Identification and Restoration of Forest Degradation Areas in Shaanxi Province Based on the LandTrendr Algorithm
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Key Data
2.3. Research Methodology
2.3.1. Identification and Quantification of Forest Degradation
2.3.2. Construction of the MSPA–MCR Ecological Network
2.3.3. Restoration Strategy Based on the Miyawaki Method
3. Results
3.1. Analysis of Forest Degradation Patterns in Shaanxi Province
3.1.1. Precision Analysis
3.1.2. Analysis of Functional Forest Degradation Patterns in Shaanxi Province
3.1.3. Analysis of Structural Forest Degradation Patterns in Shaanxi Province
3.1.4. Degree of Forest Degradation Scales in Shaanxi Province
3.2. Shaanxi Province Forest Ecological Restoration Network Construction
3.2.1. Spatial Distribution of Ecological Source Sites
3.2.2. Spatial Distribution of Ecological Corridors
3.2.3. Extraction of Ecological Nodes
3.2.4. Forest Ecological Network Construction and Optimization
3.3. Rehabilitation of Forest Ecological Patterns in Shaanxi Province
3.3.1. Potential Vegetation Survey
3.3.2. Degraded Forest Restoration Programming
3.3.3. Restoration Program—Example of Acacia Forests in Clear Plateau Township
4. Discussion
4.1. Identify the Effectiveness and Limitations of Monitoring Methods
4.2. Analysis of the Main Drivers of Forest Degradation in Shaanxi Province
4.3. Rationality and Optimization Direction of Ecological Network Construction
4.4. Restoration Strategies and Adaptation of Degraded Forests
4.5. Future Research Directions and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LandTrendr | Landsat-based detection of trends in disturbance and recovery |
SFD | Structural-functional forest degradation |
MSPA | Morphological spatial pattern analysis |
MCR | Minimum cumulative resistance |
UNFCCC | United Nations Framework Convention on Climate Change |
REDD+ | Reducing emissions from deforestation and forest degradation in developing countries |
LiDAR | Light detection and ranging |
NASA | National Aeronautics and Space Administration |
OSM | OpenStreetMap |
NDVI | Normalized difference vegetation index |
MODIS | Moderate Resolution Imaging Spectroradiometer |
GEE | Google Earth Engine |
OLI | Operational Land Imager |
CFmask | C Function of Mask |
CLDC | China Land Cover Dataset |
NBR | Normalized burn ratio |
WGS1984 | World Geodetic System—1984 coordinate system |
TIFF | Tag Image File Format |
PNV | Potential Natural Vegetation |
NST | Neo-succession Theory |
IoT | Internet of Things |
Appendix A
Appendix A.1
Small Class Number | Area (km2) | Type of Forest Degradation | Dominant Vegetation | Vegetation Subtype | Administrative District |
---|---|---|---|---|---|
23 | 318.40 | Functional degradation: mild | Huashan pine (Pinus armandii Franch.), hemlock (Tsuga chinensis (Franch.) Pritz.), red birch (Betula albo-sinensis Burk.), and light-barked birch (Betula luminifera H. Winkl.) forests | Subtropical coniferous forest | Ankang |
38 | 191.42 | Functional degradation: mild | |||
18 | 17.29 | Structural degradation: severe | Oriental white oak (Quercus aliena Blume var. acutiserrata Maximowicz ex Wenzig) | Temperate deciduous broad-leaved forest | |
40 | 54.56 | Functional degradation: mild | |||
48 | 196.29 | Functional degradation: mild | |||
37 | 45.58 | Functional degradation: moderate | Mixed cork oak and broadleaf evergreen forests | Subtropical mixed evergreen and deciduous broad-leaved forests | |
39 | 34.95 | Functional degradation: mild | |||
15 | 21.97 | Functional degradation: mild | Cork oak | Temperate deciduous broad-leaved forest | |
47 | 90.93 | Functional degradation: mild | |||
21 | 27.37 | Functional degradation: mild | Robinia pseudoacacia (Robinia pseudoacacia Linn.) forest | Temperate deciduous broad-leaved forest | Baoji |
24 | 41.08 | Functional degradation: moderate | |||
1 | 361.01 | Functional degradation: mild | Oriental white oak | ||
20 | 80.10 | Functional degradation: mild | |||
26 | 69.66 | Functional degradation: moderate | |||
28 | 21.88 | Functional degradation: mild | |||
29 | 33.02 | Functional degradation: mild | |||
19 | 50.62 | Functional degradation: mild | Cork oak | ||
25 | 196.03 | Functional degradation: mild | |||
16 | 68.67 | Functional degradation: mild | Cork oak | Temperate deciduous broad-leaved forest | Hanzhong |
33 | 46.31 | Functional degradation: mild | Huashan pine, hemlock, red birch, and light-barked birch forests | Subtropical coniferous forest | |
30 | 678.70 | Functional degradation: mild | Oriental white oak | Temperate deciduous broad-leaved forest | |
