Predicting Potential Habitats and the Conservation of the Tasar Silkworm (Antheraea mylitta) in the Similipal Biosphere Reserve, Odisha, India
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Data Collection and Processing
2.3.1. GIS and Remote Sensing
2.3.2. Species Distribution Modeling
2.4. Soil Micronutrient Analysis
2.5. Statistical Analysis
3. Results
3.1. Wild Tasar Populations
3.2. Soil Micronutrients
3.3. MaxEnt Model Outputs
3.3.1. Prediction Maps
3.3.2. Response Curves
4. Discussion and Interpretation
4.1. Discussion
4.2. Conservation Implications
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Wang, T.; Zhang, X.; Wang, J.; Yang, Y.; Sun, Y.; Guo, X.; Wu, Q.; Nepovimova, E.; Watson, A.E.; et al. Biodiversity Conservation in the Context of Climate Change: Facing Challenges and Management Strategies. Sci. Total Environ. 2024, 937, 173377. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, K.V.; Kurup, M.B. Fish Biodiversity of Western Ghats in the Context of Climate Change and Strategies for Conservation. In Impact of Climate Change on Hydrological Cycle, Ecosystem, Fisheries and Food Security; CRC Press: Boca Raton, FL, USA, 2022; pp. 301–319. [Google Scholar] [CrossRef]
- Mahanta, D.K.; Komal, J.; Samal, I.; Bhoi, T.K.; Dubey, V.K.; Pradhan, K.; Nekkanti, A.; Gouda, M.N.R.; Saini, V.; Negi, N.; et al. Nutritional Aspects and Dietary Benefits of “Silkworms”: Current Scenario and Future Outlook. Front. Nutr. 2023, 10, 1121508. [Google Scholar] [CrossRef] [PubMed]
- Sobti, R.C. Biodiversity: Threats and Conservation; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Koldasbayeva, D.; Tregubova, P.; Gasanov, M.; Zaytsev, A.; Petrovskaia, A.; Burnaev, E. Challenges in Data-Driven Geospatial Modeling for Environmental Research and Practice. Nat. Commun. 2024, 15, 10700. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Bhargava, J. Tasar sericulture: A sustainable economical booster. Ann. Sci. Allied Res. 2023, 1, 97–107. [Google Scholar]
- Rani, A.; Pandey, J.; Rajawat, D.; Pandey, D.; Chowdary, N. The Tasar Silk Industry: A gateway to a plethora of opportunities. Plant Arch. 2024, 24, 247–266. [Google Scholar] [CrossRef]
- Raju, P.J.; Mamatha, D.M.; Seshagiri, S.V.; Women’s University. Sericulture Industry’. In Environmental and Agricultural Informatics; IGI Global: Hershey, PA, USA, 2020; pp. 366–387. [Google Scholar] [CrossRef]
- Mohanty, P.K.; Mahānti, P.K. Tropical Wild Silk Cocoons of India; Daya Books: New Delhi, India, 2003. [Google Scholar]
- Chauhan, T.P.S.; Tayal, M.K. Mulberry Sericulture. Ind. Entomol. 2017, 197–263. [Google Scholar] [CrossRef]
- Subbulakshmi, V.; Yadava, N.; Soni, B.M.; Renjith, K.S.P. Colophospermum Mopane—A Potential Host for Rearing Wild Silk Worm (Gonometa Rufobrunnea) in Arid Rajasthan. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 549–560. [Google Scholar] [CrossRef]
- Bukhari, R.; Kour, H. Background, Current Scenario and Future Challenges of the Indian Silk Industry. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2448–2463. [Google Scholar] [CrossRef]
- Jena, K.; Kumari, R.; Pandey, J.; Kar, P.; Akhtar, J.; Gupta, V.; Sinha, A. Biochemical Characterization of Sericin Isolated from Cocoons of Tropical Tasar Silkworm Antheraea Mylitta Raised on Three Different Host Plants for Its Prospective Utilization. J. Asia-Pacific Èntomol. 2021, 24, 903–911. [Google Scholar] [CrossRef]
