Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resource
2.3. Research Framework
2.4. Research Methods
2.4.1. Construction of the Indicator System
2.4.2. Entropy Weight TOPSIS Model
2.4.3. CCD Model
2.4.4. Spatial Autocorrelation Model
2.4.5. Geodetector
3. Analysis of Results
3.1. Multifunctional Cultivated Land Evaluation
3.1.1. GPF Evaluation
3.1.2. SCF Evaluation
3.1.3. EMF Evaluation
3.2. Temporal and Spatial Characteristics of Cultivated Land Multifunctional CCD
3.2.1. Temporal and Spatial Variation Characteristics of CCD
3.2.2. The Spatial Agglomeration Characteristics of the CCD
3.3. Causation Analysis
3.3.1. Single-Factor Detection Results
3.3.2. Interaction Factor Detection Results
4. Discussion
4.1. Interpretation of the Findings
4.2. Policy Recommendations
4.3. Research Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
YREB | Yangtze River Economic Belt |
GPF | grain production function |
SCF | social carrying function |
EMF | ecological maintenance function |
CCD | coupling coordination degree |
References
- Liu, Y.; Liu, Y.; Chen, Y. Territorial Multi-functionality Evaluation and Decision-making Mechanismat County Scale in China. Acta Geogr. Sin. 2011, 66, 1379–1389. [Google Scholar]
- Song, X.; Li, X. Theoretical explanation and case study of regional cultivated land use function transition. Acta Geogr. Sin. 2019, 74, 992–1010. [Google Scholar]
- Xiong, C.; Zhang, Y.; Wang, Y.; Luan, Q.; Liu, X. Multi-function Evaluation and Zoning Control of Cultivated Land in China. China Land Sci. 2021, 35, 104–114. [Google Scholar]
- Zou, L.; Li, Y.; Liu, Y.; Wang, J. Theory building and empirical research of production-living-ecological function of cultivated land based on the elements. Geogr. Res.-Aust. 2021, 40, 839–855. [Google Scholar]
- Wang, Z.; Yang, H.; Hu, Y.; Peng, Y.; Liu, L.; Su, S.; Wang, W.; Wu, J. Multifunctional trade-off/synergy relationship of cultivated land in Guangdong: A long time series analysis from 2010 to 2030. Ecol. Indic. 2023, 154, 110700. [Google Scholar] [CrossRef]
- Wang, M.; Huang, X. Inhibit or promote: Spatial impacts of multifunctional farmland use transition on grain production from the perspective of major function-oriented zoning. Habitat. Int. 2024, 152, 103172. [Google Scholar] [CrossRef]
- Tang, C.; Xie, X.; Wei, G.; Pan, L.; Qi, Z. Exploring the Evolutionary Characteristics of Food Security in China and the United States from a Multidimensional Perspective. Foods 2024, 13, 2272. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Chen, J.; Li, P.; Wang, J.; Wang, J.; Zhu, Y. The cross-boundary of land degradation in Mongolia and China and achieving its neutrality-challenges and opportunities. Ecol. Indic. 2023, 151, 110311. [Google Scholar] [CrossRef]
- Song, X.; Wu, Z.; Ou, Y. Changes of cultivated land function in China since 1949. Acta Geogr. Sin. 2014, 69, 435–447. [Google Scholar]
- An, Y.; Tan, X.; Li, Y.; Zhou, Z.; Yu, H.; Ren, H. Spatio-temporal evolution characteristics and influencing factors of cultivated land function in the Dongting Lake aera. Sci. Geogr. Sin. 2022, 42, 1272–1282. [Google Scholar]
- Zhang, Y.; Cai, H.; Zhang, X.; Chen, L.; He, Q. Multi-Functional Spatiotemporal Evolution of Cultivated Land and Its Driving Mechanisms in Poyang Lake Plain. Bull. Soil. Water Conserv. 2023, 43, 245–253. [Google Scholar]
- Zhang, L.; Lu, R.; Ma, G.; Ma, D. Multifunctional Utilization and Optimization Strategy of Cultivated Land in Guangxi Section of Pearl River-Xijiang River Economic Belt. Res. Soil. Water Conserv. 2024, 31, 276–286. [Google Scholar]
