Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential
Abstract
1. Introduction
2. Materials and Methods
3. Relevant Sections
3.1. Digital Agriculture Approach
3.2. Opportunities for Digitalization in Agroecology
3.3. Case Studies on Digital Agriculture Adoption
3.3.1. Agroecology Approach in Europe
3.3.2. Agroecology Approach in Latin America
3.3.3. The Case of Ecuador, a Country with Agroecological Potential
3.4. Policy for an Agroecology Approach
4. Discussion
4.1. Limitations, Challenges, and Barriers to the Adoption of Technologies
Category | Ecuador | Latin America | Europe |
---|---|---|---|
Economic Barriers | Limited credit access for smallholders, high cost of technologies [19]. Lack of subsidies for agroecological practices. | Economic constraints (government and farmers) limit the adoption of agricultural technologies [29,49]. | Financial support exists, but uneven; subsidies favor conventional systems [5]. |
Technical Knowledge | Low digital literacy; limited training and extension services [61,65,73]. | Limited adoption of technologies due to lack of training for extensionist services in agroecological matters [74]. | Higher education levels, but slow adoption in traditional farming sectors, low digital literacy, and inadequate infrastructure, which can hinder their effectiveness in real-world farming conditions [31]. |
Infrastructure Gaps | Lack of access to collection centers, quality transportation routes in rural areas, and irrigation systems. | Poor rural connectivity, lack of adequate infrastructure in rural areas, and scarce digital platforms adapted to small-scale farming [21,39]. | Infrastructure available, but challenges in integrating across diverse regions [78]. |
Cybersecurity Risks | Lack of information security, limits to safeguarding data, and overshared information. | Limited awareness and regulatory frameworks for digital safety. Ownership and control of the data. Exploitation of sensitive information [21,85]. | Emerging concern due to increased data reliance and interoperability needs [31]. |
Geopolitical Risks | Political instability, petroleum dependence, regulatory uncertainty, volatility in international markets, and uncertainty in rural land ownership. | Vulnerable to global supply chain disruptions; dependence on foreign tech; policy implementation privileges national-scale self-sufficiency [32,91]. | Trade conflicts and regulatory environmental policy differences affect tool access and data governance. Geopolitical risks can affect environmental polices [92]. |
Health and Safety Constraints | Farmers are not familiar with the risks of using sensors, drones, or digital platforms incorrectly. There are no clear protocols or safety-focused training programs. | Lack of occupational safety protocols in tech usage; unfamiliarity with devices. | Overdependence on automation in safety-critical tasks. |
Policy and Institutional Support | Agroecology recognized in law but with weak implementation and incentives [62]. | Big efforts to implement policies for agroecology, but they remain fragile [50,52]. | Stronger frameworks in place (e.g., CAP), though they often favor large-scale farming [23,76,78]. |
Farmer Autonomy and Data Rights | Lack of awareness about data ownership, No specific laws protecting agricultural data. | Low capacity to negotiate fair tech use; dependence on third-party platforms [8,85]. | Debates ongoing about data sovereignty and private sector dominance [23]. |
4.2. Benefits of Technologies for the Agroecology Approach
4.3. The Case of Ecuador
4.4. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACAO | Cuban Association of Organic Agriculture |
ACTAF | Cuban Association of Agricultural and Forestry Technicians |
AKIS | Agricultural Knowledge and Innovation Systems |
ALL-Organic Project | Agroecological Living Labs Organic Project |
CAE | Agroecological Collective of Ecuador |
CAP | Common Agricultural Policy |
CAWR | Center for Agroecology, Water, and Resilience |
CAPEX | Capital Expenditure |
CIRAD | Center for International Cooperation in Agricultural Research for Development |
CLADES | Latin American Consortium on Agroecology and Development |
CONECT-e | Sharing Traditional Ecological Knowledge |
DA | Digital agroecology |
DT | Digital technology |
E-commerce | Electronic commerce |
EU | European Union |
FAS | Farm Advisory Services |
FaST | Farm Sustainability Tool for Nutrients |
GIS | Global information system |
