Factors Influencing the Adoption of Organic Farming in Lithuania and Poland
Abstract
:1. Introduction
2. Literature Review
2.1. Determinants of Organic Farming
2.2. Public Policies vs. Organic Farming and Their Theoretical Background (Including Behavioral Approaches)
- The majority of farmers regarded the AES as a difficult subsidy to obtain and as labor-intensive and unpleasant to apply for. Some of them would actually be prepared to agree to a reduction in payments for sure, as long as the labor input and overall costs of applying for them were reduced at the same time. On average, the maximum reduction could be as high as 31% if the labor intensity of applications fell from 10 to 1 h. The recommended strategy, on the other hand, would be to integrate payments and costs into a single account, so that farmers can see the net cost-effectiveness of participating in the AES.
- If the name of the AES contains unambiguous references to environmental issues that farmers understand and offers significant benefits for society, the chances increase that they would be more likely to spend the money thus obtained on improving the environmental friendliness of their farms. This means that the assumption about the fungibility of funds is thus undermined. This therefore confirms the validity of mental accounting.
- In line with loss aversion and the logic of reference points, farmers pay very close attention to cost-effectiveness and also to environmental aspects in their decision-making when applying for AES support. It may be that the marginal utility of cost-effectiveness is on average rated higher than the marginal utility of environmental benefits. Therefore, if a new AES instrument is to be introduced, it must be done in such a way that farmers do not perceive it as less beneficial compared to existing ones. What is also important is that agricultural policy should first ensure satisfactory profitability of agricultural activities before encouraging farmers to participate more widely in AESs.
3. Materials and Methods
3.1. Data Sources
3.2. Model
4. Results and Discussion
4.1. Overview of Organic and Conventional Farming Systems
4.2. Factors Influencing the Adoption of Organic Farming
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kułyk, P.; Dubicki, P. Uwarunkowania zachowań konsumentów na rynku żywności ekologicznej. Probl. World Agric./Probl. Rol. Swiat. 2019, 19, 79–87. [Google Scholar] [CrossRef]
- Van Stappen, F.; Loriers, A.; Mathot, M.; Planchon, V.; Stilmant, D.; Debode, F. Organic versus conventional farming: The case of wheat production in Wallonia (Belgium). Agric. Agric. Sci. Procedia 2015, 7, 272–279. [Google Scholar] [CrossRef]
- Geissen, V.; Silva, V.; Lwanga, E.H.; Beriot, N.; Oostindie, K.; Bin, Z.; Ritsema, C.J. Cocktails of pesticide residues in conventional and organic farming systems in Europe–Legacy of the past and turning point for the future. Environ. Pollut. 2021, 278, 116827. [Google Scholar] [CrossRef] [PubMed]
- Kostensalo, J.; Lemola, R.; Salo, T.; Ukonmaanaho, L.; Turtola, E.; Saarinen, M. A site-specific prediction model for nitrogen leaching in conventional and organic farming. J. Environ. Manag. 2024, 349, 119388. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F.; Ciaccia, C. Recycling agricultural wastes and by-products in organic farming: Biofertilizer production, yield performance and carbon footprint analysis. Sustainability 2019, 11, 3824. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Lambotte, M.; De Cara, S.; Brocas, C.; Bellassen, V. Organic farming offers promising mitigation potential in dairy systems without compromising economic performances. J. Environ. Manag. 2023, 334, 117405. [Google Scholar] [CrossRef]
- Squalli, J.; Adamkiewicz, G. The spatial distribution of agricultural emissions in the United States: The role of organic farming in mitigating climate change. J. Clean. Prod. 2023, 414, 137678. [Google Scholar] [CrossRef]
- Adhikari, S.; Menalled, F.D. Supporting beneficial insects for agricultural sustainability: The role of livestock-integrated organic and cover cropping to enhance ground beetle (Carabidae) communities. Agronomy 2000, 10, 1210. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, P.P.; Singh, S.K.; Verma, H. Sustainable agriculture and benefits of organic farming to special emphasis on PGPR. In Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–87. [Google Scholar] [CrossRef]
- Rotchés-Ribalta, R.; Marull, J.; Pino, J. Organic farming increases functional diversity and ecosystem service provision of spontaneous vegetation in Mediterranean vineyards. Ecol. Indic. 2023, 147, 110023. [Google Scholar] [CrossRef]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.I.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- PIU. Polska Izba Ubezpieczeń. Klimat Rosnących Strat. Rola Ubezpieczeń w Ochronie Klimatu i Transformacji Energetycznej./A Climate of Mounting Losses. The Role of Insurance in Climate Protection and the Energy Transition/. Warszawa, Poland. 2023. Available online: https://piu.org.pl/raporty/klimat-rosnacych-strat/ (accessed on 5 January 2025).