- Ravi Kumara, R.; Sneha, M.V. Breeding in Host Trees of Tasar Silkworm for Higher Foliage Productivity. J. Plant Dev. Sci. 2022, 14, 885–896. [Google Scholar]
- Bara, M.S.; Gilwax, P.I.; Muzeruddin, B.M.; Alok, S. Influence of Shorea Robusta Leaf Extract Treatment on Terminalia Arjuna Plants over Tasar Silkworm Growth and Economic Traits. J. Entomol. Zool. Stud. 2020, 8, 1095–1101. [Google Scholar]
- Bage, D.R.; Vishaka, G.V.; Mittal, V.; Chowdary, N.B.; Selvakumar, T. A Comparative Performance of Tasar Silkworm (Antheraea mylitta D.) Daba Ecorace and Bdr-10- An Only Authorized Race. Plant Arch. 2024, 24, 184–191. [Google Scholar] [CrossRef]
- Sinha, A.K. Variability in the Ecoraces of Tropical Tasar Sillkworm Antheraea mylitta Drury. Nat. Preced. 2011. [Google Scholar] [CrossRef]
- Saha, M.; Kundu, S.C. Molecular identification of tropical tasar silkworm (Antheraea mylitta) ecoraces with RAPD and SCAR markers. Biochem. Genet. 2006, 44, 72–85. [Google Scholar] [CrossRef]
- Chakraborty, S.; Muthulakshmi, M.; Vardhini, D.; Jayaprakash, P.; Nagaraju, J.; Arunkumar, K.P. Genetic Analysis of Indian Tasar Silkmoth (Antheraea mylitta) Populations. Sci. Rep. 2015, 5, 15728. [Google Scholar] [CrossRef]
- Barsagade, D.D.; Tbakre, M.P.; Meshram, H.M.; Gathalkar, G.B.; Gharade, S.A.; Thakre, R.P. Vanya Tasar Silk-Worm, Antheraea mylitta Eco-Race Bhandara, the Local Race and Its Conservation Strategy (Lepidoptera: Saturniidae). J. Sci. Inf. 2012, 3, 17–23. [Google Scholar]
- Prasad, R.; Ehrar, O.; Kumar, K.; Sukhija, N.; Manjappa, M.; Baig, M.M.; Gadad, H.; Singh, J.; Pandey, J.P.; Chowdary, N.B.; et al. Molecular interventions in sericulture: A focus on the tropical tasar silkworm. Plant Arch. 2024, 24, 111–119. [Google Scholar] [CrossRef]
- Omkar. An Introduction to Industrial Entomology. In Industrial Entomology; Springer: Singapore, 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Chatterjee, S.N.; Vijayan, K.; Roy, G.C.; Nair, C.V. ISSR Profiling of Genetic Variability in the Ecotypes of Antheraea mylitta Drury, the Tropical Tasar Silkworm. Russ. J. Genet. 2004, 40, 152–159. [Google Scholar] [CrossRef]
- Hogue, A.S.; Breon, K. The Greatest Threats to Species. In Conservation Science and Practice; Wiley: Hoboken, NJ, USA, 2022; Volume 4. [Google Scholar] [CrossRef]
- Banks-Leite, C.; Ewers, R.M.; Folkard-Tapp, H.; Fraser, A. Countering the Effects of Habitat Loss, Fragmentation, and Degradation through Habitat Restoration. One Earth 2020, 3, 672–676. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Chung, M.Y.; Merilä, J.; Li, J.; Mao, K.; López-Pujol, J.; Tsumura, Y.; Chung, M.G. Neutral and Adaptive Genetic Diversity in Plants: An Overview. Front. Ecol. Evol. 2023, 13, e9926. [Google Scholar] [CrossRef]
- Hoban, S.; Campbell, C.D.; da Silva, J.M.; Ekblom, R.; Funk, W.C.; Garner, B.A.; Godoy, J.A.; Kershaw, F.; MacDonald, A.J.; Mergeay, J.; et al. Genetic Diversity Is Considered Important but Interpreted Narrowly in Country Reports to the Convention on Biological Diversity: Current Actions and Indicators Are Insufficient. Biol. Conserv. 2021, 261, 109233. [Google Scholar] [CrossRef]
- Alam, K.; Raviraj, V.S.; Kar, P.K.; Chacroborty, S. Diversity in Wild Tasar (Antheraea mylitta d.) Ecoraces of Simlipal Biosphere Reserve with Respect to Cocoon and Associated Parameters. Plant Arch. 2022, 22, 36–39. [Google Scholar] [CrossRef]
- Sinha, A.K. Conservation Package for Modal Ecorace. Nat. Preced. 2011. [Google Scholar] [CrossRef]