GPS | Global positioning system |
GranSol | Solidarity Farms |
H2020 | Horizon 2020 |
INIAP | National Institute of Agricultural Research |
IKIAM | Amazon Regional University |
IoT | Internet of Things |
IPA-LAC | Participatory Research in Agroecology in Latin America and the Caribbean |
LabCampesino | Peasant Laboratory |
LOASFAS | Organic Law on Agrobiodiversity, Seeds, and Agroecological Promotion |
LORSA | Food Sovereignty System Comprehensive Law |
MAELA | Agroecological Movement of Latin America and the Caribbean |
MINAGRI | Ministry of Agrarian Development and Irrigation |
MSCA-RISE | Marie Skłodowska Curie Actions - Research and Innovation Staff Exchange |
NGO | Nonprofit organization |
PACAT | Union of Agroecological Producers and Associative Commercialization of Tungurahua |
PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-Analysis |
PROBIO | Ecuadorian Corporation of Biological Producers |
SANE | Sustainable Agriculture Networking and Extension |
SOCLA | Latin American Scientific Society of Agroecology |
UNDERTREES | Understanding Ecosystem Services of Agroforestry Systems |
UK | United Kingdom |
References
- Somashekar, K.S.; Abhishek, G.J.; Kumar, V.; Tiwari, A.; Lakra, T.S.; ManishKapoor, S.; Chauhan, B. Agroecology principles, practices and their impact on sustainable food systems. Eur. J. Nutr. Food Saf. 2024, 16, 249–260. [Google Scholar]
- Marasas, M.; Blandi, M.L.; Dubrovsky Berensztein, N.; Fernández, V. Transición agroecológica: Características, criterios y estrategias. Dos casos emblemáticos de la provincia de Buenos Aires, Argentina. Agroecología 2017, 10, 49–60. [Google Scholar]
- Wezel, A.; Gemmill Herren, B.; Bezner Kerr, R.; Barrios, E.; Rodrigues Gonçalves, A.L.; Sinclair, F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- Ci, N.; Ma, A. Agroecology: Principles for the conversion and redesign of farming systems. J. Ecosyst. Ecography 2016, S5, 1. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sáanchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gomez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Schnebelin, E. Linking the diversity of ecologisation models to farmers’ digital use profiles. Ecol. Econ. 2022, 196, 107422. [Google Scholar] [CrossRef]
- Bellon Maurel, V.; Huyghe, C. Putting agricultural equipment and digital technologies at the cutting edge of agroecology. OCL 2017, 24, D307. [Google Scholar] [CrossRef]
- Wittman, H.; Mehrabi, Z.; James, D. Advancing food sovereignty through farmer-driven digital agroecology. Int. J. Agric. Nat. Resour. 2020, 47, 235–248. [Google Scholar] [CrossRef]
- Clapp, J.; Ruder, S.-L. Precision technologies for agriculture: Digital farming, gene-edited crops, and the politics of sustainability. Glob. Environ. Polit. 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Duff, H.; Hegedus, P.; Loewen, S.; Bass, T.; Maxwell, B. Precision Agroecology. Sustainability 2021, 14, 106. [Google Scholar] [CrossRef]
- Romagnoli, S.; Tarabu, C.; Maleki Vishkaei, B.; De Giovanni, P. The impact of digital technologies and sustainable practices on circular supply chain management. Logistics 2023, 7, 1. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X.; Torrellas, M.; Blasi, A.B.; Assumpcio, A. Estimating the Environmental Impact of Agriculture by Means of Geospatial and Big Data Analysis: The Case of Catalonia. In From Science to Society: New Trends in Environmental Informatics; Otjacques, B., Hitzelberger, P., Naumann, S., Wohlgemuth, V., Eds.; Springer: Cham, Switzerland, 2017; pp. 39–48. [Google Scholar]
- Lajoie-O’Malley, A.; Bronson, K.; Van Der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Sullivan, S. Ag-tech, agroecology, and the politics of alternative farming futures: The challenges of bringing together diverse agricultural epistemologies. Agric. Hum. Values 2023, 40, 913–928. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Lutton, E.; Bisquert, P.; Brossard, L.; Chambaron-Ginhac, S.; Labarthe, P.; Lagacherie, P.; Martignac, F.; Molenat, J.; Parisey, N.; et al. Digital revolution for the agroecological transition of food systems: A responsible research and innovation perspective. Agric. Syst. 2022, 203, 103524. [Google Scholar] [CrossRef]
- Pretty, J. Regenerative agriculture and redesign for sustainability. In Biological Approaches to Regenerative Soil Systems; Uphoff, N., Thies, J., Eds.; CRC Press: Boca Ratón, FL, USA, 2023; pp. 13–24. [Google Scholar]