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef] [PubMed]
- Bendyk, E. Przestrzelona przyszłość. Polityka 2024, 49, 72. [Google Scholar]
- Buchner, B. COP 29’s climate investment imperative. Science 2024, 386, 601. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Climate Change Service. 2024—First Year Exceed 1.5 °C Above Pre-Industrial Level. Available online: https://climate.copernicus.eu (accessed on 11 January 2025).
- Hansen, E.J.; Karecha, P.; Sato, M.; Kelly, J. Global warming has accelerated: Are the United Nations and the public well-informed? Environ. Sci. Policy Sustain. Dev. 2025, 67, 6–44. [Google Scholar] [CrossRef]
- Sommer, M. Punkt Krytyczny dla Klimatu. Trump Pogrzebie Porozumienie Paryskie? Gazeta Prawna. 2025. Available online: https://serwisy.gazetaprawna.pl/ekologia/artykuly/9727923,punkt-krytyczny-dla-klimatu-trump-pogrzebie-porozumienie-paryskie.html (accessed on 18 February 2025).
- World Economic Forum. The Global Risks Report 2025, 20th ed.; World Economic Forum: Geneva, Switzerland, 2025. [Google Scholar]
- Liu, X.; Pattanaik, N.; Nelson, M.; Ibrahim, M. The choice to go organic: Evidence from small US farms. Agric. Sci. 2019, 10, 1566–1580. [Google Scholar] [CrossRef]
- López, C.P.; Requena, J.C. Factors related to the adoption of organic farming in Spanish olive orchards. Span. J. Agric. Res. 2005, 3, 5–16. [Google Scholar] [CrossRef]
- Malá, Z.; Malý, M. The determinants of adopting organic farming practices: A case study in the Czech Republic. Agric. Econ. 2013, 59, 19–28. [Google Scholar] [CrossRef]
- Karki, L.; Schleenbecker, R.; Hamm, U. Factors influencing a conversion to organic farming in Nepalese tea farms. J. Agric. Rural Dev. Trop. Subtrop. 2011, 112, 113–123. [Google Scholar]
- Khaledi, M.; Weseen, S.; Sawyer, E.; Ferguson, S.; Richard, G. Factors influencing partial and complete adoption of organic farming practices in Saskatchewan, Canada. Can. J. Agric. Econ. 2011, 58, 37–56. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, H.; Pawlak, K.; Gao, Y. The development of organic agriculture in China and the factors affecting organic farming. J. Agribus. Rural Dev. 2015, 36, 353–361. [Google Scholar] [CrossRef]
- Kujala, S.; Hakala, O.; Viitaharju, L. Factors affecting the regional distribution of organic farming. J. Rural Stud. 2022, 92, 226–236. [Google Scholar] [CrossRef]
- Heinrichs, J.; Kuhn, T.; Pahmeyer, C.; Britz, W. Economic effects of plot sizes and farm-plot distances in organic and conventional farming systems: A farm-level analysis for Germany. Agric. Syst. 2021, 187, 102992. [Google Scholar] [CrossRef]
- Lu, C.F.; Cheng, C.Y. Exploring the distribution of organic farming: Findings from certified rice in Taiwan. Ecol. Econ. 2023, 212, 107915. [Google Scholar] [CrossRef]
- Zieliński, M.; Wrzaszcz, W.; Sobierajewska, J.; Adamski, M. Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints. Agriculture 2024, 14, 297. [Google Scholar] [CrossRef]
- Genius, M.; Pantzios, C.J.; Tzouvelekas, V. Information acquisition and adoption of organic farming practices. J. Agric. Resour. Econ. 2006, 31, 93–113. [Google Scholar]
- Kafle, B. Factors affecting adoption of organic vegetable farming in Chitwan District, Nepal. World J. Agric. Sci. 2011, 7, 604–606. [Google Scholar]
- Koesling, M.; Flaten, O.; Lien, G. Factors influencing the conversion to organic farming in Norway. Int. J. Agric. Resour. Gov. Ecol. 2008, 7, 78–95. [Google Scholar] [CrossRef]
- Xia, M.; Xiang, P.; Mei, G.; Liu, Z. Drivers for the Adoption of Organic Farming: Evidence from an Analysis of Chinese Farmers. Agriculture 2023, 13, 2268. [Google Scholar] [CrossRef]