- Fan, Y.; Jin, X.; Xiang, X.; Yang, X.; Liu, J.; Zhou, Y. Evaluation and spatial characteristics of arable land multifunction in southern Jiangsu. Resour. Sci. 2018, 40, 980–992. [Google Scholar]
- Gu, G.; Shi, L.; Wen, Q.; Niu, S. Coupling and coordination of the multifunction and value of arable land at the regional scale from the perspective of rural hollowing governance. Prog. Geogr. 2024, 43, 587–602. [Google Scholar]
- Zhang, Y.; Dai, Y.; Chen, Y.; Ke, X. Spatial-temporal evolution and driving factors of cultivated land multifunctional coupling coordination development in China. Trans. Chin. Soc. Agric. Eng. 2023, 39, 244–255. [Google Scholar]
- Chen, X.; Wang, F.; Li, C. Spatial Differences and Influencing Factors of Arable Land Multi-functions in Pearl River Delta. Areal Res. Dev. 2017, 36, 130–136. [Google Scholar]
- Zhu, Q.; Hu, W.; Zhao, Z. Dynamic Analysis on Spatial-Temporal Pattern of Trade-Offs and Synergies of Multifunctional Cultivated Land-Evidence from Hubei Province. Econ. Geogr. 2018, 38, 143–153. [Google Scholar]
- Gao, N.; Liang, W.; Gou, F.; Liu, Y.; Fu, B.; Lu, Y. Assessing the impact of agriculture, coal mining, and ecological restoration on water sustainability in the Mu Us Sandyland. Sci. Total Environ. 2024, 929, 172513. [Google Scholar] [CrossRef]
- Nahuelhual, L.; Vergara, X.; Kusch, A.; Campos, G.; Droguett, D. Mapping ecosystem services for marine spatial planning: Recreation opportunities in Sub-Antarctic Chile. Mar. Policy 2017, 81, 211–218. [Google Scholar] [CrossRef]
- Xu, D.; Pu, L.; Huang, S.; Nie, M.; Qie, L.; Zhu, M. Spatial and Temporal Dynamic Analysis of Cultivated Land Multifunction in Jiangsu Province and Its Response to Cultivated Land Change. Resour. Environ. Yangtze Basin 2022, 31, 575–587. [Google Scholar]
- Zhang, Y.; Long, H.; Chen, S.; Ma, L.; Gan, M. The development of multifunctional agriculture in farming regions of China: Convergence or divergence? Land Use Policy 2023, 127, 106576. [Google Scholar] [CrossRef]
- Wu, Z.; Hao, J.; Chen, H.; Tan, Y. Multifunctional evaluation and key trade-offs and synergy relationships of cultivated land in Hebei province of China. Trans. Chin. Soc. Agric. Eng. 2024, 40, 199–209. [Google Scholar]
- Wolff, S.; Schulp, C.J.E.; Verburg, P.H. Mapping ecosystem services demand: A review of current research and future perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- Du, H.; Wang, Z.; Li, H.; Zhang, C. Analysis of Spatial and Temporal Pattern Evolution and Decoupling Relationships of Land Use Functions Based on Ecological Protection and High-Quality Development: A Case Study of the Yellow River Basin, China. Land 2024, 13, 862. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, P.; Zhang, S.; Sun, B. Spatiotemporal Analysis of Hydrological Variations and Their Impacts on Vegetation in Semiarid Areas from Multiple Satellite Data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Vereijken, P.H. Transition to multifunctional land use and agriculture. NJAS—Wagening. J. Life Sci. 2003, 50, 171–179. [Google Scholar] [CrossRef]
- Fleskens, L.; Duarte, F.; Eicher, I. A conceptual framework for the assessment of multiple functions of agro-ecosystems: A case study of Trás-os-Montes olive groves. J. Rural. Stud. 2009, 25, 141–155. [Google Scholar] [CrossRef]
- Gómez Sal, A.; González García, A. A comprehensive assessment of multifunctional agricultural land-use systems in Spain using a multi-dimensional evaluative model. Agric. Ecosyst. Environ. 2007, 120, 82–91. [Google Scholar] [CrossRef]
- Helming, K.; Diehl, K.; Kuhlman, T.; Jansson, T.; Verburg, P.H.; Bakker, M.M.; Pérez-Soba, M.; Jones, L.; Verkerk, P.J.; Tabbush, P.M.; et al. Ex ante impact assessment of policies affecting land use, Part B: Application of the analytical framework. Ecol. Soc. 2011, 16, 29. [Google Scholar] [CrossRef]