- Gallardo-López, F.; Hernández-Chontal, M.A.; Cisneros-Saguilán, P.; Linares-Gabriel, A. Development of the concept of agroecology in Europe: A review. Sustainability 2018, 10, 1210. [Google Scholar] [CrossRef]
- Altieri, M.A.; Toledo, V.M. The agroecological revolution in Latin America: Rescuing nature, ensuring food sovereignty and empowering peasants. J. Peasant Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- Pastor Pazmiño, C. Los Grupos Económicos Agroalimentarios ¿Quién decide lo que Producimos, Exportamos y Consumimos? Ediciones La Tierra: Quito, Ecuador, 2019; pp. 35–56. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Trendov, N.M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas; FAO: Rome, Italy, 2019; pp. 7–52. [Google Scholar]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The politics of digital agricultural technologies: A preliminary review. Sociol. Ruralis 2019, 59, 203–229. [Google Scholar] [CrossRef]
- Ajena, F.; Bossard, N.; Clément, C.; Hilbeck, A.; Oehen, B.; Thomas, J.; Tisselli, E. Agroecology & Digitalization: Traps and Opportunities to Transform the Food System; IFOAM: Brussels, Belgium, 2020; 54p. [Google Scholar]
- Van Loon, J.; Speratti, A.B.; Gabarra, L.; Govaerts, B. Precision for smallholder farmers: A small-scale-tailored variable rate fertilizer application kit. Agriculture 2018, 8, 48. [Google Scholar] [CrossRef]
- Mehrabi, Z.; McDowell, M.J.; Ricciardi, V.; Levers, C.; Martinez, J.D.; Mehrabi, N.; Wittman, H.; Ramankutty, N.; Jarvis, A. The global divide in data-driven farming. Nat. Sustain. 2020, 4, 154–160. [Google Scholar] [CrossRef]
- Hilbeck, A.; Tisselli, E. The emerging issue of “digitalization” of agriculture. In Transformation of Our Systems: The Making of a Paradigm Shift; Herren, H.R., Haerlin, B., Eds.; Triple AAA Druckproduktion: Gilching, Germany, 2020; pp. 59–61. [Google Scholar]
- Bauer, A.; Bostrom, A.G.; Ball, J.; Applegate, C.; Cheng, T.; Laycock, S.; Rojas, S.M.; Kirwan, J.; Zhou, J. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production. Hortic. Res. 2019, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Gascuel-Odoux, C.; Lescourret, F.; Dedieu, B.; Detang-Dessendre, C.; Faverdin, F.; Hazard, L.; Litrico-Chiarelli, I.; Petit, S.; Roques, L.; Reboud, X.; et al. A research agenda for scaling up agroecology in European countries. Agron. Sustain. Dev. 2022, 42, 53. [Google Scholar] [CrossRef] [PubMed]
- Dakduk, S.; Van der Woude, D.; Alarcon Nieto, C. Technological adoption in emerging economies: Insights from Latin America and the Caribbean with a focus on low-income consumers. In New Topics in Emerging Markets; Bobek, V., Horvat, T., Eds.; IntechOpen: London, UK, 2024; pp. 201–224. [Google Scholar]
- Cui, L.; Wang, W. Factors affecting the adoption of digital technology by farmers in China: A systematic literature review. Sustainability 2023, 15, 14824. [Google Scholar] [CrossRef]
- Finger, R. Digital innovations for sustainable and resilient agricultural systems. Eur. Rev. Agric.Econom. 2023, 50, 1277–1309. [Google Scholar] [CrossRef]
- Khanna, M. Digital transformation of the agricultural sector: Pathways, drivers and policy implications. Appl. Econ. Perspect. Policy 2021, 43, 1221–1242. [Google Scholar] [CrossRef]
- Salazar, O.; Rojas, C.; Baginsky, C.; Boza, S.; Lankin, G.; Muñoz-Sáez, A.; Pérez-Quezada, J.F.; Pertuzé, R.; Renwick, L.L.R.; Székács, A.; et al. Challenges for agroecology development for the building of sustainable agri-food systems. Int. J. Agric. Nat. Resour. 2020, 47, 152–158. [Google Scholar] [CrossRef]
- Reina-Rozo, J.; Ortiz, J. Ecosistemas de innovación local para fortalecer la agroecología en Colombia: El caso preliminar del Lab Campesino de Tierra Libre. Innov. J. 2019, 52, 72. [Google Scholar]
- Silici, L. Agroecology: What It Is and What It Has to Offer; International Institute for Environment and Development: London, UK, 2014; 27p. [Google Scholar]
- Salembier, C.; Elverdin, J.H.; Meynard, J.M. Tracking on-farm innovations to unearth alternatives to the dominant soybean-based system in the Argentinean Pampa. Agron. Sustain. Dev. 2016, 36, 1. [Google Scholar] [CrossRef]
- European Commission. 2021. Digital Transformation in Agriculture and Rural Areas. Available online: https://research-and-innovation.ec.europa.eu/research-area/agriculture-forestry-and-rural-areas/digital-transformation-agriculture-and-rural-areas_en (accessed on 23 April 2025).