- Bartulović, A.; Kozorog, M. Taking up organic farming in (pre-) Alpine Slovenia: Contrasting motivations of dairy farmers from less-favoured agricultural areas. Anthropol. Noteb. 2014, 20, 83–102. [Google Scholar]
- Wollni, M.; Andersson, C. Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecol. Econ. 2014, 97, 120–128. [Google Scholar] [CrossRef]
- Läpple, D. Adoption and abandonment of organic farming: An empirical investigation of the Irish drystock sector. J. Agric. Econ. 2010, 61, 697–714. [Google Scholar] [CrossRef]
- Läpple, D.; van Rensburg, T. Adoption of organic farming: Are there differences between early and late adoption? Ecol. Econ. 2011, 70, 1406–1414. [Google Scholar] [CrossRef]
- Wiśniewski, Ł.; Biczkowski, M.; Rudnicki, R. Natural potential versus rationality of allocation of Common Agriculture Policy funds dedicated for supporting organic farming development–Assessment of spatial suitability: The case of Poland. Ecol. Indic. 2021, 130, 108039. [Google Scholar] [CrossRef]
- Hoque, M.N.; Saha, S.M.; Imran, S.; Hannan, A.; Seen, M.M.H.; Thamid, S.S.; Tuz-zohra, F. Farmers’ agrochemicals usage and willingness to adopt organic inputs: Watermelon farming in Bangladesh. Environ. Chall. 2022, 7, 100451. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Yan, J.; Gao, W.; Cui, J.; Chen, Y. From Conventional to Organic Agriculture: Influencing Factors and Reasons for Tea Farmers’ Adoption of Organic Farming in Pu’er City. Sustainability 2024, 16, 10035. [Google Scholar] [CrossRef]
- Heinze, S.; Vogel, A. Reversion from organic to conventional agriculture in Germany: An event history analysis. Ger. J. Agric. Econ. 2017, 66, 13–25. [Google Scholar] [CrossRef]
- Sriwichailamphan, T.; Sucharidtham, T. Factors affecting adoption of vegetable growing using organic system: A case study of Royal Project Foundation, Thailand. Int. J. Econ. Manag. Sci. 2014, 3, 179. [Google Scholar] [CrossRef]
- Pornpratansombat, P.; Bauer, B.; Boland, H. The adoption of organic rice farming in Northeastern Thailand. J. Org. Syst. 2011, 6, 4–12. [Google Scholar]
- Mrinila, S.; Keshav, L.M.; Bijan, M. Factors impacting adoption of organic farming in Chitwan district of Nepal. Asian J. Agric. Rural Dev. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Verburg, R.W.; Verberne, E.; Negro, S.O. Accelerating the transition towards sustainable agriculture: The case of organic dairy farming in the Netherlands. Agric. Syst. 2022, 198, 103368. [Google Scholar] [CrossRef]
- Ambrosius, F.H.; Kramer, M.R.; Spiegel, A.; Bokkers, E.A.; Bock, B.B.; Hofstede, G.J. Diffusion of organic farming among Dutch pig farmers: An agent-based model. Agric. Syst. 2022, 197, 103336. [Google Scholar] [CrossRef]
- Ferreira, S.; Oliveira, F.; Gomes da Silva, F.; Teixeira, M.; Gonçalves, M.; Eugénio, R.; Gonçalves, J.M. Assessment of factors constraining organic farming expansion in Lis Valley, Portugal. AgriEngineering 2020, 2, 111–127. [Google Scholar] [CrossRef]
- Serra, T.; Zilberman, D.; Gil, J.M. Differential uncertainties and risk attitudes between conventional and organic producers: The case of Spanish arable crop farmers. Agric. Econ. 2008, 39, 219–229. [Google Scholar] [CrossRef]
- Palšová, L. Organic farming versus interest of the state for its support. Pol. J. Environ. Stud. 2019, 28, 2773. [Google Scholar] [CrossRef]
- Rozman, Č.; Pažek, K.; Kljajić, M.; Bavec, M.; Turk, J.; Bavec, F.; Škraba, A. The dynamic simulation of organic farming development scenarios–A case study in Slovenia. Comput. Electron. Agric. 2013, 96, 163–172. [Google Scholar] [CrossRef]
