Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration
Abstract
1. Introduction
- (1)
- Utilizing MOD17A3H data, we investigated the spatiotemporal patterns of NPP across the YRDUA, with a particular focus on its long-term temporal trends and spatial heterogeneity;
- (2)
- We analyzed the characteristics of regional land use change during the urbanization process and its impacts on NPP;
- (3)
- By employing the XGBoost-SHAP model and the MGWR model at both regional and grid scales, we identified the mechanisms through which multiple driving factors influence NPP, with special emphasis on the nonlinear interactions among different drivers.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. NPP Coefficient of Variation CV
2.3.2. Theil–Sen Median Trend Analysis and the Mann–Kendall Test
2.3.3. Extreme Gradient Boosting (XGBoost)
2.3.4. Shapley Additive exPlanations (SHAP)
2.3.5. Restricted Cubic Spline (RCS)
2.3.6. MGWR
3. Results
3.1. Spatial and Temporal Variations in NPP
3.2. Impacts of LUCC on NPP in the YRDUA
3.3. Regional Influence and Interaction of Driving Factors Derived from XGBoost-SHAP
3.3.1. Importance of Driving Factors
3.3.2. Interaction Effects Among Driving Factors
3.4. Spatial Heterogeneity of Driving Factors at the Raster Scale Using MGWR
4. Discussion
4.1. Regional Mechanisms Underlying Trend Significance
4.2. Analysis of the Similarities and Differences in the Mechanisms of Driving Factors from a Multiscale Perspective
4.3. Nonlinear Response Mechanisms of NPP Change Under Multi-Factor Coupling
4.4. The Regulatory Role of Human Activities on NPP
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NPP | net primary productivity |
YRDUA | Yangtze River Delta Urban Agglomeration |
MGWR | multiscale geographically weighted regression model |
DEM | digital elevation model |
PRE | precipitation |
FVC | fractional vegetation cover |
HF | human footprint |
IPCC | Intergovernmental Panel on Climate Change |
GWR | geographically weighted regression |
LUCC | land use cover change |
NDVI | normalized difference vegetation index |
SOM | soil organic matter |
TEM | temperature |
XGBoost | Extreme Gradient Boosting |
SHAP | Shapley Additive exPlanations |
RCS | restricted cubic spline |
References
- Roxburgh, S.H.; Berry, S.L.; Buckley, T.N.; Barnes, B.; Roderick, M.L. What Is NPP? Inconsistent Accounting of Respiratory Fluxes in the Definition of Net Primary Production. Funct. Ecol. 2005, 19, 378–382. [Google Scholar] [CrossRef]
- Tian, G.; Qiao, Z. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environ. Pollut. (1987) 2014, 184, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Shen, H.; Wu, W.; Liu, Y.; Wang, Y. Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: A case study in Beijing City, China. Landsc. Ecol. 2015, 31, 1077–1092. [Google Scholar] [CrossRef]
- Azhdari, Z.; Sardooi, E.R.; Bazrafshan, O.; Zamani, H.; Singh, V.P.; Saravi, M.M. Impact of climate change on net primary production (NPP) in south Iran. Environ. Monit. Assess 2020, 192, 409. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 2016, 54, 188–199. [Google Scholar] [CrossRef]
- Qin, Z.; Sha, Z. Modeling the impact of urbanization and climate changes on terrestrial vegetation productivity in China by a neighborhood substitution analysis. Ecol. Model. 2023, 482, 110405. [Google Scholar] [CrossRef]
- Hua, L.; Shao, G.; Zhao, J. A concise review of ecological risk assessment for urban ecosystem application associated with rapid urbanization processes. Int. J. Sustain. Dev. World Ecol. 2017, 24, 248–261. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Chen, H.; Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 2009, 18, 280–290. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. (1987) 2012, 164, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Zhang, J.; Han, J.; Zhang, T.; Yang, S.; Wang, J.; Prodhan, F.A.; Yao, F. Projected Increases in Global Terrestrial Net Primary Productivity Loss Caused by Drought Under Climate Change. Earths Future 2022, 10, e2022EF002681. [Google Scholar] [CrossRef]