31 | 406.73 | Functional degradation: mild | |||
32 | 19.11 | Functional degradation: mild | Cork oak and sawtooth oak (Quercus acutissima Carr.) forests | Subtropical deciduous broad-leaved forest | |
17 | 44.61 | Functional degradation: mild | Cork oak | Temperate deciduous broad-leaved forest | |
34 | 361.27 | Functional degradation: moderate | |||
41 | 350.29 | Functional degradation: moderate | |||
43 | 143.50 | Functional degradation: mild | |||
44 | 17.05 | Functional degradation: mild | |||
35 | 53.87 | Functional degradation: mild | Oriental white oak | Temperate deciduous broad-leaved forest | Shangluo |
42 | 41.91 | Functional degradation: mild | Sawtooth oak forest | ||
36 | 60.40 | Functional degradation: mild | Oriental white oak | ||
45 | 79.36 | Functional degradation: mild | |||
46 | 56.48 | Functional degradation: mild | |||
27 | 458.30 | Functional degradation: mild | Cork oak | Xi’an | |
22 | 196.92 | Functional degradation: moderate | Birch forest | ||
0 | 31.82 | Functional degradation: mild | Robinia pseudoacacia forest | Xianyang | |
13 | 689.23 | Functional degradation: moderate | Liaodong oak forest | ||
4 | 14.19 | Structural degradation: severe | Lateral Berlin (Platycladus orientalis (Linn.) Franco) | Temperate coniferous forest | Yan’an |
7 | 63.67 | Functional degradation: mild | Robinia pseudoacacia forest | Temperate deciduous broad-leaved forest | |
14 | 27.51 | Functional degradation: moderate | |||
2 | 236.14 | Functional degradation: moderate | Liaodong oak forest | ||
5 | 103.63 | Functional degradation: mild | |||
8 | 221.15 | Functional degradation: moderate | |||
10 | 54.89 | Functional degradation: mild | |||
3 | 79.25 | Functional degradation: mild | Aspen grove (Populus davidiana Dode) | Temperate deciduous broad-leaved forest | |
6 | 74.07 | Functional degradation: moderate | |||
9 | 22.99 | Functional degradation: mild | |||
11 | 36.66 | Functional degradation: mild | Pinus sylvestris (Pinus tabulaeformis Carr.) | Temperate coniferous forest | |
12 | 165.70 | Functional degradation: moderate |
Appendix A.2
Forest Class Number | Tree Species That Form Part of a Group | Pioneer Tree Species (Dominant Species) | Intermediate Stage | Advanced Stage | |
---|---|---|---|---|---|
38 | Huashan pine, hemlock, red birch, light birch | Tree layer | Cork oak | Green Pressure Maple (Acer davidii Franch.), Chinkin Elm (Carpinus cordata Bl.), Spiny Leaf Oak (Quercus spinosa David ex Franch.), and Lesser Veined Tilia (Tilia paucicostata Maxim.) | |
Shrub layer | Mountain leech (Desmodium), Lonicera caprifolium (Lonicera hispida Pall.ex Roem.et Schult.), Lonicera japonica (Litsea pungens Hemsl.), and Emei’s rosemary (Rosa omeiensis) | Sarsaparilla (Smilax china Linn.), Magnolia multiflora (Indigofera amblyantha Craib), Rudbeckia (Abelia biflora Turcz.), and Sambucus nigra (Symplocos paniculata (Thunb.) Miq.) | |||
Herbaceous layer | Forsythia (Deyeuxia arundinacea (Linn.) Beauv.), Ogi (Triarrhena sacchariflora (Maxim.) Nakai), wild strawberries (Fragaria vesca Linn.), and Artemisia ossificans (Artemisia dubia Wall.ex-Bess.) | Rubia cordifolia (Rubia cordifolia Linn.), Epimedium (Epimedium brevicornu Maxim.), and Downy Matsumoto (Thalictrum aquilegifolium Linn.var.sibiricum Regel et Tiling), Ogi | Arctostaphylos (Arthraxon hispidus (Trin.) Makino) and East Asian pinnatifid ferns (Gymnocarpium oyamense (Bak.) Ching) | ||
18, 40, 48, 30, 31 | Oriental white oak (Quercus aliena) | Tree layer | European hornbeam (Carpinus turczaninowii Hance) | Huashan pine, jack elm, and Sizhao flower (Dendrobenthamia japonica (DC.) Fang var.chinensis (Osborn) Fang) | |
Shrub layer | Hickory (Rubus corchorifolius Linn.f.) and Weeping Spear (Euonymus alatus (Thunb.) Sieb.) | Jack elm, wood ginger, grosbeak maple (Acer grosseri Pax), wild rose (Rosa multiflora Thunb.), and hairy cherry (Cerasus tomentosa (Thunb.) Wall.) | Hydrangea (Spiraea), Pipevine (Viburnum utile Hemsl.), and Corky-winged Weeping Spear (Euonymus phellomanes Loes.) | ||
Herbaceous layer | Bloodthirsty (Glechoma longituba (Nakai) Kupr.), longleaf tussock (Carex giraldiana Kukenth), and three-spike tussock (Carex tristachya Thunb.) | Rubia cordifolia, broadleaf tussock (Carex siderosticta Hance), and dogbane (Cucubalus baccifer Linn.) | Oatmeal (Ophiopogon japonicus (Linn.f.) Ker-Gawl.) and wild strawberries | ||
37, 39, 15, 47, 19, 25, 32, 16, 17, 34, 41, 43, 44, 27 | Cork oak | Tree layer | Albizia kalkora (Albizia kalkora (Roxb.) Prain) and Pistacia chinensis (Pistacia chinensis Bunge) | Mountain Pepper (Lindera glauca (Sieb.et Zucc.) Bl.) and Saltbush (Rhus chinensis Mill.) | Brachypodium distachyon (Quercus serrata Murray var.brevipetiolata (A.DC.) Nakai) and European hornbeam |
