Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks
Abstract
1. Introduction
2. Fuel Cell–Battery Hybrid System
2.1. Passenger Cars
2.2. Buses
2.3. Heavy Trucks
3. Fuel Cell–Supercapacitor Hybrid System
3.1. Passenger Cars
3.2. Buses
3.3. Heavy Trucks
4. Fuel Cell–Battery–Supercapacitor Hybrid Power System
4.1. Passenger Vehicles
4.2. Buses
4.3. Heavy Trucks
5. Summary and Outlook
5.1. Technological Breakthroughs: From Material Innovation to the Upgrading of the Entire Hydrogen Energy Chain
5.2. System Optimization: Multi-Energy Coupling and Intelligent Control Reconstructing Power Architecture
5.3. Application Scenarios: Full Scenario Penetration from Transportation to Energy Networks
5.4. Policy Support: From Single-Point Subsidy to Full Ecological Construction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sulaiman, N.; Hannan, M.A.; Mohamed, A.; Majlan, E.H.; Daud, W.R.W. A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renew. Sust. Energ. Rev. 2015, 52, 802–814. [Google Scholar] [CrossRef]
- Parikh, A.; Shah, M.; Prajapati, M. Fuelling the sustainable future: A comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV). Environ. Sci. Pollut. Res. 2023, 30, 57236–57252. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhu, Y.; Lv, S.; Ni, H.; Deng, Y.; Yuan, Y. Effect of Different Hot-Pressing Pressure and Temperature on the Performance of Titanium Mesh-Based MEA for DMFC. Membranes 2022, 12, 431. [Google Scholar] [CrossRef]
- Cullen, D.; Neyerlin, K.C.; Ahluwalia, R.; Mukundan, R.; More, K.L.; Borup, R.L.; Weber, A.Z.; Myers, D.J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Ye, P.; Zhu, Y.; Yuan, Y.; Chen, L. Study of a Hybrid Vehicle Powertrain Parameter Matching Design Based on the Combination of Orthogonal Test and Cruise Software. Sustainability 2023, 15, 10774. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S. Obstacles to the success of fuel-cell electric vehicles: Are they truly impossible to overcomeI. IEEE Electrific. Mag. 2018, 6, 48–54. [Google Scholar] [CrossRef]
- Pan, M.; Pan, C.; Li, C.; Zhao, J. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability.Renew. Sust. Energ. Rev. 2021, 141, 110771. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Boulon, L. Efficien-cy upgrade of hybrid fuel cell vehicles’ energy manage-ment strategies by online systemic management of fuel cell. IEEE Trans. Ind. Electron. 2021, 68, 4941–4953. [Google Scholar] [CrossRef]
- Lu, X.Q.; Wu, Y.B.; Lian, J.; Zhang, Y.Y.; Chen, C.; Wang, P.S.; Meng, L.Z. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers. Manage 2020, 205, 112474. [Google Scholar] [CrossRef]
- Das, H.S.; Chee, W.T.; Abdul, H.M.Y. Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies. Renew. Sust. Energ. Rev. 2017, 76, 268–291. [Google Scholar] [CrossRef]
- Chen, Y. New Energy Vehicle Powertrain Technologies and Applications; Springer Nature: Berlin, Germany, 2023; pp. 95–182. [Google Scholar] [CrossRef]
- Xun, Q. Control and Optimization of Fuel cell Based Powertrain for Automotive Applications; PQDT: Ann Arbor, MI, USA, 2022. [Google Scholar]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Hybrid electric vehicles and their challenges: A review. Renew. Sust. Energ. Rev. 2014, 29, 135–150. [Google Scholar] [CrossRef]
- Chatterjee, D.; Biswas, K.P.; Sain, C.; Roy, A.; Ahmad, F.; Rahul, J. Bi-LSTM predictive control-based efficient energy management system for a fuel cell hybrid electric vehicle. Sustain. Energy Grids 2024, 38, 101348. [Google Scholar] [CrossRef]