- Łuczka, W.; Kalinowski, S. Barriers to the development of organic farming: A Polish Case Study. Agriculture 2020, 10, 536. [Google Scholar] [CrossRef]
- Siepmann, L.; Nicholas, K.A. German winegrowers’ motives and barriers to convert to organic farming. Sustainability 2018, 10, 4215. [Google Scholar] [CrossRef]
- Yanakittkul, P.; Aungvaravong, C. A model of farmers intentions towards organic farming: A case study on rice farming in Thailand. Heliyon 2020, 6, e03039. [Google Scholar] [CrossRef]
- Kerselaers, E.; De Cock, L.; Lauwers, L.; Van Huylenbroeck, G. Modelling farm-level economic potential for conversion to organic farming. Agric. Syst. 2007, 94, 671–682. [Google Scholar] [CrossRef]
- Thoyer, S.; Préget, R. Enriching the CAP evaluation toolbox with experimental approaches: Introduction to the special issue. Eur. Rev. Agric. Econ. 2019, 46, 347–366. [Google Scholar] [CrossRef]
- Vanslembrouck, I.; Van Huylenbroeck, G.; Verbeke, W. Determinants of the Willingness of Belgian Farmers to Participate in Agri-environmental Measures. J. Agric. Econ. 2002, 53, 489–511. [Google Scholar] [CrossRef]
- Lampe, I.; Würtenberger, D. Loss aversion and the demand for index insurance. J. Econ. Behav. Organ. 2019, 180, 678–693. [Google Scholar] [CrossRef]
- Lastra-Bravo, X.B.; Hubbard, C.; Garrod, G.; Tolón-Becerra, A. What drives farmers’ participation in EU agri-environmental schemes?: Results from a qualitative meta-analysis. Environ. Sci. Policy 2015, 54, 1–9. [Google Scholar] [CrossRef]
- Defrancesco, E.; Gatto, P.; Runge, F.; Trestini, S. Factors Affecting Farmers’ Participation in Agri-environmental Measures: A Northern Italian Perspective. J. Agric. Econ. 2008, 59, 114–131. [Google Scholar] [CrossRef]
- Espinosa-Goded, M.; Barreiro-Hurlé, J.; Ruto, E. What do farmers want from Agri-Environmental Scheme Design? a choice experiment approach. J. Agric. Econ. 2010, 61, 259–273. [Google Scholar] [CrossRef]
- Behaghel, L.; Macours, K.; Subervie, J. How can randomised controlled trials help improve the design of the common agricultural policy? Eur. Rev. Agric. Econ. 2019, 46, 473–493. [Google Scholar] [CrossRef]
- Dessart, F.J.; Barreiro-Hurlé, J.; Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef]
- Ocean, N.; Howley, P. Using Choice Framing to Improve the Design of Agricultural Subsidy Schemes. Land Econ. 2021, 97, 933–950. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Loss Aversion in Riskless Choice: A Reference-Dependent Model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- Thaler, R. Mental accounting and consumer choice. Mark. Sci. 1985, 4, 199–214. [Google Scholar] [CrossRef]
- Wilkinson, N.; Klaes, M. An Introduction to Behavioral Economics, 3rd ed.; Palgrave Macmillan: London, UK, 2017. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Cakirli Akyüz, N.; Theuvsen, L. The Impact of Behavioral Drivers on Adoption of Sustainable Agricultural Practices: The Case of Organic Farming in Turkey. Sustainability 2020, 12, 6875. [Google Scholar] [CrossRef]
- Abid, A.; Jie, S. Conversion to Organic Farming: A Dynamic Opportunity for Pakistani Smallholders of Fresh Fruit. Ciênc. Rural 2021, 51, e20200942. [Google Scholar] [CrossRef]
- Jiumpanyarach, W. Organic Agriculture: Farmers’ Perception and Adaptation in Northern Thailand. Asian J. Agric. Rural Dev. 2021, 11, 245–254. [Google Scholar] [CrossRef]
- Karipidis, P.; Karypidou, S. Factors That Impact Farmers’ Organic Conversion Decisions. Sustainability 2021, 13, 4715. [Google Scholar] [CrossRef]