Shrub layer | Forsythia (Forsythia suspensa (Thunb.) Vahl) | Hanging hook (Rubus) | Shikotana, White Sandalwood | ||
Herbaceous layer | Wild Chrysanthemums (Chrysanthemum indicum L) and Fine Leaf Carex (Carex duriusata C.A.Mey.subsp.stenophylloides (V.Krecz.) S.Y.Liang et Y.C.Tang) | Carex macrocephalus (Carex lanceolata Boott), Fine Leaf Carex, and Astilbe chinensis (Astilbe chinensis (Maxim.) Franch.et Savat.) | |||
21, 24, 0 | False acacia | Tree layer | Masson pine (Pinus massoniana Lamb.) | Big-leaf beech (Zelkova schneideriana H.-M.) and Huashan pine | |
Shrub layer | European hornbeam, three boughs of Uva ursi (Lindera obtusiloba Bl.), Rudolfia, thorns (Vitex negundo Linn.var.heterophylla (Franch.) Rehd.), and sea buckthorns (Hippophae rhamnoides Linn.) | Double Shield Wood (Dipelta floribunda Maxim.) and Wood Ginger | |||
Herbaceous layer | Pisum sativum (Elymus dahuricus Turcz.) and white lambsquarters (Bothriochloa ischcemum (Linn.) Keng) | Long-stalked Mountain locust (Podocarpium podocarpum (DC.) Yang et Huang) and stinkweed (Melica scabrosa Trin.) | Carex broadleaf sedge (Carex siderosticta Hance) | ||
1, 20, 26, 28, 29 | Oriental white oak (Quercus aliena) | Tree layer | Chinese red pine | Huashan pine, sharp-toothed oak, and hemlock | Birch |
Shrub layer | Honeysuckle (Lonicera japonica Thunb.) and Hanging hook | Bamboos (Phyllostachys heterocycla (Carr.) Mitford cv.Pubescens Mazel ex H.de leh.) and southern snakeroot (Celastrus orbiculatus Thunb.) | Magnolia vine (Schisandra chinensis (Turcz.) Baill.) | ||
Herbaceous layer | Tussock (Carex tristachyaThunb.), Cliff Palm (Carex siderosticta Hance), and Wire Ferns (Adiantum capillus-veneris Linn.) | Early morning glory (Poa annua Linn.) | |||
33 | Huashan pine, hemlock, red birch, light birch | Tree layer | Chinese red pine | Paintbrush (Toxicodendron vernicifluum(Stokes)F.A.Barkley), green maple, sharp-toothed oak, and Chinese linden (Tilia chinensis Maxim.) | |
Shrub layer | Ginger, amber (Swida macrophylla (Wall.) Sojak), willow (Salix), and hazelnut (Corylus heterophylla Fisch.ex Trautv.) | Rose (Rosa multifolora Thunb), Hairy Cherry, and Pearl Plum (Sorbaria sorbifolia (Linn.) A.Br.) | Hydrangea (Neillia thrysiflora D.Don), Hanging hook, Hydrangea, and Hoodia (Lespedeza bicolor Turcz.) | ||
Herbaceous layer | Tussock grass, bromeliad (Paris), fescue (Festuca ovina Linn.), and early morning glory | Downy Pineweed, Deerfoot (Pyrola calliantha H.Andr.) and Mountain Edelweiss (Oxalis acetosella Linn.subsp.griffithii (Edgew.Et Hook.f.)Hara) | Artemisia capillaris (Artemisia dubia Wall.ex Bess.) and Aster trituberculatus (Aster ageratoides Turcx.) | ||
35 | Oriental white oak (Quercus aliena) | Tree layer | Cork oak | Chinese sumac (Rhus chinensis) | Chemical incense (Platycarya strobilacea Sieb.Et Zucc.), hawthorn (Crataegus pinnatifida Bge.), and oil pine |
Shrub layer | Forsythia and forsythia | Hanging hook | Chinese rose (Viburnum dilatatum Thunb.) | ||
Herbaceous layer | Goat’s Beard Grass (Eriophorum) and Ugly Vegetable | Wild Chrysanthemum and Aristolochia (Aristolochia debilis Sieb.et Zucc.) | |||
42 | Sawtooth oak | Tree layer | Liaodong oak (Quercus liaotungensis) | Quercus serrata and maple (Acer ginnala Maxim.) | |
Shrub layer | |||||
Herbaceous layer | Wolfsbane (Sophora moorcroftiana (Benth.) Baker) and Conifer Carex (Carex onoei Franch.et Sav.) | ||||
36, 45, 46 | Oriental white oak (Quercus aliena) | Tree layer | Chinese red pine | Chinese chestnut (Castanea mollissima Bl.) | European hornbeam |
Shrub layer | Hanging hook | Honeysuckle, Southern snakeroot, and Magnolia vine | |||
Herbaceous layer | Tussock grass and morning glory | Longleaf tussock and three-spike tussock | |||
22 | Birch | Tree layer | Menorah (Bothrocaryum controversum (Hemsl.) Pojark.) | ||
Shrub layer | Chinese rose (Podocarpus indicus) | Rose | Indian ginger (Gingerbread) | ||
Herbaceous layer | Goat’s Beard Grass and Ugly Vegetable | Lonicera, tussock grass, and early morning glory | |||
4 | Chinese cypress | Tree layer | sea-buckthorn | ||
Shrub layer | |||||
Herbaceous layer | Sheep’s beard grass, Artemisia annua, and white fescue | ||||
7, 14 | False acacia | Tree layer | Chinese red pine | Various trees of genus Populus | |
Shrub layer | Chinese cypress | Rose, Lonicera | |||
Herbaceous layer | White Goat Weed, Iceweed (Agropyron cristatum (Linn.) Gaertn.), and Artemisia lilaca | Sheep’s beard and along the step-grass (Ophiopogon bodinieri Levl.) | |||