- Binetsch, J.; Bun, H.; Hernández Westpfahl, R.; Krug, J.; Lehmann, R.; Sulca Bravo, E.; Walter, C.; Weise, T. A sustainable future for small-scale farming?: Qualitative research on agroecology and digitalization. HCIAS 2023, 8, 1–12. [Google Scholar]
- Torres Lara, K.L.; Peñaherrera-Larenas, F.; Gaibor Gaibor, J.Y. Digital divide and educational inequality in rural contexts. Polo del Conocimiento 2024, 9, 2097–2106. [Google Scholar]
- Schwartz, C. Agroecology: A Tale of Two Continents. 2018. Available online: https://www.arc2020.eu/agroecology-tale-two-continents/#:~:text=In%20Europe%20and%20the%20US,an%20exchange%20between%20the%20disciplines (accessed on 7 March 2025).
- Wezel, A.; Goette, J.; Lagneaux, E.; Passuello, G.; Reisman, E.; Rodier, C.; Turpin, G. Agroecology in Europe: Research, education, collective action networks, and alternative food systems. Sustainability 2018, 10, 1214. [Google Scholar] [CrossRef]
- Sumane, S.; Kunda, I.; Knickel, K.; Strauss, A.; Tisenkopfs, T.; des Ios Rios, I.; Rivera, M.; Chebach, T.; Ashkenazy, A. Local and farmers’ knowledge matters! How integrating informal and formal knowledge enhances sustainable and resilient agriculture. J. Rural Stud. 2018, 59, 232–241. [Google Scholar] [CrossRef]
- Pimbert, M. Agroecology as an alternative vision to conventional development and climate-smart agriculture. Development 2015, 58, 286–298. [Google Scholar] [CrossRef]
- Moreno, C.; Speich Chassé, D.; Fuhr, L. Carbon metrics: Global abstractions and ecological epistemicide; Druckerei Arnold: Berlin, Germany, 2016; 54p. [Google Scholar]
- Calvet-Mir, L.; Benyei, P.; Aceituno-Mata, L.; Pardo-de-Santayana, M.; López-García, D.; Carrascosa-García, M.; Perdomo-Molina, A.; Reyes-García, V. The contribution of traditional agroecological knowledge as a digital commons to agroecological transitions: The case of the CONECT-e platform. Sustainability 2018, 10, 3214. [Google Scholar] [CrossRef]
- Colombo, L.; Ciaccia, C.; Ritunnano, V.; Fiore, A.; Diacono, M.; Canali, S. Participatory research in organic farming: Insights from an agroecology living lab in a Mediterranean area. J. Innov. Manag. 2024, 12, 73–93. [Google Scholar] [CrossRef]
- UNDERTREES 2025. Creating Knowledge for Understanding Ecosystem Services of Agroforestry Systems Through a Holistic Methodological Framework. Available online: https://projectundertrees.wordpress.com/ (accessed on 30 April 2025).
- Howard, J. Interpreting the Growing Field of On-Farm Data. 2019. Available online: https://cals.ncsu.edu/crop-and-soil-sciences/news/interpreting-the-growing-field-of-on-farm-data/#:~:text=The%20field%20of%20precision%20agriculture,prototypes%20regularly%20sprouting%20information%20streams (accessed on 20 May 2025).