- Xu, Y.H.; Yang, Z.R.; Jiao, K.; Hao, D.; Du, Q. Development of a comprehensive transient fuel cell-battery hybrid system model and rule-based energy management strategy. Int. J. Green Energy 2023, 20, 844–858. [Google Scholar] [CrossRef]
- Chen, H. Optimized Management of Fuel Cell/Lithium Battery Hybrid Power System. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar] [CrossRef]
- Wang, S.Y. Research on Energy Management Strategy of Fuel Cell Hybrid Vehicle Based on Speed Prediction. Master’s Thesis, Jilin University, Changchun, China, 2023. [Google Scholar] [CrossRef]
- Feng, Y.B.; Dong, Z.M. Optimal energy management strategy of fuel-cell battery hybrid electric mining truck to achieve minimum lifecycle operation costs. Int. J. Energy Res. 2020, 44, 10797–10808. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Huang, L.J.; Sun, X.X.; Li, L.H.; Lian, J. A Long-term Energy Management Strategy for Fuel Cell Electric Vehicles Using Reinforcement Learning. Fuel Cells 2020, 20, 753–761. [Google Scholar] [CrossRef]
- Meng, X.; Li, Q.; Zhang, G.; Wang, X.; Chen, W. Double Q-learning-based Energy Management Strategy for Overall Energy Consumption Optimization of Fuel Cell/Battery Vehicle. In Proceedings of the IEEE Transportation Electrification Conference and Expo, Chicago, IL, USA, 21–25 June 2021; pp. 21–25. [Google Scholar]
- Yavasoglu, H.; Tetik, Y.; Ozcan, H. Neural network-based energy management of multi-source (battery/UC/FC) powered electric vehicle. Int. J. Energy Res. 2020, 44, 12416–12429. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Sun, B.; Xu, H.; Yang, C.; Zhu, H. Optimizing zinc electrowinning processes with current switching via Deep Deterministic Policy Gradient learning. Neurocomputing 2020, 380, 190–200. [Google Scholar] [CrossRef]
- Zhou, J.M.; Feng, C.; Su, Q.; Jiang, S.; Fan, Z.; Ruan, J.; Sun, S.; Hu, L. The multi-objective optimization of powertrain design and energy management strategy for fuel cell-battery electric vehicle. Sustainability 2022, 14, 6320. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Y.; Lian, J. Comparative assessment and improvement of the powertrain supplied by hybrid energy source in fuel cell vehicles. Sustain. Energy Technol. Assess. 2024, 65, 103750. [Google Scholar] [CrossRef]
- Ettihir, K.; Loïc, B.; Agbossou, K. Optimization-based energy management strategy for a fuel cell/battery hybrid power system. Appl. Energy 2016, 163, 142–153. [Google Scholar] [CrossRef]
- Wang, Y.; Moura, S.J.; Advani, S.G.; Prasad, A.K. Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation. Int. J. Hydrogen Energy 2019, 44, 8479–8492. [Google Scholar] [CrossRef]
- Ou, K.; Yuan, W.W.; Choi, M.; Yang, S.; Jung, S.; Kim, Y.B. Optimized power management based on adaptive-PMP algorithm for a stationary PEM fuel cell/battery hybrid system. Int. J. Hydrog. Energy 2018, 43, 15433–15444. [Google Scholar] [CrossRef]
- Bendjedia, B.; Rizoug, N.; Boukhnifer, M.; Degaa, L. Energy management strategies for a fuel-cell/battery hybrid power system. P. I. Mech. Eng. I-J. Sys. 2023, 237, 704–716. [Google Scholar] [CrossRef]
- Han, Z. Design of Fuel Cell Bus Power System and Energy Management Strategy Based on Constructed Working Conditions. Master’s Thesis, Xihua University, Chengdu, China, 2023. [Google Scholar] [CrossRef]
- Wang, N. Research on Power System Parameter Matching and Energy Management Strategy of Fuel Cell Bus. Master’s Thesis, Shandong University of Technology, Zibo, China, 2023. [Google Scholar] [CrossRef]
- Guo, J.Q.; He, H.W.; Li, J.W.; Liu, Q.W. Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning. Energy 2021, 226, 120440. [Google Scholar]