- Ghosh, R.; Ghosh, A. Conventional Farmers’ Attitude toward the Organic Farming: A Study on North 24 Parganas, West Bengal, India. Org. Agric. 2023, 13, 367–376. [Google Scholar] [CrossRef]
- Savari, M.; Damaneh, H.E.; Damaneh, H.E.; Cotton, M. Integrating the Norm Activation Model and Theory of Planned Behaviour to Investigate Farmer Pro-Environmental Behavioural Intention. Sci. Rep. 2023, 13, 5584. [Google Scholar] [CrossRef]
- Singh, S.P.; Sajwan, K. Factors Influencing the Adoption of Organic Farming: A Case of Middle Ganga River Basin, India. Org. Agric. 2023, 13, 193–203. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, Y.; Pacala, A.; Badulescu, A.; Khan, S. Understanding Chinese Farmers’ Behavioral Intentions to Use Alternative Fuel Machinery: Insights from the Technology Acceptance Model and Theory of Planned Behavior. Sustainability 2024, 16, 11059. [Google Scholar] [CrossRef]
- Czyżewski, B.; Poczta-Wajda, A.; Matuszczak, A.; Smędzik-Ambroży, K.; Guth, M. Exploring Intentions to Convert into Organic Farming in Small-Scale Agriculture: Social Embeddedness in Extended Theory of Planned Behaviour Framework. Agric. Syst. 2025, 225, 104294. [Google Scholar] [CrossRef]
- Mérel, P.; Qin, Z.; Sexton, R.J. Policy-Induced Expansion of Organic Farmland: Implications for Food Prices and Welfare. Eur. Rev. Agric. Econ. 2023, 50, 1583–1631. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Kuehne, G.; Llewellyn, R.; Ponnel, D.J.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting Farmers Uptake of New Agricultural Practices: A Tool for Research, Extension and Policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Prochaska, J.O.; Velicer, W.F. The transtheoretical model of health behavior change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, J.O.; Redding, A.C.; Velicer, F.W. The transtheoretical model stages of change. In Health Behavior: Theory, Research, and Practice, 5th ed.; Glanz, K., Rimer, B.K., Viswanath, K., Eds.; Jossey-Bass: San Francisco, CA, USA, 2015; pp. 125–148. [Google Scholar]
- Lemken, D.; Spiller, A.; von Meyer-Höfer, M. The case of legume-cereal crop mixtures in modern agriculture and the transtheoretical model of gradual adoption. Ecol. Econ. 2017, 137, 20–28. [Google Scholar] [CrossRef]
- Michels, M.; von Hobe, F.C.; Mußhoff, O. A trans-theoretical model for the adoption of drones by large-scale German farmers. J. Rural. Stud. 2020, 75, 80–90. [Google Scholar] [CrossRef]
- Otter, V.; Deutsch, M. Das Verhalten landwirtschaftlicher Entscheider*innen bei der Adoption nachhaltiger Prozessinnovationen in Deutschland. Ger. J. Agric. Econ. 2023, 72, 1–19. [Google Scholar] [CrossRef]
- Block, B.J.; Michels, M.; Mußhoff, O. A trans-theoretical model for farmers’ perceived usefulness of digital risk management tools—A case study from Germany. Ger. J. Agric. Econ. 2023, 72, 154–167. [Google Scholar] [CrossRef]
- Sunding, D.; Zilberman, D. The agricultural innovation process: Research and technology adoption in a changing agricultural sector. In Handbook of Agricultural Economics; Gardner, B., Rausser, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 1, pp. 207–261. [Google Scholar] [CrossRef]
- Möhring, N.; Müller, A.; Schaub, S. Farmers’ adoption of organic agriculture—A systematic global literature review. Eur. Rev. Agric. Econ. 2024, 51, 1012–1044. [Google Scholar] [CrossRef]
- Eurostat. Organic Farming Statistics. Statistics Explained. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Organic_farming_statistics (accessed on 25 June 2024).