2, 5, 8, 10 | Liaodong oak (Quercus liaotungensis) | Tree layer | Almonds (Armeniaca sibirica (Linn.) Lam.) and large-fruited elms (Ulmus macrocarpa Hance) | False acacia | |
Shrub layer | Side-oak and spindly maple (Acer stenolobum Rehd.) | Yellow Rose (Rosa hugonis Hemsl.) and Cotoneaster (Cotoneaster multiflorus Bge.) | |||
Herbaceous layer | Early morning glory (Graminia przewalskii) | ||||
3, 6, 9 | aspen | Tree layer | Birch (Betula platyphylla Suk.) and Liaodong oak | Pine, Tea Strip Maple, and Mountain Apricot | |
Shrub layer | Yellow rose, caraway, and sharp-leaved tetrapod (Dendrobenthamia angustata (Chun) Fang) | Juniper (Pyrus betulifolia Bge.), elm (Ulmus), and lilac (Syzygium aromaticum(L.)Merr.Et Perry) | |||
Herbaceous layer | Lanceolate tussock (Carex lanceolata), whitehead (Pulsatilla chinensis (Bunge) Regel), long manzanita (Stipa bungeana Trin.), and Artemisia ferruginea (Artemisia sacrorum Ledeb.) | Iceweed and Dioscorea bulbifera (Dioscorea nipponica Makino) | |||
11, 12 | Chinese red pine | Tree layer | |||
Shrub layer | Yellow Roses, Sour Dates (Ziziphus jujuba Mill.var.spinosa (Bunge) Hu ex H.F.Chow.), and Hoarfrosts | Lonicera japonica (Lonicera ferdinandii Franch.) | Tujang Hydrangea (Spiraea pubescens Turcz.) | ||
Herbaceous layer | Lanceolate tussock, windweed (Saussurea japonica (Thunb.) DC.), and dragon’s toothwort (Agrimonia pilosa Ledeb.) | Aster (Aster tataricus Linn.f.) and Magnolia multiflora |
References
- Meyer, V.; Saatchi, S.; Ferraz, A.; Xu, L.; Duque, A.; Garcia, M.; Chave, J. Forest degradation and biomass loss along the Choco region of Colombia. Carbon Balance Manag. 2019, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, J.; Fu, M.; Liu, G.; Zhang, M.; Tang, R. Spatiotemporal variation and influencing factors of vegetation cover in the ecologically fragile areas of China from 2000 to 2015: A case study in Shaanxi Province. Environ. Sci. Pollut. Res. 2019, 26, 28977–28992. [Google Scholar] [CrossRef]
- Wiederkehr, N.C.; Gama, F.F.; Castro, P.B.N.; Bispo, P.d.C.; Balzter, H.; Sano, E.E.; Liesenberg, V.; Santos, J.R.; Mura, J.C. Discriminating Forest Successional Stages, Forest Degradation, and Land Use in Central Amazon Using ALOS/PALSAR-2 Full-Polarimetric Data. Remote Sens. 2020, 12, 3512. [Google Scholar] [CrossRef]
- Guojie, C. Issues and Countermeasures of Returning Farmland to Forest and Protecting Natural Forests in the Upper Yangtze River. Resour. Environ. Yangtze River Basin 2001, 6, 544–549. (In Chinese) [Google Scholar]
- Genwei, C.; Xianghao, Z. Research on the quantitative index system of ecological benefits of shelterbelts. J. Soil Water Conserv. 1992, 79–86+90. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Si, L.; Yuan, K.; Tian, Y. A new system of forest resources survey based on information technology. J. Beijing For. Univ. 2002, 151–159. (In Chinese) [Google Scholar]
- Li, Z. Forest Disturbance Monitoring and Trend Analysis Based on Landsat Time Series Data. Master’s Thesis, Fuzhou University, Fuzhou, China, 2016. (In Chinese). [Google Scholar]
- Margono, B.A.; Turubanova, S.; Zhuravleva, I.; Potapov, P.; Tyukavina, A.; Baccini, A.; Goetz, S.; Hansen, M.C. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ. Res. Lett. 2012, 7, 034010. [Google Scholar] [CrossRef]
- Thompson, I.D.; Guariguata, M.R.; Okabe, K.; Bahamondez, C.; Nasi, R.; Heymell, V.; Sabogal, C. An Operational Framework for Defining and Monitoring Forest Degradation. Ecol. Soc. 2013, 18, 20. [Google Scholar] [CrossRef]
- Reiche, J.; Souza, C.M., Jr.; Hoekman, D.H.; Verbesselt, J.; Persaud, H.; Herold, M. Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2159–2173. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Gallaun, H.; Dees, M.; Datta, P.; Deutscher, J.; Koutsias, N.; Schardt, M. Methods for Mapping Forest Disturbance and Degradation from Optical Earth Observation Data: A Review. Curr. For. Rep. 2017, 3, 32–45. [Google Scholar] [CrossRef]
- Nietupski, T.C.; Kennedy, R.E.; Temesgen, H.; Kerns, B.K. Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape. Int. J. Appl. Earth Obs. Geoinf. 2021, 99, 102323. [Google Scholar] [CrossRef]
- Jing’an, S.; Yue, G.; Yong, C.; Dete, X. Characteristics of forest landscape degradation in the Three Gorges Reservoir Area (Chongqing section) over the past 20 years. J. Southwest Univ. (Nat. Sci. Ed.) 2014, 36, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- de Waroux, Y.l.P.; Lambin, E.F. Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Appl. Geogr. 2012, 32, 777–786. [Google Scholar] [CrossRef]