- Foucher, A.; Evrard, O.; Rabiet, L.; Cerdan, O.; Landemaine, V.; Bizeul, R.; Chalaux-Clergue, T.; Marescaux, J.; Debortoli, N.; Ambroise, V.; et al. Uncontrolled Deforestation and Population Growth Threaten a Tropical Island’s Water and Land Resources in Only 10 Years. Sci. Adv. 2024, 10, eadn5941. [Google Scholar] [CrossRef]
- Lele, A.A. Importance of Forests Outside Protected Area Networks for Large-Seeded Tree Species and Their Large-Bodied Avian Frugivores–A Study in Vazhachal Reserve Forest, India; University of Arkansas: Fayetteville, AR, USA, 2018. [Google Scholar]
- Papadakis, I.E.; Antonopoulou, C.; Sotiropoulos, T.; Chatzissavvidis, C.; Therios, I. Effect of Magnesium on Mineral Nutrition, Chlorophyll, Proline and Carbohydrate Concentrations of Sweet Orange (Citrus sinensis Cv. Newhall) Plants. Appl. Sci. 2023, 13, 7995. [Google Scholar] [CrossRef]
- Dubey, H.; Pradeep, A.; Neog, K.; Debnath, R.; Aneesha, P.; Shah, S.K.; Kamatchi, I.; Ponnuvel, K.; Ramesha, A.; Vijayan, K.; et al. Genome sequencing and assembly of Indian golden silkmoth, Antheraea assamensis Helfer (Saturniidae, Lepidoptera). Genomics 2024, 116, 110841. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Chowdhury, S.K.; Dey, S.; Moses, J.C.; Mandal, B.B. Silk: A Promising Biomaterial Opening New Vistas towards Affordable Healthcare Solutions. J. Indian Inst. Sci. 2019, 99, 445–487. [Google Scholar] [CrossRef]
- Martínez-Domínguez, L.; Nicolalde-Morejón, F.; Vergara-Silva, F.; Stevenson, D.W. A Review of Taxonomic Concepts and Species Delimitation in Cycadales. Bot. Rev. 2023, 90, 33–66. [Google Scholar] [CrossRef]
- Ullah, F.; Gao, Y.; Sari, I.; Jiao, R.-F.; Saqib, S.; Gao, X.-F. Macro-Morphological and Ecological Variation in Rosa Sericea Complex. Agronomy 2022, 12, 1078. [Google Scholar] [CrossRef]
- Hansen, L.S.; Laursen, S.F.; Bahrndorff, S.; Sørensen, J.G.; Sahana, G.; Kristensen, T.N.; Nielsen, H.M. The Unpaved Road towards Efficient Selective Breeding in Insects for Food and Feed—A Review. Èntomol. Exp. Appl. 2024, 17, 498–521. [Google Scholar] [CrossRef]
- Zilch, K.C.F.; Jahnke, S.M.; Köhler, A.; Bender, E. Effect of Diet, Photoperiod and Host Density on Parasitism of Anisopteromalus calandrae on the Tobacco Beetle and Biological Parameters of the Parasitoid. Am. J. Plant Sci. 2017, 8, 3218–3232. [Google Scholar] [CrossRef]
- Mishra, P.; Jena, D.; Thakur, R.R.; Chand, S.; Javed, B.; Shukla, A.K. Peri-Urban Floodscapes: Identifying and Analyzing Flood Risk Areas in North Bhubaneswar in Eastern India. Water 2024, 16, 3019. [Google Scholar] [CrossRef]
- Pandey, M.; Thakur, R.R.; Nandi, D.; Bera, D.K.; Beuria, R.; Kumari, M.; Kasawnea, A.M.; Zhran, M. Geospatial Monitoring of Environmental Sustainability: A Remote Sensing-Based Approach for Assessing Mining-Induced Impacts in Eastern India. Results Eng. 2025, 26, 104692. [Google Scholar] [CrossRef]
- Das, S.; Nandi, D.; Thakur, R.R.; Bera, D.K.; Behera, D.; Đurin, B.; Cetl, V. A Novel Approach for Ex Situ Water Quality Monitoring Using the Google Earth Engine and Spectral Indices in Chilika Lake, Odisha, India. ISPRS Int. J. Geo-Inf. 2024, 13, 381. [Google Scholar] [CrossRef]
- Dangayach, R.; Pandey, A.K. Technologies and methods for land use and land cover: A comprehensive review. In Remote Sensing and GIS Application in Forest Conservation Planning; Advances in Geographical and Environmental Sciences; Springer: Singapore, 2025; pp. 369–390. [Google Scholar] [CrossRef]
