Data Process of Net-Zero Revolution for Transforming Earth and Beyond Sustainably
Abstract
:1. Introduction
Hypothesis Considerations
2. Methodology
2.1. Mathematical Model
2.1.1. Logistic Growth Model for Capacity Additions and Retirements
2.1.2. Emissions Reduction Optimisation Equation
2.1.3. Energy Efficiency Improvement Prediction Equation
2.1.4. Integrated Net-Zero Achievement Function
3. Results
3.1. Qualitative Findings
3.2. Case Study Evaluations
3.3. Data Interpretation
4. Discussion
4.1. Comparison with Prior Work
4.2. Implications
4.3. Insights into These Research Findings
4.4. Hypothesis Evaluation
5. Conclusions
Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Antwi-Afari, M.F.; Answer, S.; Mehmood, I.; Umer, W.; Mohandes, S.R.; Wuni, I.Y.; Abdul-Rahman, M.; Li, H. Artificial Intelligence in Net-Zero Carbon Emissions for Sustainable Building Projects: A Systematic Literature and Science Mapping Review. Buildings 2024, 14, 2752. [Google Scholar] [CrossRef]
- Neethirajan, S. Net Zero Dairy Farming—Advancing Climate Goals with Big Data and Artificial Intelligence. Climate 2024, 12, 15. [Google Scholar] [CrossRef]
- Xu, A.; Wang, W.; Zhu, Y. Does smart city pilot policy reduce CO2 emissions from industrial firms? Insights from China. J. Innov. Knowl. 2023, 8, 100367. [Google Scholar] [CrossRef]
- Ferdaus, M.M.; Dam, T.; Anavatti, S.; Das, S. Digital technologies for a net-zero energy future: A comprehensive review. Renew. Sustain. Energy Rev. 2024, 202, 114681. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, C.; Yuan, Y.; Xu, J.; Wang, P.; Wang, K. Numerical characterization and formation process study of rail light bands in high-speed turnout areas. Eng. Fail. Anal. 2025, 168, 109083. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; David-Olawade, A.C.; Fapohunda, O.; Ige, A.O.; Ling, J. Artificial intelligence potential for net zero sustainability: Current evidence and prospects. Next Sustain. 2024, 4, 100041. [Google Scholar] [CrossRef]
- Liu, G.; Shang, D.; Zhao, Y.; Du, X. Characterisation of brittleness index of gas shale and its influence on favorable block exploitation in southwest China. Front. Earth Sci. 2024, 12, 1389378. [Google Scholar] [CrossRef]
- Heo, S.; Ko, J.; Kim, S.; Jeong, C.; Hwangbo, S.; Yoo, C. Explainable AI-driven net-zero carbon roadmap for petrochemical industry considering stochastic scenarios of remotely sensed offshore wind energy. J. Clean. Prod. 2022, 379, 134793. [Google Scholar] [CrossRef]
- Gong, Q.; Wu, J.; Jiang, Z.; Hu, M.; Chen, J.; Cao, Z. An integrated design method for remanufacturing scheme considering carbon emission and customer demands. J. Clean. Prod. 2024, 476, 143681. [Google Scholar] [CrossRef]
- Tseng, C.; Lin, S. Role of artificial intelligence in carbon cost reduction of firms. J. Clean. Prod. 2024, 447, 141413. [Google Scholar] [CrossRef]
- Bistline, J.E.; Blanford, G.J. The role of the power sector in net-zero energy systems. Energy Clim. Change 2021, 2, 100045. [Google Scholar] [CrossRef]
- Shi, H.; Dao, S.D.; Cai, J. LLMFormer: Large Language Model for Open-Vocabulary Semantic Segmentation. Int. J. Comput. Vis. 2025, 133, 742–759. [Google Scholar] [CrossRef]
- IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Shi, H.; Hayat, M.; Cai, J. Unified Open-Vocabulary Dense Visual Prediction. IEEE Trans. Multimed. 2024, 26, 8704–8716. [Google Scholar] [CrossRef]
- Wimbadi, R.W.; Djalante, R. From decarbonisation to low carbon development and transition: A systematic literature review of the conceptualisation of moving toward net-zero carbon dioxide emission (1995–2019). J. Clean. Prod. 2020, 256, 120307. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Christensen, M. An in-depth life cycle assessment (LCA) of lithium-ion battery for climate impact mitigation strategies. Energies 2021, 14, 5555. [Google Scholar] [CrossRef]
- Ross, M.; Toohey, D.; Peinemann, M.; Ross, P. Limits on the Space Launch Market Related to Stratospheric Ozone Depletion. Astropolitics 2009, 7, 50–82. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, T.; Sun, J.; Gao, C.; Bai, S.; Jin, G.; Liu, Y. An FDM-DEM coupling method based on REV for stability analysis of tunnel surrounding rock. Tunn. Undergr. Space Technol. 2024, 152, 105917. [Google Scholar] [CrossRef]