- Duarte, E.; Barrera, J.A.; Dube, F.; Casco, F.; Hernandez, A.J.; Zagal, E. Monitoring Approach for Tropical Coniferous Forest Degradation Using Remote Sensing and Field Data. Remote Sens. 2020, 12, 2531. [Google Scholar] [CrossRef]
- Qamer, F.M.; Shehzad, K.; Abbas, S.; Murthy, M.S.R.; Xi, C.; Gilani, H.; Bajracharya, B. Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan. Remote Sens. 2016, 8, 385. [Google Scholar] [CrossRef]
- Schultz, M.; Shapiro, A.; Clevers, J.G.P.W.; Beech, C.; Herold, M. Forest Cover and Vegetation Degradation Detection in the Kavango Zambezi Transfrontier Conservation Area Using BFAST Monitor. Remote Sens. 2018, 10, 1850. [Google Scholar] [CrossRef]
- Xiaofeng, J.; Hongchun, Z.; Feng, L.; Yixing, Z.; Lihui, W.; Yun, D. Study on Forest Cover Change in the Han River Basin Based on Landsat Multispectral and PALSAR/PALSAR-2 Data. Resour. Environ. Yangtze River Basin 2021, 30, 321–329. (In Chinese) [Google Scholar]
- Rappaport, D.I.; Morton, D.C.; Longo, M.; Keller, M.; Dubayah, R.; dos-Santos, M.N. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environ. Res. Lett. 2018, 13, 065013. [Google Scholar] [CrossRef]
- Feng, X.; Haiwei, Y.; Fanhua, K.; Jiangang, X. Construction of ecological network in the western new city of Bazhong based on MSPA and minimum path method. Acta Ecol. Sin. 2015, 35, 6425–6434. (In Chinese) [Google Scholar]
- Zhang, X.; Cui, X.; Liang, S. Evolution and Optimization of an Ecological Network in an Arid Region Based on MSPA-MCR: A Case Study of the Hexi Corridor. Sustainability 2024, 16, 1704. [Google Scholar] [CrossRef]
- Jia, X.; Dawei, X.; Chen, Q. A Study on the Ecological Security Pattern of Territorial Space Based on the Importance of Ecosystem Services—Taking Harbin City as an Example. J. Northwest For. Univ. 2023, 38, 304–312. (In Chinese) [Google Scholar]
- Qiang, F.; Jun, S.; Feng, M.; Yongxing, W.; Han, Y.; Jianbo, T. Evaluation and Construction of Wetland Ecological Network in Qingdao City. Acta Ecol. Sin. 2012, 32, 3670–3680. (In Chinese) [Google Scholar] [CrossRef]
- Xiong, G. Research on Ecological Protection and Restoration Strategies for County-level Territorial Space Based on Ecological Network. Master’s Thesis, Jiangxi University of Finance and Economics, Nanchang, China, 2022. (In Chinese). [Google Scholar]
- Zhenyi, J.; Chundi, C.; Xiaoxiao, T.; Shengjun, W.; Wenzuo, Z. Ecological Network Construction and Optimization of the Three Gorges Reservoir Town—A Case Study of the New City in Kaizhou, Chongqing. J. Ecol. 2017, 36, 782–791. (In Chinese) [Google Scholar] [CrossRef]
- Lai, X.; Yu, H.; Liu, G.; Zhang, X.; Feng, Y.; Ji, Y.; Zhao, Q.; Jiang, J.; Gu, X. Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective. Remote Sens. 2023, 15, 1385. [Google Scholar] [CrossRef]
- Yang, Z.G.; Jiang, Z.Y.; Guo, C.X.; Yang, X.J.; Xu, X.J.; Li, X.; Hu, Z.M.; Zhou, H.Y. Construction of ecological network using morphological spatial pattern analysis and minimal cumulative resistance models in Guangzhou City, China. J. Appl. Ecol. 2018, 29, 3367–3376. [Google Scholar] [CrossRef]
- Song, L.L.; Qin, M.Z. Identification of ecological corridors and its importance by integrating circuit theory. J. Appl. Ecol. 2016, 27, 3344–3352. [Google Scholar] [CrossRef]
- Ma, C.M.; Yuan, Y.X. Current status of vegetation restoration on reclaimed land at home and abroad. World For. Res. 2004, 24–27. (In Chinese) [Google Scholar] [CrossRef]
- Meng, G.T. Study on Restoration and Reconstruction Model of Degraded Natural Forest in Jinsha River Basin, Yunnan. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2008. (In Chinese). [Google Scholar]
- Wen, Y.; Zhou, X.; Wang, L.; Sun, D.; Zhu, H. Theory and Technology of Ecological Protection and Restoration of Karst Forests in China. Guangxi Sciences 2022, 29, 61–70. [Google Scholar] [CrossRef]
- Yu, L.F.; Yu, L.F.; Ye, J.Z.; Wei, L.M.; Chen, Z.R. Degradation karst forest restoration evaluation and restoration technology. Guizhou Sci. 2002, 7–13, In Chinese. [Google Scholar]
- Qing, L.; Xueyong, P.; Shuang, X.; Kaiwen, P. Restoration and reconstruction of degraded forest ecosystems at different succession stages in the high mountains and sub-high mountains of Southwest China. J. Appl. Environ. Biol. 2021, 27, 513–518. (In Chinese) [Google Scholar] [CrossRef]
- Shirong, L.; Jiangming, M.; Ning, M. Theory and technology of natural forest protection, ecological restoration and sustainable management in China. Acta Ecol. Sin. 2015, 35, 212–218. (In Chinese) [Google Scholar]