- Pettorelli, N.; Williams, J.; Bühne, H.S.T.; Crowson, M. Deep Learning and Satellite Remote Sensing for Biodiversity Monitoring and Conservation. Remote. Sens. Ecol. Conserv. 2024, 11, 123–132. [Google Scholar] [CrossRef]
- Tsiftsis, S.; Štípková, Z.; Rejmánek, M.; Kindlmann, P. Predictions of Species Distributions Based Only on Models Estimating Future Climate Change Are Not Reliable. Sci. Rep. 2024, 14, 25778. [Google Scholar] [CrossRef]
- Sanguet, A.; Wyler, N.; Petitpierre, B.; Honeck, E.; Poussin, C.; Martin, P.; Lehmann, A. Beyond Topo-Climatic Predictors: Does Habitats Distribution and Remote Sensing Information Improve Predictions of Species Distribution Models? Glob. Ecol. Conserv. 2022, 39, e02286. [Google Scholar] [CrossRef]
- Giora, D.; Assirelli, A.; Cappellozza, S.; Sartori, L.; Saviane, A.; Marinello, F.; Martínez-Casasnovas, J.A. Remote Sensing Imaging as a Tool to Support Mulberry Cultivation for Silk Production. Remote. Sens. 2022, 14, 5450. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Komal, J.; Gowrisankar, R.; GV, V.; Nadaf, H.; Samal, I.; Kumar, P.V.D.; Selvaraj, C.; Reddy, B.T.; Selvakumar, T.; Mahanta, D.K.; et al. Bibliometric Trends and Patterns in Tasar Silkworm (Antheraea mylitta) Research: A Data Report (1980–2024). Front. Insect Sci. 2025, 5, 1533267. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, P.X.; Barros, S.; Mejía, D.; Villegas, F.R.; Siddons, D.C.; Latta, S.C. Using surrogate species and MaxEnt modeling to prioritize areas for conservation of a páramo bird community in a tropical high Andean biosphere reserve. Arctic Antarct. Alp. Res. 2024, 56, 2299362. [Google Scholar] [CrossRef]
- Konowalik, K.; Nosol, A. Evaluation Metrics and Validation of Presence-Only Species Distribution Models Based on Distributional Maps with Varying Coverage. Sci. Rep. 2021, 11, 1482. [Google Scholar] [CrossRef] [PubMed]
- Majhi, B.K.; Jena, P.; Prusty, B.A.K.; Mishra, A.K. Directive Strategies for Conservation and Threat Mitigation in Similipal Biosphere Reserve. Int. J. Ecol. Environ. Sci. 2022, 48, 801–815. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Wan, G.-Z.; Li, Q.-Q.; Jin, L.; Chen, J. Integrated Approach to Predicting Habitat Suitability and Evaluating Quality Variations of Notopterygium franchetii under Climate Change. Sci. Rep. 2024, 14, 26927. [Google Scholar] [CrossRef]
- Ahmadipari, M.; Yavari, A.; Ghobadi, M. Ecological Monitoring and Assessment of Habitat Suitability for Brown Bear Species in the Oshtorankooh Protected Area, Iran. Ecol. Indic. 2021, 126, 107606. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Singh, V.; Agrawal, H. Qualitative Soil Mineral Analysis by EDXRF, XRD and AAS Probes. Radiat. Phys. Chem. 2012, 81, 1796–1803. [Google Scholar] [CrossRef]
- Song, W.; Zhang, C.; Wang, Z. Investigation of the Microstructural Characteristics and the Tensile Strength of Silkworm Cocoons Using X-Ray Micro Computed Tomography. Mater. Des. 2021, 199, 109436. [Google Scholar] [CrossRef]
- Suryanarayana, N.; Srivastava, A.K. Monograph on Tropical Tasar Silkworm; Central Tasar Research and Training Institute, Central Silk Board: Bengaluru, India, 2005. [Google Scholar]
- Rai, M.M.; Rathod, M.; Wazalwar, S.; Raina, S.K. Tropical Tasar Insect. In Commercial Insects; CRC Press: Boca Raton, FL, USA, 2023; pp. 49–81. [Google Scholar]