- Pan, N.; Zhang, J.; Han, J.; Zhang, T.; Yang, S.; Wang, J.; Prodhan, F.A.; Yao, F. Inconsistent changes in NPP and LAI determined from the parabolic LAI versus NPP relationship. Ecol. Indic. 2021, 131, 108134. [Google Scholar] [CrossRef]
- Gang, C.; Odeh, I.; Groisman, P.Y. Comparative Assessment of Grassland NPP Dynamics in Response to Climate Change in China, North America, Europe and Australia from 1981 to 2010. J. Agron. Crop Sci. 2014, 201, 5–68. [Google Scholar] [CrossRef]
- Matamala, R.; Gonza, M.A.; Jastrow, J.D.; Norby, R.J.; Schlesinger, W.H. Impacts of Fine Root Turnover on Forest NPP and Soil C Sequestration Potential. Science 2003, 302, 1385–1387. [Google Scholar] [CrossRef]
- Zarei, A.; Chemura, A.; Gleixner, S.; Hoff, H. Evaluating the grassland NPP dynamics in response to climate change in Tanzania. Ecol. Indic. 2021, 125, 107600. [Google Scholar] [CrossRef]
- Costanza, R.; Fisher, B.; Mulder, K.; Liu, S.; Christopher, T. Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecol. Econ. 2007, 61, 478–491. [Google Scholar] [CrossRef]
- Kicklighter, D.W.; Kicklighter, D.W.; Bondeau, A.; Schloss, A.L.; Kaduk, J.; Mcguire, A.D. The Participants of the Potsdam NPP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Global pattern and differentiation by major biomes. Glob. Change Biol. 1999, 5, 16–24. [Google Scholar] [CrossRef]
- Chirici, G.; Chiesi, M.; Corona, P.; Puletti, N.; Mura, M.; Maselli, F. Prediction of forest NPP in Italy by the combination of ground and remote sensing data. Eur. J. For. Res. 2015, 134, 453–467. [Google Scholar] [CrossRef]
- Pachavo, G.; Murwira, A. Remote sensing net primary productivity (NPP) estimation with the aid of GIS modelled shortwave radiation (SWR) in a Southern African Savanna. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 217–226. [Google Scholar] [CrossRef]
- Yuan, X.; Guo, B.; Lu, M. The responses of vegetation NPP dynamics to the influences of climate–human factors on Qinghai–Tibet Plateau from 2000 to 2020. Remote Sens. 2023, 15, 2419. [Google Scholar] [CrossRef]
- Lv, Z.; Qiulin, D. Spatiotemporal variations and driving forces of regional-scale NPP based on a multi-method integration: A case study in the Beibu Gulf Economic Zone. Ecol. Indic. 2025, 174, 113453. [Google Scholar]
- Zhang, J.; Zhang, C.; Ma, W.; Wang, W.; Li, H. Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes. Atmosphere 2023, 14, 1724. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Y.; Cao, E.; Huang, Q.; Li, H. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province. J. Geogr. Sci. 2019, 29, 1193–1210. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Sun, X.; Xu, Y. Estimation of NPP in Huangshan District Based on Deep Learning and CASA Model. Forests 2024, 15, 1467. [Google Scholar] [CrossRef]
- Chu, C.; Bartlett, M.; Wang, Y.; He, F.; Weiner, J.; Chave, J.; Sack, L. Does climate directly influence NPP globally? Glob. Change Biol. 2016, 22, 12–24. [Google Scholar] [CrossRef]
- Chen, S.; Ma, M.; Wu, S.; Tang, Q.; Wen, Z. Topography intensifies variations in the effect of human activities on forest NPP across altitude and slope gradients. Environ. Dev. 2023, 45, 100826. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Chen, H. NPP estimation using random forest and impact feature variable importance analysis. J. Spat. Sci. 2019, 64, 173–192. [Google Scholar] [CrossRef]
- Zhou, T.; Hou, Y.; Yang, Z.; Laffitte, B.; Luo, K.; Luo, X.; Liao, D.; Tang, X. Reducing spatial resolution increased net primary productivity prediction of terrestrial ecosystems: A Random Forest approach. Sci. Total Environ. 2023, 897, 165134. [Google Scholar] [CrossRef]