- Altieri, M.A. Historia de la Agroecología en América Latina y España; SOCLA: Berkeley, CA, USA, 2017; 115p. [Google Scholar]
- Le Coq, J.F.; Muriel Bonin, E.S.; Fréguin-Gresh, S.; Marzin, J.; Niederle, P.; Patrouilleau, M.M.; Vásquez, L. Public policy support for agroecology in Latin America: Lessons and perspectives. Glob. J. Ecol. 2020, 5, 129–138. [Google Scholar]
- Toledo, V.M. La Agroecologia en Latinoamerica: Tres revoluciones, una misma transformacion. Agroecología 2012, 6, 37–46. [Google Scholar]
- Sauborin, É.; Le Coq, J.F.; Fréguin-Gresh, S.; Marzin, J.; Bonin, M.; Patrouilleau, M.M.; Vázquez, L.L.; Niederle, P. Public policies to support agroecology in Latin America and the Caribbean. Perspective 2018, 45, 1–4. [Google Scholar] [CrossRef]
- Gallardo-López, F.; Hernández-Chontal, M.A.; Linares-Gabriel, A.; Cisneros-Saguilán, P. Scientific contributions of agroecology in Latin America and the Caribbean: A review. Rev. De La Fac. De Cienc. Agrar. UNCuyo 2019, 51, 215–229. [Google Scholar]
- Stads, G.J.; Beintema, N.; Perez, S.; Flaherty, K.; Falconí, C. Agricultural Researh in Latin America and The Caribbean; IFPRI: Washington, DC, USA, 2016; 32p. [Google Scholar]
- Balvanera, P.; Uriarte, M.; Almeida-Leñero, L.; Altesor, A.; DeClerck, F.; Gardner, T.; Hall, J.; Lara, A.; Laterra, P.; Peña-Claros, M.; et al. Ecosystem services research in Latin America: The state of the art. Ecosyst. Serv. 2012, 2, 56–70. [Google Scholar] [CrossRef]
- Altieri, M.A. Impactos de la agroecología en algunos países latinoamericanos: Una aproximación histórica. LEISA Rev. Agroecol. 2016, 32, 5–8. [Google Scholar]
- Ranaboldo, C.; Venegas, C. SANE (Escalonamiento de Experiencias Agroecológicas Exitosas en América Latina). 2004. Available online: https://rimisp.org/wp-content/files_mf/files_mf/135938181721.pdf (accessed on 23 June 2025).
- Muñoz, E.F.P.; Niederle, P.A.; de Gennaro, B.C.; Roselli, L. Agri-Food markets towards agroecology: Tensions and compromises faced by small-scale farmers in Brazil and Chile. Sustainability 2021, 13, 3096. [Google Scholar] [CrossRef]
- Köbrich, C.; Bravo, F.; Macari, D. Desarrollo de un Modelo de Negocios de Comercio Electrónico para la AFC. 2016. Available online: https://www.fao.org/family-farming/detail/es/c/428839/ (accessed on 10 May 2025).
- Goulet, F. Family farming and the emergence of an alternative sociotechnical imaginary in Argentina. Sci. Technol. Soc. 2020, 25, 86–105. [Google Scholar] [CrossRef]
- Espinales-Suarez, H.O.; Orrala-Icaza, M.I.; Burgos-Carpio, B.A.; Nieto-Cañarte, C.A. Desafíos y oportunidades de la agroecología para el desarrollo socioeconómico rural en Ecuador: Una revisión de los últimos cinco años. Rev. Soc. Front. 2025, 5, e636. [Google Scholar] [CrossRef]
- Intriago, R.; Gortaire, R.; Bravo, E.; O’Connell, C. Agroecology in Ecuador: Historical processes, achievements, and challenges. Agroecol. Sustain. Food Syst. 2017, 41, 311–328. [Google Scholar] [CrossRef]
- Lyall, A.; Vallejo, F.; Colloredo-Mansfeld, R.; Havice, E. Agroecology, supply chains, and COVID-19: Lessons on food system transitions from Ecuador. Cult. Agric. Food Environ. 2021, 43, 137–146. [Google Scholar] [CrossRef]
- Giunta, I. Food sovereignty in Ecuador: Peasant struggles and the challenge of institutionalization. J. Peasant Stud. 2014, 41, 1201–1224. [Google Scholar] [CrossRef]
- Lugo Bernal, J.J. Desarrollo de una Plataforma para la Gestión del Conocimiento Sobre Agroecología en Ecuador. Master’s Thesis, Universidad Politécnica de Madrid, Madrid, España, 2013. [Google Scholar]