- Singhvi, N.R.; Kushwaha, R.V.; Mathur, S.K.; Suranarayana, N. Role of Weather Factors on Disease and Pest Incidence on Tasar Food Plants and Silkworms and Developing Operational Disease and Pest Forewarning System for Tasar Sericulture; Department of Zoology: Muzaffarnagar, India, 2007. [Google Scholar]
- Ahmad, R.; Khuroo, A.A.; Hamid, M.; Charles, B.; Rashid, I. Predicting Invasion Potential and Niche Dynamics of Parthenium hysterophorus (Congress Grass) in India under Projected Climate Change. Biodivers. Conserv. 2019, 28, 2319–2344. [Google Scholar] [CrossRef]
- Aznar-Cervantes, S.D.; Pagán, A.; Candel, M.J.; Pérez-Rigueiro, J.; Cenis, J.L. Silkworm Gut Fibres from Silk Glands of Samia cynthia ricini—Potential Use as a Scaffold in Tissue Engineering. Int. J. Mol. Sci. 2022, 23, 3888. [Google Scholar] [CrossRef] [PubMed]
- GV, V.; MS, R.; Nadaf, H.; SS, M.; DM, B.; SM, M.; Gedam, P.C.; NB, C. Spatial Variation in Cocoon Yield in Tropical Tasar Silkworm: An Influence of Insect-Predators and Pathogens. Plant Arch. 2022, 22, 40–44. [Google Scholar] [CrossRef]
- Jena, L.K.; Dash, A.K.; Behera, B. Host Plant Suitability and Altitudinal Variation in Cocoon Size of the Indian Tasar Silk Moth Antheraea mylitta Drury (Lepidoptera: Saturniidae). J. Lepid. Soc. 2017, 71, 182–188. [Google Scholar]
- Mazumdar, S.M.; Reddy, B.T.; Chandrashekharaiah, M.; Chowdary, N.B.; Chattopadhyay, S.; Rathore, M.S.; Sathyanarayana, K. Influence of abiotic factors on seasonal and nonseasonal emergence of Tasar silkworm, Antheraea mylitta Drury. J. Environ. Biol. 2023, 44, 445–451. [Google Scholar] [CrossRef]
- Sorte, C.J.; Jones, S.J.; Miller, L.P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J. Exp. Mar. Biol. Ecol. 2011, 400, 209–217. [Google Scholar] [CrossRef]
- Kar, P.; Vijayan, K.; Mohandas, T.; Nair, C.; Saratchandra, B.; Thangavelu, K. Genetic Variability and Genetic Structure of Wild and Semi-Domestic Populations of Tasar Silkworm (Antheraea mylitta) Ecorace Daba as Revealed Through ISSR Markers. Genetica 2005, 125, 173–183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, R.R.; Nandi, D.; Bera, D.K.; Singh, S.; Beuria, R.; Mishra, P.; Hasher, F.F.B.; Kumari, M.; Zhran, M. Predicting Potential Habitats and the Conservation of the Tasar Silkworm (Antheraea mylitta) in the Similipal Biosphere Reserve, Odisha, India. Sustainability 2025, 17, 5824. https://doi.org/10.3390/su17135824
Thakur RR, Nandi D, Bera DK, Singh S, Beuria R, Mishra P, Hasher FFB, Kumari M, Zhran M. Predicting Potential Habitats and the Conservation of the Tasar Silkworm (Antheraea mylitta) in the Similipal Biosphere Reserve, Odisha, India. Sustainability. 2025; 17(13):5824. https://doi.org/10.3390/su17135824
Chicago/Turabian StyleThakur, Rakesh Ranjan, Debabrata Nandi, Dillip Kumar Bera, Saranjit Singh, Roshan Beuria, Priyanka Mishra, Fahdah Falah Ben Hasher, Maya Kumari, and Mohamed Zhran. 2025. "Predicting Potential Habitats and the Conservation of the Tasar Silkworm (Antheraea mylitta) in the Similipal Biosphere Reserve, Odisha, India" Sustainability 17, no. 13: 5824. https://doi.org/10.3390/su17135824
APA StyleThakur, R. R., Nandi, D., Bera, D. K., Singh, S., Beuria, R., Mishra, P., Hasher, F. F. B., Kumari, M., & Zhran, M. (2025). Predicting Potential Habitats and the Conservation of the Tasar Silkworm (Antheraea mylitta) in the Similipal Biosphere Reserve, Odisha, India. Sustainability, 17(13), 5824. https://doi.org/10.3390/su17135824