- Schirone, B.; Salis, A.; Vessella, F. Effectiveness of the Miyawaki method in Mediterranean forest restoration programs. Landsc. Ecol. Eng. 2011, 7, 81–92. [Google Scholar] [CrossRef]
- Wang, R.Q.; Fujiwara, K.; You, H.M. Theory and Practice of Forest Vegetation Restoration: Rebuilding Local Forests with Native Tree Species—Introduction to the Palace Shade Forest Rebuilding Method. Acta Bot. 2002, 133–139, In Chinese. [Google Scholar]
- Qi, M.; Kang, L.; Hui, Z. Carbon storage and spatial distribution of forest vegetation in Shaanxi Province. Resour. Sci. 2012, 34, 1781–1789. (In Chinese) [Google Scholar]
- Li, Y.; Sun, J.; Wang, M.; Guo, J.; Wei, X.; Shukla, M.K.; Qi, Y. Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China. Appl. Sci. 2023, 13, 11532. [Google Scholar] [CrossRef]
- Jingpin, L.; Wenfa, X.; Jianfeng, L.; Yanfeng, B.; Xin, L. Forest degradation and its evaluation. For. Sci. 2010, 46, 153–157. (In Chinese) [Google Scholar]
- Jiangming, M.; Shirong, L.; Zuomin, S.; Xingliang, L.; Ning, M. A review of studies on the restoration evaluation of degraded forest ecosystems. Acta Ecol. Sin. 2010, 30, 3297–3303. (In Chinese) [Google Scholar] [CrossRef]
- Zhifeng, Z.; Yao, W.; Yi, Z.; Xinjie, Z.; Zhao, Z. Preliminary Study on Evaluation Indicators and Type Classification of Forest Degradation. Hebei For. Sci. Technol. 2019, 39–43. (In Chinese) [Google Scholar] [CrossRef]
- Trevisiol, F.; Mattivi, P.; Mandanici, E.; Bitelli, G. Cross-Sensors Comparison of Popular Vegetation Indexes from Landsat TM, ETM plus, OLI, and Sentinel MSI for Time-Series Analysis Over Europe. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4400616. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Xu, X.; Fan, H.; Tong, X.; Liu, J. Forest disturbances and the attribution derived from yearly Landsat time series over 1990–2020 in the Hengduan Mountains Region of Southwest China. For. Ecosyst. 2021, 8, 73. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Wei, A. Spatio-temporal variations in plantation forests’ disturbance and recovery of northern Guangdong Province using yearly Landsat time series observations (1986–2015). Chin. Geogr. Sci. 2017, 27, 600–613. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Dwomoh, F.K.; Numata, I.; Mensah, F.; Amoako, J.; Nekorchuk, D.M.; McMahon, A. Historical trends of degradation, loss, and recovery in the tropical forest reserves of Ghana. Int. J. Digit. Earth 2022, 15, 30–51. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Wu, L.; Tang, Y.; Meng, Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef]
- Yu, S.; Jia, M.; Chen, G.; Lu, Y.; Li, Y.; Zhang, B.; Lu, C.; Li, H. Study on Mangrove Disturbance in Dongzhai Port, Hainan Based on LandTrendr Algorithm. Remote Sens. Nat. Resour. 2023, 35, 42–49. (In Chinese) [Google Scholar]
- Chen, G.; Zhong, C.; Li, M.; Yu, Z.; Liu, X.; Jia, M. A Study on Mangrove Disturbance in the Beilun Estuary of Guangxi from 1990 to 2020. J. Remote Sens. 2022, 26, 1112–1120. (In Chinese) [Google Scholar]
- Myroniuk, V.; Bilous, A.; Khan, Y.; Terentiev, A.; Kravets, P.; Kovalevskyi, S.; See, L. Tracking Rates of Forest Disturbance and Associated Carbon Loss in Areas of Illegal Amber Mining in Ukraine Using Landsat Time Series. Remote Sens. 2020, 12, 2235. [Google Scholar] [CrossRef]
- Yan, X.; Wang, J. The Forest Change Footprint of the Upper Indus Valley, from 1990 to 2020. Remote Sens. 2022, 14, 744. [Google Scholar] [CrossRef]
- Kongjian, Y. Landscape Ecological Security Patterns for Biological Conservation. Acta Ecol. Sin. 1999, 19, 8–15. (In Chinese) [Google Scholar]
- Huang, M.; Yue, W.; Feng, S.; Cai, J. Heterogeneity and Optimization of Ecological Security Pattern in Dabie Mountain Core Area Based on MCR Model. J. Nat. Resour. 2019, 34, 771–784. (In Chinese) [Google Scholar]
- Jia, X.; Dawei, X.; Chen, Q. Research on the Ecological Security Pattern of Territorial Space Based on the Importance of Ecosystem Services—A Case Study of Harbin City. J. Northwest For. Univ. 2023, 38, 304–312. (In Chinese) [Google Scholar]
- Chen, N.-N.; Kang, S.-Z.; Zhao, Y.-H.; Zhou, Y.-J.; Yan, J.; Lu, Y.-R. Construction of ecological network in Qinling Mountains of Shaanxi, China based on MSPA and MCR model. J. Appl. Ecol. 2021, 32, 1545–1553. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Q.; Lyu, J.; Li, G.; Du, S. Seasonal dynamics of stem radial growth and micro-variations in Quercus wutaishanica and Robinia pseudoacacia in the Loess Hilly Region. Chin. J. Plant Ecol. 2023, 47, 227–237. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, J.; Han, A.-X.; He, C.-M.; Yin, Q.-L.; Jia, S.-H.; Luo, Y.; Li, C.-L.; Hao, Z.-Q. Spatial distribution pattern and intraspecific association of dominant species Quercus aliena var. acu-tiserrata in Qinling Mountains, China. J. Appl. Ecol. 2022, 33, 2035–2042. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, F.; Guo, X.; Liu, W.; Zhang, T. Effects of Selective Cutting Based on Structural Optimization on the Structure and Growth of Quercus aliena var. acuteserrata Natural Forests. J. Northwest For. Univ. 2023, 38, 160–167. (In Chinese) [Google Scholar]