- Vargas-Tierras, Y.; Díaz, A.; Caicedo, C.; Macas, J.; Suárez-Tapia, A.; Viera, W. Benefits of legume species in an agroforestry production system of yellow pitahaya in the Ecuadorian Amazon. Sustainability 2021, 13, 9261. [Google Scholar] [CrossRef]
- Vargas, Y.; Viera, W.; Díaz, A.; Tinoco, L.; Macas, J.; Caicedo, C.; Almeida, M.; Vásquez-Castillo, W. Contribution of agroforestry systems in the cultivation of naranjilla (Solanum quitoense) grown in the Amazon region of Ecuador. Appl. Sci. 2022, 12, 10637. [Google Scholar] [CrossRef]
- Caicedo-Vargas, C.; Pérez-Neira, D.; Abad-Gonzalez, J.; Gallar, D. Agroecology as a means to improve energy metabolism and economic management in smallholder cocoa farmers in the Ecuadorian Amazon. Sustain. Prod. Consum. 2023, 41, 201–212. [Google Scholar] [CrossRef]
- Tinoco-Jaramillo, L.; Vargas-Tierras, Y.; Habibi, N.; Caicedo, C.; Chanaluisa, A.; Paredes-Arcos, F.; Viera, W.; Almeida, M.; Vásquez-Castillo, W. Agroforestry systems of cocoa (Theobroma cacao L.) in the Ecuadorian Amazon. Forests 2024, 15, 195. [Google Scholar] [CrossRef]
- Tinoco-Jaramillo, L.; Vargas-Tierras, Y.; Paredes-Arcos, F.; Viera, W.; Suárez-Tapia, A.; Vargas-Tierras, T.; Suárez-Cedillo, S.; Morales-León, V.; Vásquez-Castillo, W. Nutrient contribution and carbon sequestration of an agroforestry system of Coffea canephora cultivated by conventional and organic management in the Ecuadorian Amazon. Forests 2024, 15, 807. [Google Scholar] [CrossRef]
- Sherwood, S.; Arce, A.; Paredes, M. Affective labor’s ‘unruly edge’: The pagus of Carcelen’s solidarity & agroecology fair in Ecuador. J. Rural Stud. 2018, 61, 302–313. [Google Scholar]
- April-Lalonde, G.; Latorre, S.; Paredes, M.; Hurtado, M.F.; Muñoz, F.; Deaconu, A.; Cole, D.; Batal, M. Characteristics and motivations of consumers of direct purchasing channels and the perceived barriers to alternative food purchase: A cross-sectional study in the Ecuadorian Andes. Sustainability 2020, 12, 6923. [Google Scholar] [CrossRef]
- Cusme Macias, B.L.; Gaibor, R. Agricultura familiar en el desarrollo rural sostenible de la comunidad la Guayaquil, cantón Balzar. Cienc. Latina 2023, 7, 1079–1097. [Google Scholar] [CrossRef]
- Bertoni Mendoza, A.; Álvarez Macías, A.; Mota Rojas, D.; Santos Chávez, V.M. Los sistemas sostenibles de búfalos de agua en el trópico húmedo latinoamericano: Enfoque desde la agroecología. Rev. Geogr. Agríc. 2022, 69, 127–146. [Google Scholar] [CrossRef]
- Buratti-Donham, J.; Venn, R.; Schmutz, U.; Migliorini, P. Transforming food systems towards agroecology—A critical analysis of agroforestry and mixed farming policy in 19 European countries. Agroecol. Sustain. Food Syst. 2023, 47, 1023–1051. [Google Scholar] [CrossRef]
- Shelton, S.W.; Gehan, C.; Wollenberg, E.; Costa, J.R.C.; Burns, S.; Rowland, B. Critiques of Digital Tools in Agriculture—Challenges & Opportunities for Using Digital Tools to Scale Agroecology by Smallholders; CIAT: Cali, Colombia, 2022; pp. 1–6. [Google Scholar]
- Pigg, K.; Gasteyer, S.P.; Martin, K.E.; Keating, K.; Apaliyah, G.P. The community capitals framework: An empirical examination of internal relationships. Community Dev. 2013, 44, 492–502. [Google Scholar] [CrossRef]
- European Union. Agroecology: Transitioning Toward Sustainable, Climate and Ecosystem-Friendly Farming and Food Systems. 2021. Available online: https://cordis.europa.eu/article/id/430692-agroecology-transitioning-toward-sustainable-climate-and-ecosystem-friendly-farming-and-food (accessed on 22 June 2025).