- Martínez-Ibáñez, E.; Laso, J.; Pérez-Martínez, M.M.; Martínez-Vazquez, R.; Baptista de Sousa, D.; Méndez, D.; Olaya-Pérez, E.; Marchisio, V.; Aldaco, R.; Margallo, M. Environmental Insights into Single-Cell Protein Production: A Life Cycle Assessment Framework. ACS Sustain. Chem. Eng. 2025. [Google Scholar] [CrossRef]
- Sadhukhan, J. Net zero electricity systems in global economies by life cycle assessment (LCA) considering ecosystem, health, monetisation, and soil CO2 sequestration impacts. Renew. Energy 2022, 184, 960–974. Available online: https://www.sciencedirect.com/science/article/pii/S0960148121017444 (accessed on 7 March 2023). [CrossRef]
- Chen, Y.; Li, Q.; Liu, J. Innovating Sustainability: VQA-Based AI for Carbon Neutrality Challenges. J. Organ. End User Comput. 2024, 36, 1–22. [Google Scholar] [CrossRef]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in Natural Language Processing (NLP). In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 3645–3650. [Google Scholar] [CrossRef]
- Liu, K.; Jiao, S.; Nie, G.; Ma, H.; Gao, B.; Sun, C.; Wu, G. On image transformation for partial discharge source identification in vehicle cable terminals of high-speed trains. High Volt. 2024, 9, 1090–1100. [Google Scholar] [CrossRef]
- Schilling, F.C.; Ringo, W.M., Jr.; Sloane, N.J.A.; Bovey, F.A. Carbon-13 Nuclear Magnetic Resonance Study of the Hydrolysis of Bisphenol A Polycarbonate. Macromolecules 1981, 14, 532–537. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Min, Y.; Chen, S.; Yang, W.; Gu, J.; Hu, Z. Fukushima Contaminated Water Risk Factor: Global Implications. Environ. Sci. Technol. 2025, 59, 3703–3712. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Carbon dioxide emissions and carbonation sensors. Energy Sources Part A Recovery Util. Environ. Eff. 2008, 30, 70–78. [Google Scholar] [CrossRef]
- Li, T.; Li, Y. Artificial intelligence for reducing the carbon emissions of 5G networks in China. Nat. Sustain. 2023, 6, 1522–1523. [Google Scholar] [CrossRef]
- Ahmed, N.; Bunting, S.W.; Glaser, M.; Flaherty, M.S.; Diana, J.S. Can greening of aquaculture sequester blue carbon? Ambio 2017, 46, 468–477. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef]
- Mun, M.; Cho, H. Mineral carbonation for carbon sequestration with industrial waste. Energy Procedia 2013, 37, 6999–7005. [Google Scholar] [CrossRef]
- Jain, J.A.; Seth, A.; DeCristofaro, N. Environmental impact and durability of carbonated calcium silicate concrete. Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 179–191. [Google Scholar] [CrossRef]
- Anbar, S.; Akin, S. Development of a linear predictive model for carbon dioxide sequestration in deep saline carbonate aquifers. Comput. Geosci. 2011, 37, 1802–1815. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Gierke, J.S.; Kawatra, S.K.; Eisele, T.C.; Sutter, L.L. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ. Sci. Technol. 2009, 43, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Jensen, O.E.; Cliffe, K.A.; Maroto-Valer, M.M. A model of carbon dioxide dissolution and mineral carbonation kinetics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1265–1290. [Google Scholar] [CrossRef]
- Grasa, G.S.; Abanades, J.C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind. Eng. Chem. Res. 2006, 45, 8846–8851. [Google Scholar] [CrossRef]
- Sangsiri, P.; Laosiripojana, N.; Daorattanachai, P. Synthesis of sulfonated carbon-based catalysts from organosolv lignin and methanesulfonic acid: Its activity toward esterification of stearic acid. Renew. Energy 2022, 193, 113–127. [Google Scholar] [CrossRef]
- Ali, Z.; Yan, Y.; Mei, H.; Cheng, L.; Zhang, L. Effect of infill density, build direction and heat treatment on the tensile mechanical properties of 3D-printed carbon-fiber nylon composites. Compos. Struct. 2023, 304, 116370. [Google Scholar] [CrossRef]
- Pandey, S.; Srivastava, V.C.; Kumar, V. Comparative thermodynamic analysis of CO2 based dimethyl carbonate synthesis routes. Can. J. Chem. Eng. 2021, 99, 467–478. [Google Scholar] [CrossRef]