- Jia, C.C.; Zhou, J.M.; He, H.W.; Li, J.W.; Wei, Z.B.; Li, K.N.; Shi, M. A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal-and health-constrained awareness. Energy 2023, 271, 127105. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, Z.; Yu, X.; Huang, J.; Zhou, E.; Liu, K.; Wang, C.; Zhang, X.; Qi, H. A novel real-time energy management and monitor framework for the fuel cell hybrid buses. In Proceedings of the IEEE 6th International Electrical and Energy Conference CIEEC, Hefei, China, 12–14 May 2023; pp. 1558–1562. [Google Scholar] [CrossRef]
- He, H.W.; Jia, C.C.; Li, J.W. A new cost-minimizing power-allocating strategy for the hybrid electric bus with fuel cell/battery health-aware control. Int. J. Hydrog. Energy 2022, 47, 22147–22164. [Google Scholar] [CrossRef]
- Jia, C.; Li, K.; He, H.; Zhou, J.; Li, J.; Wei, Z. Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm. Energy 2023, 283, 128462. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, J.; Qin, Y.; Wang, G.; Shi, Q.; Wu, J.; Yang, H. Real time power management strategy for fuel cell hybrid electric bus based on Lyapunov stability theorem. Int. J. Hydrog. Energy 2022, 47, 36216–36231. [Google Scholar] [CrossRef]
- Mei, S.J. Research on Matching Design and Energy Consumption Optimization of Fuel Cell Heavy Truck Power System. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2023. [Google Scholar] [CrossRef]
- Wang, R.X. Research on Matching Design and Energy Management Strategy of Power System for High Power Type Fuel Cell Heavy Truck. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2021. [Google Scholar] [CrossRef]
- Ferrara, A.; Hametner, C.; Jakubek, S. Health-conscious predictive energy management strategy for fuel cell electric trucks. Energy Rep. 2024, 12, 5961–5973. [Google Scholar] [CrossRef]
- Shiledar, A.; Villani, M.; Rizzoni, G. Hardware-in-the-Loop Implementation of an Optimized Energy Management Strategy for Range-Extended Electric Trucks. Energies 2024, 17, 5294. [Google Scholar] [CrossRef]
- Wang, P.; Dou, J.; Su, W.; Jiang, Z.; Shi, Y. An energy management strategy based on dynamic programming for fuel cell hybrid trucks in ports. Int. J. Hydrog. Energy 2024, 82, 123–133. [Google Scholar] [CrossRef]
- Zhang, Z.; He, H.; Quan, S.; Chen, J.; Han, R. Multi-parameter and multi-objective optimization of dual-fuel cell system heavy-duty vehicles: Sizing for serial development. Energy 2024, 308, 132857. [Google Scholar] [CrossRef]
- Lü, X.; Qu, Y.; Wang, Y.; Liu, G. A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies. Energy Convers. Manage 2018, 171, 1273–1291. [Google Scholar] [CrossRef]
- Oksuztepe, E.; Yildirim, M. PEM fuel cell and supercapacitor hybrid power system for four in-wheel switched reluctance motors drive EV using geographic information system. Int. J. Hydrog. Energy 2024, 75, 74–87. [Google Scholar] [CrossRef]
- Lin, C.X. Research on Modeling of Fuel Cell hybrid Power System and its Energy Real-Time Control. Master’s Thesis, Guangxi University of Science and Technology (GXUST), Liuzhou, China, 2022. [Google Scholar] [CrossRef]
- Oubelaid, A.; Taib, N.; Rekioua, T.; Bajaj, M.; Yadav, A.; Shouran, M.; Kamel, S. Secure power management strategy for direct torque controlled fuel cell/supercapacitor electric vehicles. Front. Energy Res. 2022, 10, 971357. [Google Scholar] [CrossRef]
- Hamlat, A.; Sekour, M.H.; Mankour, M.; Yahiaoui, M.; Khalfaoui, M.; Brahmi, B. Advanced Power Management and Control Using Fuzzy Backstepping Super-Twisting Controls Designedfor Fuel Cell Supercapacitors Hybrid Power Systems for Traction Applications. J. Control Autom. Electr. Syst. 2023, 34, 996–1012. [Google Scholar] [CrossRef]