- Ayala Ayala, M.; Lane, M.; Montúfar, R. Motivations to adopt Agroecology in rural communities of the Northern Andes of Ecuador. Ecuadorian J. S.T.E.A.M 2023, 3, 666–693. [Google Scholar] [CrossRef]
- Gaitán-Cremaschi, D.L.; Klerkx, J.H.; Duncan, J.C.H.; Trienekens, M.E.C.; Dogliotti, S.; Walter, A.H.R. Characterizing diversity of food systems in view of sustainability transitions. A review. Agron. Sustain. Dev. 2019, 39, 1. [Google Scholar] [CrossRef]
- Apablaza, G.F.; Dirceu, B.; Clerio, P. Agroecological innovations, social technologies and family farming. A review. Rev. Est. Políticas Públicas 2023, 9, 64–78. [Google Scholar] [CrossRef]
- Ewert, F.; Finger, R.; Baatz, R. Agroecology for a sustainable agriculture and food system: From local solutions to large-scale adoption. Ann. Rev. Resour. Econom. 2023, 15, 351–381. [Google Scholar] [CrossRef]
- Rhioui, W.; Laasli, S.E.; Al Figuigui, J.; El Jarroudi, M.; Lahlali, R.; Boutagayout, A.; Belmalha, S. Towards sustainable vegetable farming: Exploring agroecological alternatives to chemical products in the Fez-Meknes region of Morocco. Sustainability 2023, 15, 7412. [Google Scholar] [CrossRef]
- Vardhan, R.; Kumar, R.; Supraja, P. Synergistic Agro-Cybernetics -An Eco Intelligent Network for Resilient Agroecology. In Proceedings of the 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 11–13 December 2023; pp. 1180–1187. [Google Scholar]
- Ellixson, A.; Griffin, T.W.; Ferrell, S.; Goeringer, P. Legal and economic implications of farm data: Ownership and possible protections. Drake J. Agric. Law 2019, 24, 49–66. [Google Scholar] [CrossRef]
- Milian Gómez, J.F.; Byttebier, K. Agroecological sustainability: Exploring the intersection of digital agriculture, ethics and the right to food. Discov. Agric. 2025, 3, 91. [Google Scholar] [CrossRef]
- Giua, C.; Materia, V.C.; Camanzi, L. Management information system adoption at the farm level: Evidence from the literature. Br. Food J. 2021, 123, 884–909. [Google Scholar] [CrossRef]
- Miles, C. The combine will tell the truth: On precision agriculture and algorithmic rationality. Big Data Soc. 2019, 6, 205395171984944. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econom. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Schnebelin, É.; Labarthe, P.; Touzard, J.M. How digitalisation interacts with ecologisation? Perspectives from actors of the French Agricultural Innovation System. J. Rural Stud. 2021, 86, 599–610. [Google Scholar] [CrossRef]
- Merino, R. The Geopolitics of Food Security and Food Sovereignty in Latin America: Harmonizing Competing Visions or Reinforcing Extractive Agriculture? Geopolitics 2020, 27, 898–920. [Google Scholar] [CrossRef]
- Khan, K.; Khurshid, A.; Cifuentes-Faura, J. Is geopolitics a new risk to environmental policy in the European union? J. Environ. Manag. 2023, 345, 118868. [Google Scholar] [CrossRef] [PubMed]
- Tonolli, A.J. Propuesta metodológica para la obtención de indicadores de sustentabilidad de agroecosistemas desde un enfoque multidimensional y sistémico. Rev. Fac. Cienc. Agrar. 2019, 51, 381–399. [Google Scholar]
- Thomas, H.; Becerra, L.; Juarez, P. Deepening the field, raising the stakes generating technologies for inclusive and sustainable development. In Making & Doing Activating STS Through Knowledge Expression and Travel; Lee Downey, G., Zuiderent-Jerak, T., Eds.; The MIT Press: Cambridge, MA, USA, 2021; pp. 100–145. [Google Scholar]
- Tekeste, M.; Way, T.R.; Birkenholz, W.; Brodbeck, S. Effect of increased deflection tire technology on soil compaction. J. ASABE 2023, 66, 75–84. [Google Scholar] [CrossRef]
- D’Antonio, P.; Mehmeti1, A.; Toscano, F.; Fiorentino, C. Operating performance of manual, semi-automatic, and automatic tractor guidance systems for precision farming. Res. Agric. Eng. 2023, 69, 179–188. [Google Scholar] [CrossRef]
- Raza, I.; Zubair, M.; Zaib, M.; Khalil, M.H.; Haidar, A.; Sikandar, A.; Abbas, M.Q.; Javed, A.; Liaqat, M.M.; Ain, A.T.; et al. precision nutrient application techniques to improve soil fertility and crop yield: A review with future prospect. Int. Res. J. Educ. Technol. 2023, 5, 109–123. [Google Scholar]
- Pappalardo, S.E.; Andrade, D. Drones for good: UAS applications in agroecology and organic farming. In Drones and Geographical Information Technologies in Agroecology and Organic Farming: Contributions to Technological Sovereignty; De Marchi, M., Diantini, A., Pappalardo, S.E., Eds.; CRC Press: Boca Ratón, FL, USA, 2022; pp. 122–148. [Google Scholar]
- Mathenge, M.; Sonneveld, B.G.J.S.; Broerse, J.E.W. Application of GIS in agriculture in promoting evidence-informed decision making for improving agriculture sustainability: A systematic review. Sustainability 2022, 14, 9974. [Google Scholar] [CrossRef]
- Chávez Caiza, J.P.; Burbano Rodríguez, R.T. Cambio climático y sistemas de producción agroecológico, orgánico y convencional en los cantones Cayambe y Pedro Moncayo. Letras Verdes 2021, 29, 149–166. [Google Scholar] [CrossRef]
- Caicedo-Aldaz, J.C. The role of agroecology in sustainable rural development in Ecuador. Rev. Cient. Zambos 2022, 1, 1–16. [Google Scholar] [CrossRef]
- Fundación Futuro Latinoamericano. Barreras y desafíos para la adopción de la agroecología en América Latina. 2021. Available online: https://www.ffla.net (accessed on 25 April 2025).