- Gelabert, P.J.; Rodrigues, M.; de la Riva, J.; Ameztegui, A.; Sebasti, M.T.; Vega-Garcia, C. LandTrendr smoothed spectral profiles enhance woody encroachment monitoring. Remote Sens. Environ. 2021, 262, 112521. [Google Scholar] [CrossRef]
- Sandvig, E.M.; Quilodran, C.S.; Altamirano, T.A.; Aguirre, F.; Barroso, O.; de Aguilar, J.R.; Schaub, M.; Kery, M.; Vasquez, R.A.; Rozzi, R. Survival rates in the world’s southernmost forest bird community. Ecol. Evol. 2023, 13, e10143. [Google Scholar] [CrossRef]
- Martinez-Richart, A.I.; Zolles, A.; Oettel, J.; Petermann, J.S.; Essl, F.; Lapin, K. A review of structural and functional connectivity studies in European forests. Landsc. Ecol. 2024, 40, 10. [Google Scholar] [CrossRef]
- Li, H.; Guo, W.; Liu, Y.; Zhang, Q.; Xu, Q.; Wang, S.; Huang, X.; Xu, K.; Wang, J.; Huang, Y.; et al. The Delineation and Ecological Connectivity of the Three Parallel Rivers Natural World Heritage Site. Biology 2023, 12, 3. [Google Scholar] [CrossRef]
- Ahmed, H.; Jallat, H.; Hussain, E.; Saqib, N.U.; Saqib, Z.; Khokhar, M.F.; Khan, W.R. Quantitative Assessment of Deforestation and Forest Degradation in Margalla Hills National Park (MHNP): Employing Landsat Data and Socio-Economic Survey. Forests 2023, 14, 201. [Google Scholar] [CrossRef]
- Shapire, A.; d’Annunzio, R.; Descl, B.; Jungers, Q.; Kondjo, H.K.; Iyanga, J.M.; Gangyo, F.I.; Nana, T.; Obame, C.V.; Milandou, C.; et al. Small scale agriculture continues to drive deforestation and degradation in fragmented forests in the Congo Basin (2015–2020). Land Use Policy 2023, 134, 106922. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Yan, Z. Effects of land-use change on carbon emission and its driving factors in Shaanxi Province from 2000 to 2020. Environ. Sci. Pollut. Res. 2023, 30, 68313–68326. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, H.; Wang, X.; Tian, Q.; Zhong, X.; Shen, L. Plant Community Degradation Inquiry and Ecological Restoration Design in South Lake Scenic Area of China. Forests 2023, 14, 181. [Google Scholar] [CrossRef]
Data Types | Data Sources | Resolution (m) | Collection Time |
---|---|---|---|
Land use | Google Earth Engine (https://developers.google.cn/ accessed on 1 October 2022) | 30 | 1990–2021 |
Remote sensing image | Google Earth Engine (https://developers.google.cn/ accessed on 1 October 2022) | 30 | 1991–2020 |
Elevation | National Aeronautics and Space Administration (NASA) (https://www.nasa.gov accessed on 1 May 2023) | 30 | 2020 |
Road | OpenStreetMap (OSM) (https://wiki.openstreetmap.org/wiki/Use_OpenStreetMap accessed on 1 May 2023) | 1000 | 2020 |
Normalized difference vegetation index (NDVI) | Moderate Resolution Imaging Spectroradiometer (MODIS) | 250 | 2020 |
Parameters | Parameter Description | Value |
---|---|---|
Spectral index | Detection of vegetation growth | NBR |
Max segment | Maximum number of divisions | 6 |
Spike threshold | Maximum threshold | 0.9 |
Vertex count overshoot | Number of nodes | 3 |
Prevent one-year recovery | Recovery period greater than one year | Ture |
Recovery threshold | Recovery threshold | 0.25 |
p-value threshold | Vertex threshold, no change is considered if the value is not exceeded | 0.056 |
Best model proportion | Optimal model scale. Continue to simplify if this value is exceeded | 0.75 |
Min observations needed | Minimum number of cartographic observations | 6 |
Degradation Type | Degree of Degradation | Characteristic | Characteristic |
---|---|---|---|
Functional degradation | mildly | Forests change from dense woodlands to open forests | 200 < magnitude ≤ 500 |
moderately | Forests have changed from dense woodland to shrubland and much of the forest cover has been destroyed | 500 > magnitude | |
Structural degradation | severe | Decrease in forest cover | Forest-scrub, forest-grassland, forest-bare ground, forest-farmland, forest-water, and forest-impervious surface |
Type | Degradation | Nondegenerate | User’s Accuracy | Producer’s Accuracy | Overall Accuracy | Kapper |
---|---|---|---|---|---|---|
Degradation | 247 | 16 | 78.4% | 93.9% | 91.6% | 0.797 |