- Li, Q.Y.; Yang, H.Z. Evaluation of two model predictive control schemes with different error compensation strategies for power management in fuel cell hybrid electric buses. J. Energy Storage 2023, 72, 108148. [Google Scholar] [CrossRef]
- Yan, M.; Xu, H.; Li, M.; He, H.; Bai, Y. Hierarchical predictive energy management strategy for fuel cell buses entering bus stops scenario. Green Energy Intell. Transp. 2023, 2, 100095. [Google Scholar] [CrossRef]
- Guo, J.; He, H.; Wei, Z.; Li, J. An economic driving energy management strategy for the fuel cell bus. IEEE Trans. Transp. Electrif. 2022, 9, 5074–5084. [Google Scholar] [CrossRef]
- Siangsanoh, A.; Bahrami, M.; Kaewmanee, W.; Gavagsaz-Ghoachani, R.; Phattanasak, M.; Martin, J.P.; Nahid-Mobarakeh, B.; Weber, M.; Pierfederici, S.; Maranzana, G.; et al. Series hybrid fuel cell/supercapacitor power source. Math. Comput. Simul. 2021, 184, 21–40. [Google Scholar] [CrossRef]
- Broatch, A.; Olmeda, P.; Margot, X.; Aceros, S. Different strategies in an integrated thermal management system of a fuel cell electric bus under real driving cycles in winter. Energy Convers. Manage 2023, 288, 117137. [Google Scholar] [CrossRef]
- Farsi, A.; Rosen, M.A. PEM fuel cell-assisted lithium ion battery electric vehicle integrated with an air-based thermal management system. Int. J. Hydrogen Energy 2022, 47, 35810–35824. [Google Scholar] [CrossRef]
- Yang, Q.; Zeng, T.; Zhang, C.; Zhou, W.; Xu, L.; Zhou, J. Modeling and simulation of vehicle integrated thermal management system for a fuel cell hybrid vehicle. Energy Convers. Manage 2023, 278, 116745. [Google Scholar] [CrossRef]
- Li, Q.; Yang, H. Model Predictive Control with Gaussian Process Regression Compensation for Power Management in Fuel Cell Hybrid Electric Buses. In Proceedings of the 14th International Symposium on Power Electronics for Distributed Generation Systems PEDGm, Shanghai, China, 9–12 June 2023; pp. 886–890. [Google Scholar]
- Noone, P.; Hummel, N.; Kuznik, A.; Beidl, C. Holistic Approach for the Design and Dimensioning of a Hybridized Heavy-Duty Truck. In Proceedings of the 21st Internationales Stuttgarter Symposium: Automobil-und Motorentechnik, Stuttgarter, Germany, 6 May 2021; pp. 504–517. [Google Scholar] [CrossRef]
- Li, T.Y.; Huang, L.T.; Liu, H.Y. Energy management and economic analysis for a fuel cell supercapacitor excavator. Energy 2019, 172, 840–851. [Google Scholar] [CrossRef]
- Li, T.Y.; Liu, H.Y.; Ding, D.L. Predictive energy management of fuel cell supercapacitor hybrid construction equipment. Energy 2018, 149, 718–729. [Google Scholar] [CrossRef]
- Corral-Vega, P.; García-Triviño, P.; Fernández-Ramírez, L. Design, modelling, control and techno-economic evaluation of a fuel cell/supercapacitors powered container crane. Energy 2019, 186, 115863. [Google Scholar] [CrossRef]
- Wang, Y.J.; Sun, Z.; Li, X.; Yang, X.; Chen, Z. A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems. Energy 2019, 189, 116142. [Google Scholar] [CrossRef]
- Han, Y.; Li, Q.; Wang, T.; Chen, W.; Ma, L. Multisource coordination energy management strategy based on SOC consensus for a PEMFC–battery–supercapacitor hybrid tramway. IEEE Trans. Veh. Technol. 2017, 67, 296–305. [Google Scholar] [CrossRef]
- Chen, W.R.; Li, J.C.; Li, Q. Power-following control strategy for dynamic regulation of SOC in fuel cell small vehicles. J. Southwest. Jiaotong Univ. 2021, 56, 197–205. Available online: https://link.cnki.net/urlid/51.1277.U.20200309.1804.010 (accessed on 26 May 2025).