Main Search Terms | 1. Agroecology 2. Agroecological transition 3. Digital agriculture 4. Digital agroecology 5. Digital tool | 6. Europe 7. Latin America 8. Ecuador 9. Public policy | 10. Adoption 11. Policy support |
Combination of Terms | (1 OR 2 OR 3 OR 4 OR 5) AND (6 OR 7 OR 8 OR 9 OR) AND (10 OR 11) |
Databases | Search Query | Records |
---|---|---|
Scopus | (agroecology OR “agroecological transition” OR “digital agroecology” OR “digital agriculture” OR “digital tool”) AND (Europe OR “Latin America” OR Ecuador OR “public policy”) AND (“adoption” OR “policy support”) | 6630 |
Web of Science | TS = (agroecology OR “agroecological transition” OR “digital agroecology” OR “digital agriculture” OR “digital tool”) AND TS = (Europe OR “Latin America” OR Ecuador OR “public policy”) AND TS = (“adoption” OR “policy support”) | 30 |
Other databases | agroecology OR “agroecological transition” OR “digital agroecology” OR “digital agriculture” OR “digital tool”; Europe OR “Latin America” OR Ecuador OR “public policy”; “adoption” OR “policy support” | 130 |
Total | 6820 |
Databases | Automatic Filters | Records |
Scopus | Publication year: from 2010 to 2025 Language: English and Spanish Subject area: Agricultural and Biological Sciences Countries of Europe and Latin America | 1565 |
Web of Science | Publication year: from 2010 to 2025 Language: English and Spanish Area: Agricultural Countries of Europe and Latin America | 7 |
Other bases | N/A | 130 |
Total | 1702 |
Category | Benefit | Contribution |
Productive | Cost reduction | Lower input use |
Precision agriculture | Better yield and quality | |
Smart irrigation | Monitoring with GPS and sensors | |
Operational optimization | Data-driven technical decisions | |
Environmental | Reduced soil compaction | Use of GPS-guided tractors |
Improved plant nutrition | Spatial predictive models | |
Waste reduction | More sustainable decisions | |
Environmental conservation | Lower input impact | |
Social | Smallholder inclusion | Accessible technologies |
Consumer connectivity | Digital platforms | |
Inequality reduction | Promotion of equity | |
Rural support | E-commerce and digital governance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viera-Arroyo, W.; Binego, L.; Ryans, F.; López, D.; Moya, M.; Vera, L.; Caicedo, C. Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential. Sustainability 2025, 17, 6053. https://doi.org/10.3390/su17136053
Viera-Arroyo W, Binego L, Ryans F, López D, Moya M, Vera L, Caicedo C. Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential. Sustainability. 2025; 17(13):6053. https://doi.org/10.3390/su17136053
Chicago/Turabian StyleViera-Arroyo, William, Liliane Binego, Francis Ryans, Duther López, Martín Moya, Lya Vera, and Carlos Caicedo. 2025. "Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential" Sustainability 17, no. 13: 6053. https://doi.org/10.3390/su17136053
APA StyleViera-Arroyo, W., Binego, L., Ryans, F., López, D., Moya, M., Vera, L., & Caicedo, C. (2025). Systematic Review of Integrating Technology for Sustainable Agricultural Transitions: Ecuador, a Country with Agroecological Potential. Sustainability, 17(13), 6053. https://doi.org/10.3390/su17136053