- Yang, F.; Ichii, K.; White, M.A.; Hashimoto, H.; Michaelis, A.R.; Votava, P.; Zhu, A.-X.; Huete, A.; Running, S.W.; Nemani, R.R. Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through Support Vector Machine approach. Remote Sens. Environ. 2007, 110, 109–122. [Google Scholar] [CrossRef]
- Li, L.; Xia, R.; Dou, M.; Zhang, K.; Chen, Y.; Jia, R.; Li, X.; Dou, J.; Li, X.; Hu, Q.; et al. Integrated machine learning reveals aquatic biological integrity patterns in semi-arid watersheds. J. Environ. Manag. 2024, 359, 121054. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wu, T.; Lin, W.; Guo, Y. Spatiotemporal prediction of grassland net primary productivity using deep learning models integrating temporal decomposition and spatial clustering: A case study in source region of the Yellow River, China. Earth Sci. Inform. 2025, 18, 33. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Nan, Y.; Liu, Z.; Qi, D. Spatial patterns of net primary productivity and its driving forces: A multi-scale analysis in the transnational area of the Tumen River. Front. Earth Sci. 2020, 14, 124–139. [Google Scholar] [CrossRef]
- Wang, X.; He, W.; Huang, Y.; Wu, X.; Zhang, X.; Zhang, B. Exploring Spatial Non-Stationarity and Scale Effects of Natural and Anthropogenic Factors on Net Primary Productivity of Vegetation in the Yellow River Basin. Remote Sens. 2024, 16, 3156. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, C.; Dai, L.; Wang, R.; Liang, Q.; He, L.; Wei, D. Spatiotemporal evolution and attribution analysis of grassland NPP in the Yellow River source region, China. Ecol. Inform. 2023, 76, 102135. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, D.; Huang, Q.; Chen, Q.; Wei, C. Temporal–Spatial Evolution and Driving Mechanism for an Ecosystem Health Service Based on the GD-MGWR-XGBOOT-SEM Model: A Case Study in Guangxi Region. Sustainability 2025, 17, 3305. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR. Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Xiaobin, G.; Shen, H.; Gan, W. A 33-Year NPP Monitoring Study in Southwest China by the Fusion of Multi-Source Remote Sensing and Station Data. Remote Sens. 2017, 9, 1082. [Google Scholar]
- Melser, R.; Coops, N.C.; Wulder, M.A.; Derksen, C. Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities. Can. J. Remote Sens. 2023, 49, 2256895. [Google Scholar]
- He, Y.; Lin, C.; Wu, C.; Pu, N.; Zhang, X. The urban hierarchy and agglomeration effects influence the response of NPP to climate change and human activities. Glob. Ecol. Conserv. 2024, 51, e02904. [Google Scholar] [CrossRef]
- Li, J.; Bi, M.; Wei, G. Investigating the Impacts of Urbanization on Vegetation Net Primary Productivity: A Case Study of Chengdu–Chongqing Urban Agglomeration from the Perspective of Townships. Land 2022, 11, 2077. [Google Scholar] [CrossRef]
- Cui, T.; Wang, Y.; Sun, R.; Qiao, C.; Fan, W.; Jiang, G.; Hao, L.; Zhang, L.; Yuan, W. Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data. PLoS ONE 2016, 11, e0153971. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xiao, R.; Fei, X.; Zhang, Z.; Gao, Z.; Wan, Y.; Tan, W.; Jiang, X.; Cao, W.; Guo, Y. Analyzing “economy-society-environment” sustainability from the perspective of urban spatial structure: A case study of the Yangtze River delta urban agglomeration. Sustain. Cities Soc. 2023, 96, 104691. [Google Scholar] [CrossRef]
- Leu, M.; Hanser, S.E.; Knick, S.T. Human Footprint in The West: A Large-Scale Analysis of Anthropogenic Impacts. Ecol. Appl. 2008, 18, 1119–1139. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, W.; Yao, Y.; Pereira, P. The rising human footprint in the Tibetan Plateau threatens the effectiveness of ecological restoration on vegetation growth. J. Environ. Manag. 2024, 351, 119963. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Development Plan for the Urban Agglomeration of the Yangtze River Delta; National Development and Reform Commission: Beijin, China, 2016.