- Li, W.; Feng, G.; Jia, S. Research on multi-energy management system of fuel cell vehicle based on fuzzy control. J. Intell. Fuzzy Syst. 2021, 40, 6205–6217. [Google Scholar] [CrossRef]
- Fu, Z.; Zhu, L.; Tao, F.; Si, P.; Sun, L. Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan. Int. J. Hydrogen Energy 2020, 45, 8875–8886. [Google Scholar] [CrossRef]
- Lei, J.X. Research on Energy Fuzzy Control of Fuel Cell Hybrid Power System Integrating Multi-Objective Optimization. Master’s Thesis, Guangxi University of Science and Technology, Liuzhou, China, 2024. [Google Scholar] [CrossRef]
- Yuan, X.H.; Yan, G.D.; Li, H.T.; Liu, X.; Su, C.Q.; Wang, Y.P. Research on energy management strategy of fuel cell-battery-supercapacitor passenger vehicle. Energy Rep. 2022, 8, 1339–1349. [Google Scholar] [CrossRef]
- Nie, Z.; Huang, J.; Lian, Y.; Yang, W. Hierarchical control-based energy management strategy of intelligent battery/supercapacitor/fuel cell hybrid vehicles. Int. J. Hydrogen Energy 2024, 61, 1092–1106. [Google Scholar] [CrossRef]
- Mian, S.H.; Nazir, M.S.; Ahmad, I.; Khan, S.A. Optimized nonlinear controller for fuel cell, supercapacitor, battery, hybrid photoelectrochemical and photovoltaic cells based hybrid electric vehicles. Energy 2023, 283, 129121. [Google Scholar] [CrossRef]
- Omer, A.A.M.; Wang, H.; Tian, Y.; Peng, L. Optimal energy management strategy based on neural network algorithm for fuel cell hybrid vehicle considering fuel cell lifetime and fuel consumption. Soft Comput. 2024, 28, 11471–11493. [Google Scholar] [CrossRef]
- Liu, H.Y.; Xing, X.X.; Shang, W.W.; Li, T.Y. NSGA-II optimized multiobjective predictive energy management for fuel cell/battery/supercapacitor hybrid construction vehicles. Int. J. Electrochem. Sci. 2021, 16, 21046. [Google Scholar] [CrossRef]
- Abdelqawee, I.M.; Emam, A.W.; ElBages, M.S.; Ebrahim, M.A. An improved energy management strategy for fuel cell/battery/supercapacitor system using a novel hybrid jellyfish/particle swarm/BAT optimizers. J. Energy Storage 2023, 57, 106276. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Yang, Q.; Wei, Z.; He, Y.; Lan, H. Degradation adaptive energy management with a recognition-prediction method and lifetime competition-cooperation control for fuel cell hybrid bus. Energy Convers. Manage 2022, 271, 116306. [Google Scholar] [CrossRef]
- Rezk, H.; Nassef, A.M.; Abdelkareem, M.A.; Alami, A.H.; Fathy, A. Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system. Int. J. Hydrog. Energy 2021, 46, 6110–6126. [Google Scholar] [CrossRef]
- Odeim, F.; Jürgen, R.; Angelika, H. Power management optimization of a fuel cell/battery/supercapacitor hybrid system for transit bus applications. IEEE Trans. Veh. Technol. 2015, 65, 5783–5788. [Google Scholar] [CrossRef]
- Kwan, T.H.; Wu, X.; Yao, Q. Parameter sizing and stability analysis of a highway fuel cell electric bus power system using a multi-objective optimization approach. Int. J. Hydrog. Energy 2018, 43, 20976–20992. [Google Scholar] [CrossRef]
