LNG) Bunkering for Maritime Transportation: Should Ports or Ships Be Subsidized? Sustainability 2022, 14, 6647. [Google Scholar] [CrossRef]
- Wang, C.; Jiao, Y.; Peng, J. Shipping company’s choice of shore power or low sulfur fuel oil under different power structures of maritime supply chain. Marit. Policy Manag. 2024, 51, 1423–1442. [Google Scholar] [CrossRef]
- Wang, C.; Jiao, Y. Shipping companies’ choice of low sulfur fuel oil with government subsidy and different maritime supply chain power structures. Marit. Policy Manag. 2022, 49, 323–346. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, P.; Liu, G. Non-cooperative and Nash-bargaining game of a two-parallel maritime supply chain considering government subsidy and forwarder’s CSR strategy: A dynamic perspective. Chaos Solitons Fractals 2024, 178, 114300. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, R.; Li, X.; Zheng, L. Analysis of tripartite evolutionary game for maritime supply chain collaboration considering carbon emission governance. Front. Mar. Sci. 2025, 12, 1552544. [Google Scholar] [CrossRef]
- Li, X.; Kuang, H.; Hu, Y. Using System Dynamics and Game Model to Estimate Optimal Subsidy in Shore Power Technology. IEEE Access 2020, 8, 116310–116320. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Zhen, L. Optimal subsidy design for energy generation in ship berthing. Marit. Policy Manag. 2024, 51, 1824–1837. [Google Scholar] [CrossRef]
- Molavi, A.; Lim, G.J.; Shi, J. Stimulating sustainable energy at maritime ports by hybrid economic incentives: A bilevel optimization approach. Appl. Energy 2020, 272, 115188. [Google Scholar] [CrossRef]
- Wang, S.; Qi, J.; Laporte, G. Governmental subsidy plan modeling and optimization for liquefiednatural gas as fuel for maritime transportation. Transp. Res. Part B Methodol. 2022, 155, 304–321. [Google Scholar] [CrossRef]
- Chou, M.T.; Hsu, Y.-P.; Hsu, C.T.; Ding, J.-F. Reconstruction mechanism and strategy of global maritime green supply chain against the backdrop of nuclear pollution. Mar. Pollut. Bull. 2022, 185, 114235. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Feng, Y.; He, C.; Liu, C. Modeling and Optimization of Container Drayage Problem with Empty Container Constraints across Multiple Inland Depots. Sustainability 2024, 16, 5090. [Google Scholar] [CrossRef]
- Huang, L.; Tan, Y.; Yue, X. Optimizing Route and Speed under the Sulfur Emission Control Areas for a Cruise Liner: A New Strategy Considering Route Competitiveness and Low Carbon. Mathematics 2024, 12, 1847. [Google Scholar] [CrossRef]
- Han, Y.; Ma, W.; Ma, D. Green maritime: An improved quantum genetic algorithm-based ship speed optimization method considering various emission reduction regulations and strategies. J. Clean. Prod. 2023, 385, 135814. [Google Scholar] [CrossRef]
- Luhtala, H.; Erkkila-Valimaki, A.; Eliasen, S.Q.; Tolvanen, H. Business sector involvement in maritime spatial planning—Experiences from the Baltic Sea region. Mar. Policy 2021, 123, 104301. [Google Scholar] [CrossRef]
- Dirzka, C.; Acciaro, M. Principal-agent problems in decarbonizing container shipping: A panel data analysis. Transp. Res. Part D Transp. Environ. 2021, 98, 102948. [Google Scholar] [CrossRef]
- Tsvetkova, A.; Hellstrom, M.; Schwartz, H.; Rabetino, R.; Syed, H. A transition towards clean propulsion in shipping: The role of PESTLE drivers and implications for policy. Mar. Policy 2024, 161, 106002. [Google Scholar] [CrossRef]
- Vujicic, S.; Hasanspahic, N.; Car, M.; Campara, L. Distributed Ledger Technology as a Tool for Environmental Sustainability in the Shipping Industry. J. Mar. Sci. Eng. 2020, 8, 366. [Google Scholar] [CrossRef]
- Duran, C.; Fernandez-Campusano, C.; Carrasco, R.; Carrillo, E. DMLBC: Dependable machine learning for seaports using blockchain technology. J. King Saud Univ. -Comput. Inf. Sci. 2024, 36, 101918. [Google Scholar] [CrossRef]
- Parekh, M.; Jadav, N.K.; Tanwar, S.; Pau, G.; Alqahtani, F.; Tolba, A. ANN and blockchain-orchestrated decentralized data-driven analytical framework for ship fuel oil consumption. Appl. Ocean Res. 2025, 158, 104553. [Google Scholar] [CrossRef]
- Guan, P.; Wood, L.C.; Wang, J.X.; Duong, L.N.K. Barriers to blockchain adoption in the seaport industry: A fuzzy DEMATEL analysis. Math. Biosci. Eng. 2023, 20, 20995–21031. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Pratap, S.; Dwivedi, A.; Lakshay. An empirical study on driving blockchain adoption in Maritime freight: An Asian business perspective. J. Bus. Ind. Mark. 2024, 39, 2347–2363. [Google Scholar] [CrossRef]
- Green, E.H.; Carr, E.W.; Winebrake, J.J.; Corbett, J.J. Blockchain Technology and Maritime Shipping: An Exploration of Use Cases in the U.S. Maritime Transportation Sector. Available online: https://www.maritime.dot.gov/sites/marad.dot.gov/files/2020-07/Blockchain%20Use%20Cases%20Final%20Report%20(20200622).pdf (accessed on 8 July 2025).