- Alharbi, S.; Raun, W.R.; Arnall, D.B.; Zhang, H. Prediction of maize (Zea mays L.) population using normalized-difference vegetative index (NDVI) and coefficient of variation (CV). J. Plant Nutr. 2019, 42, 673–679. [Google Scholar] [CrossRef]
- Gallardo, A. Spatial Variability of Soil Properties in a Floodplain Forest in Northwest Spain. Ecosystems 2003, 6, 564–576. [Google Scholar] [CrossRef]
- Diop, L.; Bodian, A.; Diallo, D. Spatiotemporal Trend Analysis of the Mean Annual Rainfall in Senegal. Eur. Sci. J. 2016, 12, 231. [Google Scholar] [CrossRef]
- Muia, V.K.; Opere, A.O.; Ndunda, E.; Amwata, D.A. Rainfall and Temperature Trend Analysis using Mann-Kendall and Sen′s Slope Estimator Test in Makueni County, Kenya. J. Mater. Environ. Sci. 2024, 15, 349–367. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-based method for flash flood risk assessment. J. Hydrol. 2021, 598, 126382. [Google Scholar] [CrossRef]
- Omer, S.; Lior, R. Approximating XGBoost with an interpretable decision tree. Inf. Sci. 2021, 572, 522–542. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Li, D.; Cao, W.; Dou, Y.; Wu, S.; Liu, J.; Li, S. Non-linear effects of natural and anthropogenic drivers on ecosystem services: Integrating thresholds into conservation planning. J. Environ. Manag. 2022, 321, 116047. [Google Scholar] [CrossRef]
- Shabrina, Z.; Buyuklieva, B.; Ng, M.K.M. Short-Term Rental Platform in the Urban Tourism Context: A Geographically Weighted Regression (GWR) and a Multiscale GWR (MGWR) Approaches. Geogr. Anal. 2021, 53, 686–707. [Google Scholar] [CrossRef]
- Furkova, A. Implementation of MGWR-SAR models for investigating a local particularity of European regional innovation processes. Cent. Eur. J. Oper. Res. 2022, 30, 733–755. [Google Scholar] [CrossRef]
- Li, L.; Zeng, Z.; Zhang, G.; Duan, K.; Liu, B.; Cai, X. Exploring the Individualized Effect of Climatic Drivers on MODIS Net Primary Productivity through an Explainable Machine Learning Framework. Remote Sens. 2022, 14, 4401. [Google Scholar] [CrossRef]
Dataset | Date | Unit | Temporal Resolution | Data Acquisition |
---|---|---|---|---|
Remote sensing data | NPP (MOD17A3H) | gCm2 | yearly | http://www.ntsg.umt.edu (accessed on 12 December 2024) |
LUCC | - | yearly | http://www.resdc.cn/date.aspx (accessed on 12 December 2024) | |
DEM | m | - | https://www.gscloud.cn/ (accessed in 12 December 2024) | |
NDVI | - | yearly | https://www.earthdata.nasa.gov/data/tools/lp-daac-data-pool (accessed on 12 December 2024) | |
FVC | - | yearly | ||
Statistical data | PRE | mm | yearly | https://data.tpdc.ac.cn/ (accessed on 12 December 2024) |
TRM | °C | yearly | ||
SOM | - | https://data.tpdc.ac.cn/ | ||
HF | - | yearly | https://doi.org/10.6084/m9.figshare.16571064 (accessed on 12 December 2024) | |
CO2 | gCm2 | monthly | https://www.nies.go.jp/doi/10.17595/20170411.001-e.html (accessed on 12 December 2024) |
Land Use Type | 2001 Area (km2) | 2020 Area (km2) | Net Change (km2) | Proportional Change (%) |
---|---|---|---|---|
Cultivated land | 183,360.8 | 166,747.6 | −16,613.2 | −9.06% |
Woodland | 99,730.72 | 98,505.24 | −1225.48 | −1.23% |
Grassland | 11,323.96 | 10,997.88 | −326.08 | −2.88% |
Water | 21,732.44 | 21,758.4 | 25.96 | 0.12% |
Construction land | 31,203.04 | 49,364.68 | 18,161.64 | 58.20% |
Unused land | 71.76 | 48.92 | −22.84 | −31.83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, W.; Yang, J. Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration. Sustainability 2025, 17, 6119. https://doi.org/10.3390/su17136119
Zhang Y, Zhao W, Yang J. Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration. Sustainability. 2025; 17(13):6119. https://doi.org/10.3390/su17136119
Chicago/Turabian StyleZhang, Yuzhou, Wanmei Zhao, and Jianxin Yang. 2025. "Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration" Sustainability 17, no. 13: 6119. https://doi.org/10.3390/su17136119
APA StyleZhang, Y., Zhao, W., & Yang, J. (2025). Spatiotemporal Dynamics of Vegetation Net Primary Productivity (NPP) and Multiscale Responses of Driving Factors in the Yangtze River Delta Urban Agglomeration. Sustainability, 17(13), 6119. https://doi.org/10.3390/su17136119