- Ribau, J.P.; Silva, C.M.; Sousa, J.M.C. Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses. Appl. Energy 2014, 129, 320–335. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Zhou, J.; Cong, Y.; Li, Z. Technological-economic assessment and optimization of hydrogen based transportation systems in China: A life cycle perspective. Int. J. Hydrog. Energy 2023, 48, 12155–12167. [Google Scholar] [CrossRef]
- Thanh, H.; Ahluwalia, R.; Eudy, L.; Singer, G.; Jermer, B.; Asselin-Miller, N.; Wessel, S. Status of hydrogen fuel cell electric buses worldwide. J. Power Sources 2014, 269, 975–993. [Google Scholar]
- McKenzie, E.C.; Durango-Cohen, P.L. Environmental life-cycle assessment of transit buses with alternative fuel technology. Transport. Res. D-Tr. E. 2012, 17, 39–47. [Google Scholar]
- Munoz, P.; Franceschini, E.A.; Levitan, D.; Rodriguez, C.R.; Humana, T.; Perelmuter, G.C. Comparative analysis of cost, emissions and fuelconsumption of diesel, natural gas, electric and hydrogen urban buses. Energy Convers. Manage 2022, 257, 115412. [Google Scholar] [CrossRef]
- Bubna, P.; Brunner, D.; Gangloff, J.J.; Advani, S.G.; Prasad, A.K. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications. J. Power Sources 2010, 195, 3939–3949. [Google Scholar] [CrossRef]
- Ding, B.C.; Wang, B.F.; Zhang, R.H. Event-triggered control for hybrid power supply of fuel-cell heavy-duty truck. J. Energy Storage 2021, 41, 102985. [Google Scholar] [CrossRef]
- Anselma, P.G.; Spano, M.; Capello, M.; Misul, D.; Belingardi, G. Calibrating a real-time energy management for a heavy-duty fuel cell electrified truck towards improved hydrogen economy. SAE Int. J. Adv. Curr. Pract. Mobil. 2022, 5, 1012–1023. [Google Scholar] [CrossRef]
- Dao, H.V.; To, X.D.; Truong, H.V.A.; Do, T.C.; Ho, C.M.; Dang, T.D.; Ahn, K.K. Optimization-Based Fuzzy Energy Management Strategy for PEM Fuel Cell/Battery/Supercapacitor Hybrid Construction Excavator. Int. J. Precis. Eng. Manuf.Green. Tech. 2021, 8, 1267–1285. [Google Scholar] [CrossRef]
- Trinh, H.; Du Phan, V.; Ahn, K.K. Optimal Energy Management for Fuel Saving in the Fuel Cell Hybrid Excavator. In Proceedings of the 26th International Conference on Mechatronics Technology ICMT, Busan, Republic of Korea, 18–21 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Abul, M.M. Hybrid and electric vehicle (HEV/EV) Technologies for off-road applications. Proc. IEEE 2021, 109, 1077e93. [Google Scholar]
- Liukkonen, M.; Lajunen, A.; Suomela, J. Comparison of different buffering topologies in FC-hybrid non-road mobile machineries. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Munoz, L.E.; Blanco, J.C.; Barreto, J.P.; Rincon, N.A.; Roa, S.D. Conceptual design of a hybrid electric off-road vehicle. In Proceedings of the IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Herrmann, F.; Rothfuss, F. Introduction to hybrid electric vehicles, battery electric vehicles, and off-road electric vehicles. In Advances in Battery Technologies for Electric Vehicles; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–16. [Google Scholar] [CrossRef]