- Lv, L.; Han, X.; Long, H.; Zhou, B.; Zang, Y.; Wang, J.; Fan, Y. Research progress and prospects on supply and demand matching offarmland multifunctions. Resour. Sci. 2023, 45, 1351–1365. [Google Scholar]
- Cai, Y. The Mechanisms of Cropland Conservation in Chinese Rura Transformation. Geogr. Sci. 2001, 21, 1–6. [Google Scholar]
- Xu, L.; Hu, H.; Yin, S.; Yang, J.; Ma, L. Spatiotemporal Evolution and Subarea of Cultivated Land Function Supply-Demand Transition in Hebei Province. Res. Soil. Water Conserv. 2023, 30, 403–412. [Google Scholar]
- Cai, Y.; Wang, Y.; Zhu, L. The Effect of Farmer Households’ Farmland Use Function on Their Land Rental Decision in Urban Fringe-A Case Study of 1022 Farmer Households in Suzhou, Chengdu and Wuhan. J. Nat. Resour. 2016, 31, 1648–1661. [Google Scholar]
- Ma, C.; Jin, Y.; Ke, X.; Ma, Y. Study on the Typical Modes of Farmland Multi-functional Intensity and Coordination in Hubei Province based on the Entire-array polygon Indicator Method. China Land Sci. 2018, 32, 51–58. [Google Scholar]
- Li, Y.; Fang, B.; Li, Y.; Qu, L.; Li, D. Trade-off and synergy evolution of farmland functions and its dynamic mechanism in the process of urbanization. Trans. Chin. Soc. Agric. Eng. 2022, 38, 244–254. [Google Scholar]
- Jang, Y.; Yang, C.; Nie, Y.; Wang, R.; Wu, Y. Spatio-Temporal Evolution of Multi-Functions of Farmland on a County Scale in Hubei Province, China and Their Coupling Coordination Analysis. Mt. Res. 2021, 39, 891–900. [Google Scholar]
- Huang, D.; Ye, Y.; Yao, X.; Liu, X. Evaluation and Obstacle Factors of Rural Industrial Revitalization Level in Huaihe River Ecological Economic Belt. Resour. Environ. Yangtze Basin 2024, 33, 1412–1423. [Google Scholar]
- Chen, Z.; Yang, G. County-level agricultural productivity and spatial characteristics in hilly and mountainous areas of Fujian Province: An empirical study based on entropy weighted Topsls modeling. J. China Agric. Univ. 2024, 29, 297–310. [Google Scholar]
- Gao, Y.; Zhang, X.; Fang, Y.; Zhang, X.; Guo, J. Landscape fragmentation and wetland restoration priority in Zoige County of Sichuan Province of China. J. China Agric. Univ. 2019, 24, 145–158. [Google Scholar]
- Ilieva, G. Extension of Interval-Valued Hesitant Fermatean Fuzzy TOPSIS for Evaluating and Benchmarking of Generative AI Chatbots. Electronics 2025, 14, 555. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Handhal, A.M.; Abdulhasan, M.A.; Ali, W.L.; Hassan, J.J.; Al Aboodi, A.H. Optimal siting of large photovoltaic solar farms at Basrah governorate, Southern Iraq using hybrid GIS- based Entropy-TOPSIS and AHP-TOPSIS models. Renew. Energ. 2025, 241, 122308. [Google Scholar] [CrossRef]
- Kong, D.; Yang, W. Research on site selection of emergency material reserve based on set pair analysis and TOPSIS integration method: A case study of Hebei Province, China. J. Supercomput. 2025, 81, 351. [Google Scholar] [CrossRef]
- Zare Banadkouki, M.R. Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS. Energy 2023, 279, 128070. [Google Scholar] [CrossRef]
- Le Roux, D.; Olivès, R.; Neveu, P. Combining entropy weight and TOPSIS method for selection of tank geometry and filler material of a packed-bed thermal energy storage system. J. Clean. Prod. 2023, 414, 137588. [Google Scholar] [CrossRef]