- Huang, J.; Lu, H.Y.; Du, M.Z. Coordinated development of digital economy and ecological resilience in China: Spatial-temporal evolution and convergence. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Chen, J.; Chang, S.; Zhang, P.; Chen, Q.; Peng, P.; Claramunt, C. A Critical Examination for Widespread Usage of Shipping Big Data Analytics in China. J. Mar. Sci. Eng. 2022, 10, 2009. [Google Scholar] [CrossRef]
- Dominguez-Pery, C.; Tassabehji, R.; Vuddaraju, L.N.R.; Duffour, V.K. Improving emergency response operations in maritime accidents using social media with big data analytics: A case study of the MV Wakashio disaster. Int. J. Oper. Prod. Manag. 2021, 41, 1544–1567. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Y.; Wang, Z.; Song, Z.; Liu, X.; Wang, W.; Zhang, Z.; Yu, Y.; Xu, Z.; Zhang, T.; et al. A novel ship classification approach for high resolution SAR images based on the BDA-KELM classification model. Int. J. Remote Sens. 2017, 38, 6457–6476. [Google Scholar] [CrossRef]
- Song, Z.-Y.; Lin, C.-W.; Feng, X.; Lee, P.T.W. An empirical study of the performance of the sixth generation ports model with smart ports with reference to major container ports in mainland China. Transp. Res. Part E Logist. Transp. Rev. 2024, 184, 103460. [Google Scholar] [CrossRef]
- Lee, P.T.-W.; Song, Z.-Y.; Lin, C.-W.; Lam, J.S.L.; Chen, J. New framework of port logistics in the post-COVID-19 period with 6th-generation ports (6GP) model. Transp. Rev. 2025, 45, 77–93. [Google Scholar] [CrossRef]
Fuel Type | Energy Density (kWh/kg) | Cost Level | Technical Maturity | Emission Characteristics | Infrastructure Adaptability | Main References |
---|---|---|---|---|---|---|
LNG | 13.9–15.6 | Medium cost, potential for economies of scale | Mature technology, widely commercialized | CO2 emissions are about 20–25 per cent lower than Heavy Fuel Oil (HFO); however, there are methane fugitive issues | Better infrastructure and a more robust global supply network | Al-Enazi et al. (2022) [25] |
Methanol | 5.5–6.1 | Moderate cost and easy transport | Commercial applications have been realized with high technological maturity. | Non-zero carbon if sourced from natural gas, green methanol is carbon neutral. | Ambient liquid, easily adapted to existing filling systems | Dotto et al. (2023) [34] |
Hydrogen | 33.3 | High cost (LCOH about 16.77 EUR/kg) | Still in the pilot demonstration phase, with more challenges in combustion and storage technologies | No carbon emissions from combustion, but risk of NOx emissions | Requires extremely low temperature/high pressure equipment and high infrastructure costs | Kim et al. (2024); Lanni et al. (2025) [36,40] |
Green ammonia | 5.2–5.5 | Current costs are high and need policy support and scale to reduce costs | Technology is maturing, but still faces combustion control issues | Zero CO2 emissions, but combustion tends to produce NOx | Storage and handling are relatively mature, with precedents in industrial logistics | Al-Enazi et al. (2022); Drazdauskas and Lebedevas (2024) [25,42] |
Blue ammonia | 5.2–5.5 | Medium to high costs and not exactly zero environmental impacts | A relatively mature technology pathway that relies on natural gas and Carbon Capture and Storage (CCS) | Emission reductions depend on the effectiveness of the carbon capture system. | Facility suitability is akin to green ammonia, but relies more on the existing chemical base. | Al-Yafei et al. (2025) [22] |
Reference | Method | Highlights |
---|---|---|
[134] | Structural equation model | This study elucidates the dynamic interplay between internal management and external collaboration, offering theoretical support for sustainable supply chain management in ports. |
[135] | Numerical model | An innovative, low-cost predictive tool called the Flushing Efficiency Index (FEI) is proposed for managing port water quality |
[136] | Evaluation | By integrating 5G technology with the SDGs and key performance indicators (KPIs) of ports, this study demonstrates the comprehensive impact of digital transformation on port governance. |
[137] | Comparative analysis | Focusing solely on economic and social objectives is insufficient for managing ports effectively; integrating the Sustainable Development Goals (SDGs) is necessary to improve governance efficiency and enhance global economic competitiveness. |
[138] | Evaluation | A green port model is proposed that integrates smart grid and energy management technologies, providing a low-carbon transition framework for global ports. |
[139] | Analytic Hierarchy Process (AHP) | Prioritization is provided for port digitization, along with a technical implementation roadmap for port authorities. |
[140] | Evaluation | This study focuses on decarbonization strategies for tugboat operations and, from the perspective of stakeholders, offers an innovative policy framework for managing small vessels in ports. |
[141] | Fuzzy DEMATEL combined with expert interviews | This study identifies 12 key success factors for green port transformation, offering practical insights to inform digital strategies. |
[142] | Data envelope analysis (DEA) | The DEA-Undesirable Output Model is employed to accurately quantify the relationship between port environmental and operational efficiency, thereby providing data support for green port management. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Chen, Y. Overview of Sustainable Maritime Transport Optimization and Operations. Sustainability 2025, 17, 6460. https://doi.org/10.3390/su17146460
Xu L, Chen Y. Overview of Sustainable Maritime Transport Optimization and Operations. Sustainability. 2025; 17(14):6460. https://doi.org/10.3390/su17146460
Chicago/Turabian StyleXu, Lang, and Yalan Chen. 2025. "Overview of Sustainable Maritime Transport Optimization and Operations" Sustainability 17, no. 14: 6460. https://doi.org/10.3390/su17146460
APA StyleXu, L., & Chen, Y. (2025). Overview of Sustainable Maritime Transport Optimization and Operations. Sustainability, 17(14), 6460. https://doi.org/10.3390/su17146460