- Ekoagros. Veiklosataskaitos. 2022. Available online: https://www.ekoagros.lt/veiklos-ataskaitos-2 (accessed on 11 January 2025).
- Główna Inspekcja Jakości Handlowej Artykułów Rolno-Spożywczych. Raport o Stanie Rolnictwa Ekologicznego w Polsce w latach 2019–2020; Główna Inspekcja Jakości Handlowej Artykułów Rolno-Spożywczych: Warszawa, Poland, 2021. [Google Scholar]
- Główny Urząd Statystyczny. Roczniki Statystyczne. 2022. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/ (accessed on 5 January 2025).
- Uematsu, H.; Mishra, K.A. Organic farmers or conventional farmers: Where’s the money? Ecol. Econ. 2012, 37, 55–62. [Google Scholar] [CrossRef]
- Ligon, E. Supply and Effects of Specialty Crop Insurance; NBER Working Paper; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 2011; Volume 16709. [Google Scholar]
- Belasco, E.; Galinato, S.; Marsh, T.; Miles, C.; Wallace, R. High tunnels are my crop insurance: An assessment of risk management tools for small-scale specialty crop producers. Agric. Resour. Econ. Rev. 2013, 42, 403–418. [Google Scholar] [CrossRef]
- Singerman, A.; Hart, E.C.; Lence, S.H. Revenue protection for organic producers: Too much or too little? J. Agric. Resour. Econ. 2012, 37, 415–434. [Google Scholar] [CrossRef]
- Goodwin, B.; Smith, V. What harm is done by subsidizing crop insurance. Am. J. Agric. Econ. 2013, 95, 489–497. [Google Scholar] [CrossRef]
- Belasco, E.; Schahczenski, J. Is organic farming risky? An evaluation of WFRP in organic and conventional production systems. Agric. Resour. Econ. Rev. 2021, 50, 63–75. [Google Scholar] [CrossRef]
Variable | 2009 | 2019 | Change 2019 Compared to 2009 (%) | |||
---|---|---|---|---|---|---|
Organic Farms | Conventional Farms | Organic Farms | Conventional Farms | Organic Farms | Conventional Farms | |
Age of farm operator (years) | 44 | 45 | 48 | 48 | 9.1 | 6.7 |
Total costs per 1 ha of UAA (EUR) | 448 | 654 | 632 | 951 | 41.1 | 45.4 |
Family labor force (FWU) | 1.4 | 1.6 | 1.3 | 1.3 | −7.1 | −18.7 |
Total utilized agricultural area (hectares) | 113 | 137 | 105 | 166 | −7.1 | 21.2 |
Share of crop output in total output (%) | 74 | 68 | 61 | 69 | −17.6 | 1.5 |
Income, per 1 ha of UAA (EUR) | 294 | 601 | 405 | 836 | 37.8 | 39.1 |
Total liabilities per 1 ha of UAA (EUR) | 218 | 326 | 462 | 607 | 2.1 * | 86.2 |
Total subsidies (excluding on investment) per 1 ha of UAA (EUR) | 359 | 163 | 361 | 223 | 0.6 | 36.8 |
Variable | 2009 | 2019 | Change 2019 Compared to 2009 (%) | |||
---|---|---|---|---|---|---|
Organic Farms | Conventional Farms | Organic Farms | Conventional Farms | Organic Farms | Conventional Farms | |
Age of farm operator (years) | 45.1 | 43.8 | 47.4 | 45.2 | 5.1 | 3.2 |
Total costs per 1 ha of UAA (EUR) | 3199 | 12,636 | 3722 | 7868 | 16.3 | −37.7 |