- Li, X.; Zhao, M.; Yang, G.; Xu, X.; Fan, P. An Analysis of the Spatial-Temporal Evolution and Influencing Factors of the Coupling Coordination Degree Between the Digital and Real Economies in China. Sustainability 2025, 17, 3384. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, X.; Wang, H.; Shen, W.; Duan, P.; Liu, X. Spatiotemporal evolution and driving factors of the synergistic effects of pollution control and carbon reduction in China. Ecol. Indic. 2025, 170, 113103. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, Y.; He, X.; Fu, Q.; Wang, Z.; Jiang, Q. Dynamic simulation and coupling coordination evaluation of water footprint sustainability system in Heilongjiang province, China: A combined system dynamics and coupled coordination degree model. J. Clean. Prod. 2022, 380, 135044. [Google Scholar] [CrossRef]
- Chen, X.; Huang, X.; Yu, T.; Zhang, Y.; Cui, X. From Imbalance to Synergy: The Coupling Coordination of Digital Inclusive Finance and Urban Ecological Resilience in the Yangtze River Economic Belt. Land 2024, 13, 1617. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Song, Y. On ignoring the heterogeneity in spatial autocorrelation: Consequences and solutions. Int. J. Geogr. Inf. Sci. 2024, 38, 2545–2571. [Google Scholar] [CrossRef]
- Jemeljanova, M.; Kmoch, A.; Uuemaa, E. Adapting machine learning for environmental spatial data—A review. Ecol. Inform. 2024, 81, 102634. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Deng, M. Spatial hotspot detection in the presence of global spatial autocorrelation. Int. J. Geogr. Inf. Sci. 2023, 37, 1787–1817. [Google Scholar] [CrossRef]
- Joo, M.M.; Bolte, B.; Huynh, N.; Mukherjee, B. Bayesian Spatial Split-Population Survival Model with Applications to Democratic Regime Failure and Civil War Recurrence. Mathematics 2023, 11, 1886. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Tillé, Y.; Dickson, M.M.; Espa, G.; Giuliani, D. Measuring the spatial balance of a sample: A new measure based on the Moran’s I index. Spat. Stat. 2018, 23, 182–192. [Google Scholar] [CrossRef]
- Sen, Y.; Ma, E.; Ji, Y.; Ye, W.; Cai, J. Multifunctional spatiotemporal evolution and its inter-regional coupling of cultivated land in a typical transect in Northern China. J. Nat. Resour. 2025, 40, 514–533. [Google Scholar]
- Xiang, H.; Zhou, C.; Peng, B.; Fu, D. The spatiotemporal evolution of cultivated land’s multi-functions and its zoning optimization in Wuling Mountain Area of Hunan Province. J. Hunan Agric. Univ. (Nat. Sci.) 2023, 49, 714–722. [Google Scholar]
- Pang, X.; Lu, R.; Li, S.; Zhang, L.; Pang, Y. Analysis of Multi-Functional Temporal and Spatial Differentiation Pattern and Agglomeration Characteristics of Cultivated Land in Guangxi Border Areas. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 49–59. [Google Scholar]
- Lu, C.; Geng, H.; Liu, R.; Lv, Y. Spatial-temporal Pattern Analysis of Cultivated Land Multi-functiona Coupling Coordination Degree in Shandong Province. Trans. Chin. Soc. Agric. Mach. 2021, 52, 265–274. [Google Scholar]
- Zhang, Y.; Yang, Z.; Yang, R.; Liu, F.; Yimei, H. Spatiotemporal Evolution and Influencing Factors of Multifunctional Cultivated Land in Southwestern Mountainous Areas under the Background of Sustainable Agricultural Development. J. Resour. Ecol. 2025, 16, 786–801. [Google Scholar]
Dimension | Indicators | Unit | Description of Indicators | Attributes | Weight |
---|---|---|---|---|---|
GPF | Grain yield per unit area of cultivated land | kg/hm | Grain yield/total area of cultivated land | + | 0.012 |
Vegetable yield per unit area of cultivated land | kg/hm | Vegetable yield/total area of cultivated land | + | 0.004 | |
Oil crop yield per unit area of cultivated land | kg/hm | Oil crop yield/total area of cultivated land | + | 0.005 | |
Cropping index | % | Total sown area of crops/total area of cultivated land | + | 0.080 | |