Nondegenerate | 68 | 669 | 97.7% | 90.8% |
1991 2020 | Impervious Surface | Grassland | Shrub | Bare Land | Farmland | Forest | Water | Total |
---|---|---|---|---|---|---|---|---|
Impervious surface | 16.8 | 0.004 | - | 0.001 | 0.19 | 0.0005 | - | 0.67 |
Grassland | 0.66 | 410.85 | 0.9 | 3.03 | 55.84 | 65.62 | 0.001 | 0.55 |
Shrub | 0.001 | 1.03 | 0.9 | 0.001 | 0.77 | 13.93 | - | - |
Bare land | 0.62 | 0.11 | 32.09 | 1.12 | 2.39 | 0.003 | - | - |
Farmland | 31.77 | 105.07 | 0.21 | 0.09 | 428.59 | 70.77 | - | 1.51 |
Forest | 0.11 | 1.35 | 0.54 | 0.0003 | 16.11 | 784.57 | - | 0.012 |
Water | 0.01 | 0.12 | - | 1.01 | 1.30 | 0.04 | - | 4.04 |
Total | 49.97 | 518.53 | 34.64 | 5.24 | 505.19 | 934.93 | 0.001 | 6.78 |
Forest Class Number | Degree of Degradation | Density Control | Construction of a Mixed Forest | Natural Regeneration |
---|---|---|---|---|
0, 1, 3, 5, 7, 9, 10, 11, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49 | Functional degradation: mild | Adjusting stand density by cutting 20–40% of trees in the middle of the forest to form forest windows | Transplantation of pioneer tree species, the first three years of fixed-value nurturing, about 10 years in the community of pioneer tree species to adapt to the habitat, into the forest canopy; adding fast-growing native shallow-rooted tree species to stabilize the forest community style; about 20 years of slow-growing negative species growth stabilization, the forest is gradually close to the top of the community. (Miyawaki method limited, only in isolated degraded patches). | Transplanting seedlings, sealing, or nurturing management |
2, 6, 8, 12, 13, 14, 22, 24, 26, 34, 37, 41 | Functional degradation: moderate | Moderate land preparation, proper water and fertilizer management, and selective logging based on water carrying capacity | Transplantation of pioneer tree species, the first three years of fixed-value nurturing, about 10 years in the community of pioneer tree species to adapt to the habitat, into the forest canopy; adding fast-growing native shallow-rooted tree species to stabilize the forest community style; about 20 years of slow-growing negative species growth stabilization, the forest is gradually close to the top of the community. (The Miyawaki method is partially applicable for small degraded microsites). | Transplanting of seedlings and nursery management |
4, 18 | Structural degradation: severe | Cut down all kinds of trees | The first step is to improve the microtopography by transplanting fast-growing trees to rapidly form the forest canopy in the first 10 years, adding shrubs and herbs to acclimatize the community to the habitat conditions, transplanting slow-growing, shady trees in the third year or so, and gradually approaching the top of the forest community in the 20th year or so. (Miyawaki method applicable, but requires soil improvement and site-specific design) | Not recommended to update |
Community Name | Tree Layer | Shrub Layer | Field Layer | |||
---|---|---|---|---|---|---|
Dominant Species | Accompanying Species | Dominant Species | Accompanying Species | Dominant Species | Accompanying Species | |
Pioneer stage | Masson pine (Chinese red pine and horsetail pine) | - | Thorn and sea buckthorn | Gooseberry, three-branched ocotillo, and Rokudoumu | wire grass (Eleusine indica) | lover |
Intermediate stage | - | - | Indian ginger (Gingerbread) | double-shielded wood | - | Long-stalked Mountain locust, and stinkweed |
Top-level stage | beech | Chinese red pine | - | - | - | Carex broadleaf sedge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Zhao, B.; Xu, C.; Wang, H.; Chen, S.; Wang, X. Identification and Restoration of Forest Degradation Areas in Shaanxi Province Based on the LandTrendr Algorithm. Sustainability 2025, 17, 5729. https://doi.org/10.3390/su17135729
Tian Q, Zhao B, Xu C, Wang H, Chen S, Wang X. Identification and Restoration of Forest Degradation Areas in Shaanxi Province Based on the LandTrendr Algorithm. Sustainability. 2025; 17(13):5729. https://doi.org/10.3390/su17135729
Chicago/Turabian StyleTian, Qianqian, Bingshu Zhao, Chenyu Xu, Han Wang, Siwei Chen, and Xuhui Wang. 2025. "Identification and Restoration of Forest Degradation Areas in Shaanxi Province Based on the LandTrendr Algorithm" Sustainability 17, no. 13: 5729. https://doi.org/10.3390/su17135729
APA StyleTian, Q., Zhao, B., Xu, C., Wang, H., Chen, S., & Wang, X. (2025). Identification and Restoration of Forest Degradation Areas in Shaanxi Province Based on the LandTrendr Algorithm. Sustainability, 17(13), 5729. https://doi.org/10.3390/su17135729