Family labor force (FWU) | 1.6 | 1.7 | 1.4 | 1.6 | −12.5 | −5.9 |
Total utilized agricultural area (hectares) | 34 | 35 | 29 | 34 | −14.7 | −2.9 |
Share of crop output in total output (%) | 49 | 50 | 60 | 59 | 22.4 | 18.0 |
Income, per 1 ha of UAA (EUR) | 1811 | 4236 | 2594 | 3719 | 43.2 | −12.2 |
Total liabilities per 1 ha of UAA (EUR) | 1481 | 6352 | 1532 | 2736 | 3.4 | −56.9 |
Total subsidies (excluding on investment) per 1 ha of UAA (EUR) | 1782 | 1180 | 2155 | 1535 | 20.9 | 30.1 |
Variable | Years | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Age of farm operator | −0.017 (0.012) | −0.039 (0.013) *** | −0.015 (0.011) | −0.015 (0.012) | −0.004 (0.012) | −0.012 (0.012) | 0.022 (0.009) ** | 0.007 (0.011) | 0.022 (0.010) ** | 0.027 (0.010) *** | 0.014 (0.009) |
Total costs | −0.006 (0.001) *** | −0.005 (0.001) *** | −0.004 (0.001) *** | −0.002 (0.001) *** | −0.006 (0.001) *** | −0.006 (0.001) *** | −0.005 (0.001) *** | −0.005 (0.001) *** | −0.004 (0.000) *** | −0.003 (0.000) *** | −0.003 (0.000) *** |
Family labor force | −0.268 (0.246) | −0.009 (0.254) | 0.122 (0.253) | −0.300 (0.300) | 0.147 (0.285) | −0.065 (0.292) | −0.035 (0.226) | −0.509 (0.290) * | −0.640 (0.299) ** | −0.601 (0.275) ** | −0.519 (0.261) ** |
Total utilized agricultural area | 0.002 (0.001) * | 0.002 (0.001) *** | 0.001 (0.001) * | 0.001 (0.001) * | 0.003 (0.001) *** | 0.003 (0.001) *** | 0.002 (0.001) *** | 0.003 (0.001) *** | 0.002 (0.001) *** | 0.001 (0.001) * | 0.001 (0.001) |
Share of crop output in total output | 0.002 (0.003) | 0.000 (0.005) | 0.008 (0.006) | 0.017 (0.006) *** | 0.011 (0.006) * | 0.036 (0.007) *** | 0.018 (0.005) *** | 0.018 (0.006) *** | 0.001 (0.005) | 0.001 (0.004) | −0.002 (0.003) |
Income from off-farm sources | 0.268 (0.325) | 0.356 (0.323) | 0.178 (0.279) | 0.246 (0.301) | 0.227 (0.314) | 0.399 (0.333) | 1.013 (0.274) *** | 1.295 (0.320) *** | 1.227 (0.289) *** | 0.653 (0.278) ** | 0.916 (0.252) *** |
Total liabilities | 0.001 (0.000) * | 0.000 (0.000) | 0.000 (0.000) | −0.000 (0.000) | 0.001 (0.000) * | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) *** |
Location in agriculturally less favored areas | 0.034 (0.277) | −1.777 (0.357) *** | −0.776 (0.308) *** | −0.317 (0.316) | −1.304 (0.354) *** | −1.593 (0.371) *** | −0.498 (0.262) * | −0.676 (0.297) ** | −0.489 (0.293) * | −0.687 (0.252) *** | −0.677 (0.235) *** |
Total subsidies (excluding on investment) | 0.027 (0.002) *** | 0.037 (0.003) *** | 0.029 (0.002) *** | 0.034 (0.002) *** | 0.037 (0.003) *** | 0.045 (0.003) *** | 0.026 (0.002) *** | 0.026 (0.002) *** | 0.023 (0.002) *** | 0.021 (0.002) *** | 0.017 (0.001) *** |
Variable | Years | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Age of farm operator | 0.020 (0.006) *** | 0.010 (0.006) | 0.016 (0.006) *** | 0.016 (0.005) *** | 0.017 (0.005) *** | 0.017 (0.005) *** | 0.028 (0.005) *** | 0.032 (0.005) *** | 0.022 (0.005) *** | 0.024 (0.005) *** | 0.027 (0.005) *** |