Land reclamation rate | % | Cultivated land/total area | + | 0.104 | |
SCF | Per capita grain security rate | % | Grain yield/(total population × 400 kg) × 100% | + | 0.147 |
Per capita cultivated land area | Per/hm | Cultivated land/rural permanent resident population | + | 0.104 | |
Urban–rural per capita disposable income ratio | % | Urban disposable income/rural disposable income | − | 0.086 | |
The proportion of total agricultural output value | % | Agricultural total output value/GDP | + | 0.090 | |
EMF | Cultivated land fragmentation | — | Cultivated land patches/total area of cultivated land | − | 0.095 |
Ecological dominance of cultivated land types | % | Paddy field area/total area of cultivated land | + | 0.097 | |
Chemical load of cultivated land | kg/hm | Safe standard of fertilizer application/(fertilizer application (pure amount)/cultivated land area) | − | 0.076 | |
Proportion of ecological land use | % | Cultivated land/(total area—construction land) | + | 0.100 |
The Value Range of the CCD | The Degree of Coupling Coordination |
---|---|
[0.0~0.1) | Extremely imbalanced |
[0.1~0.2) | Severely imbalanced |
[0.2~0.3) | Moderately imbalanced |
[0.3~0.4) | Mildly imbalanced |
[0.4~0.5) | Borderline imbalanced |
[0.5~0.6) | Barely coordinated |
[0.6~0.7) | Primary coordination |
[0.7~0.8) | Intermediate coordination |
[0.8~0.9) | Good coordination |
[0.9~1.0] | High-quality coordination |
Influencing Factors | Indicators | Variable Code |
---|---|---|
Natural conditions | Average slope | X1 |
Average altitude | X2 | |
Annual average precipitation | X3 | |
Annual average temperature | X4 | |
Economic level | Per capita GDP | X5 |
Proportion of the added value of the primary industry in GDP | X6 | |
Rural residents’ disposable income | X7 | |
Social development | Agricultural comparative benefits | X8 |
Urbanization rate | X9 | |
Total mechanical power per unit area of cultivated land | X10 |
Standard | Type |
---|---|
q(x1∩x2) < Min[q(x1),q(x2)] | Nonlinear weakening |
Min[q(x1), q(x2)] < q(x1∩x2) < Max[q(x1), q(x2)] | One-factor nonlinear weakening |
q(x1∩x2) > Min[q(x1), q(x2)] | Bilateral factor enhancement |
q(x1∩x2) = q(x1) + q(x2) | Independence |
q(x1∩x2) > q(x1) + q(x2) | Nonlinear enhancement |
2010 | 2015 | 2020 | 2022 | ||||
---|---|---|---|---|---|---|---|
Factor | q | Factor | q | Factor | q | Factor | q |
X1 | 0.57 | X1 | 0.67 | X1 | 0.57 | X1 | 0.53 |
X2 | 0.42 | X2 | 0.60 | X2 | 0.54 | X2 | 0.56 |
X3 | 0.10 | X3 | 0.12 | X3 | 0.06 | X3 | 0.04 |
X4 | 0.32 | X4 | 0.32 | X4 | 0.33 | X4 | 0.30 |
X5 | 0.05 | X5 | 0.04 | X5 | 0.05 | X5 | 0.04 |
X6 | 0.08 | X6 | 0.07 | X6 | 0.14 | X6 | 0.11 |
X7 | 0.17 | X7 | 0.18 | X7 | 0.26 | X7 | 0.22 |
X8 | 0.12 | X8 | 0.01 | X8 | 0.12 | X8 | 0.10 |
X9 | 0.17 | X9 | 0.15 | X9 | 0.27 | X9 | 0.26 |
X10 | 0.08 | X10 | 0.16 | X10 | 0.25 | X10 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Zeng, K.; Xia, X.; Jiang, G. Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China. Sustainability 2025, 17, 6134. https://doi.org/10.3390/su17136134
Zhang N, Zeng K, Xia X, Jiang G. Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China. Sustainability. 2025; 17(13):6134. https://doi.org/10.3390/su17136134
Chicago/Turabian StyleZhang, Nana, Kun Zeng, Xingsheng Xia, and Gang Jiang. 2025. "Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China" Sustainability 17, no. 13: 6134. https://doi.org/10.3390/su17136134
APA StyleZhang, N., Zeng, K., Xia, X., & Jiang, G. (2025). Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China. Sustainability, 17(13), 6134. https://doi.org/10.3390/su17136134