- Amela, A.; Haas, R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int. J. Hydrog. Energy 2021, 46, 10049–10058. [Google Scholar]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Morrison, G.; Stevens, J.; Joseck, F. Relative economic competitiveness of light-duty battery electric and fuel cell electric vehicles. Transp. Res. Part. Emerg. Technol. 2018, 87, 183–196. [Google Scholar] [CrossRef]
- Aminudin, M.A.; Kamarudin, S.K.; Lim, B.H.; Majilan, E.H.; Masdar, M.S.; Shaari, N. An overview: Current progress on hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2023, 48, 4371–4388. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Economic and Environmental Prospects for Battery Electric-and Fuel Cell Vehicles: A Review. Fuel Cells 2019, 19, 515–529. [Google Scholar] [CrossRef]
- Ma, S.; Lin, M.; Lin, T.E.; Lan, T.; Liao, X.; Maréchal, F.; Yang, Y.; Dong, C.; Wang, L. Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. Renew. Sust. Energ. Rev. 2021, 135, 110119. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Pushkarev, A.S.; Pushkareva, I.V.; Presnyakova, N.N.; Chumakov, R.G.; Fateev, V.N. On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity andDurability in PEMFC. Catalysts 2019, 9, 803. [Google Scholar] [CrossRef]
- Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chem. Rev. 2018, 118, 6337–6408. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Zhang, Y.; Lv, S.; Ni, H.; Deng, Y.; Yuan, Y. A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System. Energies 2022, 15, 1963. [Google Scholar] [CrossRef]
Vehicle Performance Parameters | Stepped Control Strategy for SOC | Half-Power Prediction Energy Management Strategy |
---|---|---|
Hydrogen energy (kW/h) | 68.43 | 45.84 |
FC power (kW/h) | 35.34 | 25.16 |
Battery discharge energy (kW/h) | 34.16 | 37.33 |
Battery charging energy (kW/h) | −43.37 | −36.75 |
Fuel economy (kg/100 km) | 3.72 | 3.50 |
Battery cycle time per 100 km | 1.16 | 1.11 |
Parameters | Driving Cycle | SMs | FLC | ECMS | ASTSMC |
---|---|---|---|---|---|
SOC final value (%) | HWFET | 76.15 | 75.71 | 75.51 | 74.6 |
UDDS | 80.68 | 79.54 | 78.53 | 77.36 | |
WLTP | 78.1 | 77 | 77.1 | 76 | |
Hydrogen consumption (L) | HWFET | 12.5 | 12.3 | 11.89 | 11.05 |
UDDS | 13.64 | 12.2 | 11.4 | 9.73 | |
WLTP | 22.4 | 20.02 | 19.45 | 18.44 | |
FC power fluctuation (W/s) | HWFET | ±900 | ±500 | ±400 | ±250 |
UDDS | ±1000 | ±600 | ±500 | ±300 | |
WLTP | ±1000 | ±600 | ±500 | ±300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ji, J.; Li, J.; Zhao, Z.; Ni, H.; Zhu, Y. Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks. Sustainability 2025, 17, 6170. https://doi.org/10.3390/su17136170
Wang X, Ji J, Li J, Zhao Z, Ni H, Zhu Y. Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks. Sustainability. 2025; 17(13):6170. https://doi.org/10.3390/su17136170
Chicago/Turabian StyleWang, Xingxing, Jiaying Ji, Junyi Li, Zhou Zhao, Hongjun Ni, and Yu Zhu. 2025. "Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks" Sustainability 17, no. 13: 6170. https://doi.org/10.3390/su17136170
APA StyleWang, X., Ji, J., Li, J., Zhao, Z., Ni, H., & Zhu, Y. (2025). Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks. Sustainability, 17(13), 6170. https://doi.org/10.3390/su17136170