Total costs | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** | −0.000 (0.000) *** |
Family labor force | −0.491 (0.120) *** | −0.500 (0.127) *** | −0.585 (0.118) *** | −0.571 (0.110) *** | −0.442 (0.102) *** | −0.441 (0.109) *** | −0.380 (0.115) *** | −0.235 (0.011) ** | −0.128 (0.105) | −0.161 (0.102) | −0.204 (0.104) * |
Total utilized agricultural area | −0.001 (0.002) | −0.002 (0.002) | −0.002 (0.002) | −0.001 (0.001) | −0.002 (0.001) | −0.001 (0.001) | −0.005 (0.002) ** | −0.008 (0.002) *** | −0.005 (0.002) ** | −0.006 (0.002) *** | −0.004 (0.002) ** |
Share of crop output in total output | −0.763 (0.219) *** | −0.651 (0.225) *** | −0.601 (0.219) *** | −0.417 (0.202) ** | −0.535 (0.176) *** | −0.249 (0.188) | 0.079 (0.193) | 0.109 (0.193) | −0.012 (0.183) | −0.384 (0.167) ** | −0.445 (0.174) ** |
Income from off-farm sources | 0.122 (0.193) | −0.017 (0.183) | −0.134 (0.200) | 0.086 (0.174) | 0.294 (0.146) ** | 0.237 (0.158) | 0.230 (0.169) | 0.113 (0.149) | 0.067 (0.152) | −0.120 (0.157) | 0.139 (0.138) |
Total liabilities | 0.000 (0.000) *** | 0.000 (0.000) *** | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) | 0.000 (0.000) *** |
Location in agriculturally less favored areas | 0.659 (0.144) *** | 0.917 (0.157) *** | 0.949 (0.149) *** | 0.933 (0.141) *** | 0.967 (0.131) *** | 1.117 (0.141) *** | 1.003 (0.147) *** | 1.108 (0.152) *** | 1.013 (0.142) *** | 1.017 (0.151) *** | 0.444 (0.350) |
Total subsidies (excluding on investment) | 0.001 (0.000) *** | 0.001 (0.000) *** | 0.001 (0.000) *** | 0.000 (0.000) *** | 0.001 (0.000) *** | 0.000 (0.000) *** | 0.000 (0.000) *** | 0.001 (0.000) *** | 0.000 (0.000) *** | 0.000 (0.000) *** | 0.001 (0.000) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozumowska, W.; Soliwoda, M.; Kulawik, J.; Galnaitytė, A.; Kurdyś-Kujawska, A. Factors Influencing the Adoption of Organic Farming in Lithuania and Poland. Sustainability 2025, 17, 5623. https://doi.org/10.3390/su17125623
Rozumowska W, Soliwoda M, Kulawik J, Galnaitytė A, Kurdyś-Kujawska A. Factors Influencing the Adoption of Organic Farming in Lithuania and Poland. Sustainability. 2025; 17(12):5623. https://doi.org/10.3390/su17125623
Chicago/Turabian StyleRozumowska, Wirginia, Michał Soliwoda, Jacek Kulawik, Aistė Galnaitytė, and Agnieszka Kurdyś-Kujawska. 2025. "Factors Influencing the Adoption of Organic Farming in Lithuania and Poland" Sustainability 17, no. 12: 5623. https://doi.org/10.3390/su17125623
APA StyleRozumowska, W., Soliwoda, M., Kulawik, J., Galnaitytė, A., & Kurdyś-Kujawska, A. (2025). Factors Influencing the Adoption of Organic Farming in Lithuania and Poland. Sustainability, 17(12), 5623. https://doi.org/10.3390/su17125623