- Schneider, J. Decarbonizing construction through carbonation. Proc. Natl. Acad. Sci. USA 2020, 117, 12515–12517. [Google Scholar] [CrossRef]
- Lutz, D.A.; Burakowski, E.A.; Murphy, M.B.; Borsuk, M.E.; Niemiec, R.M.; Howarth, R.B. Trade-offs between three forest ecosystem services across the state of New Hampshire, USA: Timber, carbon, and albedo. Ecol. Appl. 2016, 26, 146–161. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef]
- El-Hassan, H.; Shao, Y. Dynamic carbonation curing of fresh lightweight concrete. Mag. Concr. Res. 2014, 66, 708–718. [Google Scholar] [CrossRef]
- Harrington, K.J.; Henderson, G.M.; Hilton, R.G. Current rates of CO2 removal due to rock weathering in the UK. Sci. Total Environ. 2024, 95, 177458. [Google Scholar] [CrossRef] [PubMed]
- Daval, D.; Martinez, I.; Guigner, J.M.; Hellmann, R.; Corvisier, J.; Findling, N.; Dominici, C.; Goffé, B.; Guyot, F. Mechanism of wollastonite carbonation deduced from micro-to nanometer length scale observations. Am. Mineral. 2009, 94, 1707–1726. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Yadav, S.; Mehra, A. Mathematical modelling and experimental study of carbonation of wollastonite in the aqueous media. J. CO2 Util. 2019, 31, 181–191. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Di Bartolomeo, E.; Polettini, A.; Pomi, R. Wet versus slurry carbonation of EAF steel slag. Greenh. Gases Sci. Technol. 2011, 1, 312–319. [Google Scholar] [CrossRef]
- Katsuyama, Y.; Yamasaki, A.; Iizuka, A.; Fujii, M.; Kumagai, K.; Yanagisawa, Y. Development of a process for producing high-purity calcium carbonate (CaCO3) from waste cement using pressurised CO2. Environ. Prog. 2005, 24, 162–170. [Google Scholar] [CrossRef]
- Suarez, A.V.; Gianelli, J. Ethical and Environmental Implications of Extraterrestrial Mining. Space Policy 2021, 58, 101444. [Google Scholar] [CrossRef]
- Land Transport Authority (LTA). Smart Mobility 2030: Intelligent Transport Systems Strategic Plan. Singapore Government. 2020. Available online: https://www.lta.gov.sg (accessed on 2 February 2025).
- USDA & University of California. AI Applications in Precision Agriculture: Case Studies and Outcomes. USDA Research Bulletin, 2022–11. 2022. Available online: https://www.nifa.usda.gov (accessed on 2 February 2025).
- Wang, F.; Dreisinger, D.; Jarvis, M.; Hitchins, T. Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Miner. Eng. 2019, 131, 185–197. [Google Scholar] [CrossRef]
- Mun, M.; Cho, H.; Kwon, J.; Kim, K.; Kim, R. Investigation of the CO2 Sequestration by Indirect Aqueous Carbonation of Waste Cement. Am. J. Clim. Change 2017, 6, 132–150. [Google Scholar] [CrossRef]
- Zhan, M.; Pan, G.; Wang, Y.; Fu, M.; Lu, X. Effect of presoak-accelerated carbonation factors on enhancing recycled aggregate mortars. Mag. Concr. Res. 2017, 69, 838–849. [Google Scholar] [CrossRef]
- Baciocchi, R.; Polettini, A.; Pomi, R.; Prigiobbe, V.; Von Zedwitz, V.N.; Steinfeld, A. CO2 sequestration by direct gas-solid carbonation of air pollution control (APC) residues. Energy Fuels 2006, 20, 1933–1940. [Google Scholar] [CrossRef]
- Kashef-Haghighi, S.; Ghoshal, S. CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor. Ind. Eng. Chem. Res. 2010, 49, 1143–1149. [Google Scholar] [CrossRef]
- Chen, T.; Gao, X. How carbonation curing influences ca leaching of Portland cement paste: Mechanism and mathematical modeling. J. Am. Ceram. Soc. 2019, 102, 7755–7767. [Google Scholar] [CrossRef]
Sector | AI Application | Reported Impact | Source Citation |
---|---|---|---|
Energy | Smart Grids | +26.7% Efficiency | [12] |
Transportation | Predictive Logistics | −15% GHG Emissions | [22,28] |
Manufacturing | Predictive Maintenance | +25% Material Efficiency | [31] |
Agriculture | Precision Irrigation | −20% Water Use; +15% Yield | [35] |
Year | Transportation (Mt CO2) | Transportation Error (±Mt CO2) | Manufacturing (Mt CO2) |
2020 | 50 | 2.5 | 40 |
2025 | 60 | 3.0 | 55 |
2030 | 80 | 4.0 | 70 |
2035 | 90 | 4.5 | 85 |
2040 | 110 | 5.5 | 100 |
2045 | 130 | 6.5 | 120 |
Energy Efficiency Improvements Across Industries | |||
Industry | Initial efficiency (%) | Improved efficiency (%) | Percentage Increase (%) |
Smart Grids | 75 | 95 | 26.7% |
Transportation | 60 | 75 | 25% |
Manufacturing | 65 | 85 | 30.8% |
AI-Driven Emission Reductions by Sector | |||
Sector | Initial Emissions (Mt CO2) | Emission Reduction (%) | Final Emissions (Mt CO2) |
Energy | 200 | 20% | 160 |
Transportation | 150 | 15% | 127.5 |
Manufacturing | 180 | 25% | 135 |
Economic Impact of AI on Reducing Operational Costs | |||
Sector | Initial Costs (Billion $) | Cost Savings (Billion $) | Percentage Reduction (%) |
Energy | 500 | 100 | 20% |
Manufacturing | 400 | 80 | 20% |
Transportation | 300 | 60 | 20% |
AI Integration Scenarios in Emission Reduction | |||
Scenario | Emission Reduction (Mt CO2) | Efficiency Gain (%) | Timeline for Net Zero (Years) |
High AI Integration | 300 | 30% | 2050 |
Moderate AI Integration | 200 | 20% | 2060 |
Low AI Integration | 100 | 10% | 2070 |
Study | Focus | Key Metrics | Results | Comparison with This Study |
---|---|---|---|---|
[12,31,36,41] | AI in Smart Grids | Energy efficiency improvement | A 20% efficiency improvement was achieved through the use of AI-based optimization. | This study found a 26.7% improvement in energy efficiency in smart grids, highlighting the superior integration methods employed. |
[24,31,44] | AI in Missions | Waste reduction in missions | 15% reduction in waste during Mars missions using AI-driven resource allocation. | This study demonstrated better waste reduction (25%) through enhanced AI-enabled predictive maintenance in manufacturing. |
[22,27,28,38] | AI in Geospatial Technologies | GHG emissions reduction | 10% reduction in transportation emissions through AI-driven route optimisation. | This study achieved a 15% reduction, indicating superior AI deployment in transportation logistics. |
[20,21,45,46] | AI in Energy Systems | Cost savings | 18% reduction in operational costs in energy-intensive sectors. | This study achieved a 20% cost reduction, indicating the potential for more effective AI applications. |
[13] | AI in Lunar Missions | None | 10% improvement in resource utilization during Artemis mission planning. | This study achieved a 15% improvement, suggesting better integration of AI in extraterrestrial sustainability. |
[6,7,9,14,19] | Sustainable Practices in Emission Reduction | Emissions reduction during rocket launches | 12% reduction in emissions through fuel optimization. | This study achieved a comparable 15% reduction, aligning closely with current industry standards. |
[22,27,28,38] | AI in Logistics | Fuel efficiency in craft | 10% improvement in fuel efficiency for interplanetary missions. | This study achieved a 20% improvement in fuel efficiency through AI-enabled optimization. |
This Study | AI in Net-Zero Strategies | Energy efficiency improvement, emissions reduction | 10–30% energy efficiency improvement, 15% reduction in transportation emissions, and 25% reduction in manufacturing emissions. | Benchmarked higher efficiency and broader applications, incorporating terrestrial and extraterrestrial sustainability effectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afolabi, S.O.; Malachi, I.O.; Olawumi, A.O.; Oladapo, B.I. Data Process of Net-Zero Revolution for Transforming Earth and Beyond Sustainably. Sustainability 2025, 17, 5367. https://doi.org/10.3390/su17125367
Afolabi SO, Malachi IO, Olawumi AO, Oladapo BI. Data Process of Net-Zero Revolution for Transforming Earth and Beyond Sustainably. Sustainability. 2025; 17(12):5367. https://doi.org/10.3390/su17125367
Chicago/Turabian StyleAfolabi, Samuel O., Idowu O. Malachi, Adebukola O. Olawumi, and B. I. Oladapo. 2025. "Data Process of Net-Zero Revolution for Transforming Earth and Beyond Sustainably" Sustainability 17, no. 12: 5367. https://doi.org/10.3390/su17125367
APA StyleAfolabi, S. O., Malachi, I. O., Olawumi, A. O., & Oladapo, B. I. (2025). Data Process of Net-Zero Revolution for Transforming Earth and Beyond Sustainably. Sustainability, 17(12), 5367. https://doi.org/10.3390/su17125367