A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices
Abstract
1. Introduction
2. Literature Review on Smart Sensors and IoT Applications in Agriculture and Aquaculture
2.1. Sensor Applications
2.1.1. Sensors Applications in Agriculture
- Environmental Monitoring Sensor
- Soil Monitoring Sensor
- Crop Health Monitoring Sensor
- Water Sensor
- Pest Sensor
- Smart Agricultural Machinery Sensor
2.1.2. Sensor Applications in Aquaculture
- Temperature Sensor
- pH Sensor
- Dissolved Oxygen (DO) Sensor
- Ammonia and Nitrate Sensor
- Salinity Sensor
- Oxidation-reduction Potential (ORP) Sensor
- Turbidity Sensor
2.2. IoT Applications
2.2.1. Data Collection
2.2.2. IoT Communication
2.2.3. AI and Cloud Computing
2.2.4. Automated Actuation
3. Summary of the Benefits of Applying IoT-Based Systems in Agriculture and Aquaculture
3.1. Benefits of Smart Agriculture
3.2. Benefits of Smart Aquaculture
3.3. Integrated Impact Assessment of the IoT in Agriculture and Aquaculture
4. Systematic Evaluation and Discussion
4.1. Technological Benefits and Challenges
4.1.1. Comparative Benefits of the IoT in Agriculture and Aquaculture
4.1.2. Sensor Performance and Data Accuracy
4.1.3. Economic Feasibility
4.2. Future Developments and Strategic Applications
4.2.1. AI and Machine Learning in IoT-Based Decision-Making
4.2.2. Policy Development for IoT Adoption
4.2.3. Concluding Remarks on Future Developments and Strategic Applications
5. Conclusions
- (1)
- What quantifiable benefits do smart sensing and IoT systems offer in agriculture and aquaculture?
- (2)
- What key technical, economic, and policy-related barriers constrain the adoption of these systems?
- (3)
- What strategies can support broader and more sustainable implementation?
Author Contributions
Funding
Conflicts of Interest
References
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.W.; Saud, S.; et al. Crop Production Under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.; Clark, M.; Gerber, J.; Prishchepov, A.V.; Chatterjee, S. Climate Change Has Likely Already Affected Global Food Production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, G.M.; Rahu, M.A.; Karim, S.; Ali, S.M.; Sohu, N. Water Quality Monitoring in Agriculture: Applications, Challenges and Future Prospectus with IoT and Machine Learning. J. Appl. Eng. Technol. 2023, 7, 46–54. [Google Scholar] [CrossRef]
- Zhu, M.; Shang, J. Remote Monitoring and Management System of Intelligent Agriculture Under the Internet of Things and Deep Learning. Wirel. Commun. Mob. Comput. 2022, 2022, 1206677. [Google Scholar] [CrossRef]
- Rosalia, A.C.T.; Mulyaningsih, T. Climate Change Impact on Food Security: A Review. Sustinere J. Environ. Sustain. 2023, 6, 227–238. [Google Scholar] [CrossRef]
- Zaw, A.K.; Charoenratana, S. Climate Change and Food Security at Household Level in the Central Dry Zone in Myanmar. Manag. Environ. Qual. Int. J. 2023, 34, 1446–1460. [Google Scholar] [CrossRef]
- Ali, B.; Zakeri, A.; Llieva, A.; Iliev, O. Reshaping of the Future Farming: From Industry 4. Am. J. Appl. Sci. Res. 2023, 9, 62–71. [Google Scholar] [CrossRef]
- Rifqi, M.; Rofiq, R.M.; Rahman, A.; Rizna Ayu, W.; Nazar, F. Low Carbon Emission Shrimp Farming Development Model. J. Indones. Sustain. Dev. Plan. 2022, 3, 192–203. [Google Scholar] [CrossRef]
- Myers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu. Rev. Public Health 2017, 38, 259–277. [Google Scholar] [CrossRef]
- Rani, P.; Reddy, R.G. Climate Change and Its Impact on Food Security. Int. J. Environ. Clim. Change 2023, 13, 104–108. [Google Scholar] [CrossRef]
- Ali, H.; Menza, M.; Hagos, F.; Haileslassie, A. Impact of Climate-Smart Agriculture Adoption on Food Security and Multidimensional Poverty of Rural Farm Households in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2023, 11, 62. [Google Scholar] [CrossRef]
- Badolo, M. The Badolo FoodResilience Scientific Framework for Advancing Food Security Resilience to Climate Change in Sub-Saharan Africa; Center for Open Science: Charlottesville, VA, USA, 2024. [Google Scholar] [CrossRef]
- Ngcamu, B.S.; Chari, F. Drought Influences on Food Insecurity in Africa: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 5897. [Google Scholar] [CrossRef] [PubMed]
- Schnitter, R.; Berry, P. The Climate Change, Food Security and Human Health Nexus in Canada: A Framework to Protect Population Health. Int. J. Environ. Res. Public Health 2019, 16, 2531. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Gleiser, M.; Moro, S. Implementation of an IoT-Based Water Quality Monitoring System for Aquaculture. Int. J. Res. Publ. Rev. 2023, 4, 1449–1452. [Google Scholar] [CrossRef]
- Stojanović, N.; Chaudhary, S. Real-Time Water Quality Monitoring in Aquaculture Using IoT Sensors and Cloud-Based Analytics. Res. J. Comput. Syst. Eng. 2023, 4, 174–187. [Google Scholar] [CrossRef]
- Florestiyanto, M.Y.; Ashrianto, P.D.; Yuwono, B.; Himawan, H. Evaluation of Usage Behaviour of IOT-Based Aquaculture Technologies. In Proceeding on Political and Social Science (PSS); RSF Press: Bandung, Indonesia, 2020; pp. 248–256. [Google Scholar]
- Prapti, D.R.; Shariff, A.R.M.; Man, H.C.; Ramli, N.M.; Perumal, T.; Shariff, M. Internet of Things (IoT)-based Aquaculture: An Overview of IoT Application on Water Quality Monitoring. Rev. Aquac. 2021, 14, 979–992. [Google Scholar] [CrossRef]
- Anyadike, C.C.; Mbajiorgu, C.C.; Ajah, G.N. Review of Aquacultural Production System Models. Niger. J. Technol. 2016, 35, 448. [Google Scholar] [CrossRef]
- Chiu, M.C.; Yan, W.M.; Bhat, S.A.; Huang, N.-F. Development of Smart Aquaculture Farm Management System Using IoT and AI-based Surrogate Models. J. Agric. Food Res. 2022, 9, 100357. [Google Scholar] [CrossRef]
- Kim, J.; Park, E.; Cho, S.; Kwon, K.-W.; Ko, Y.G. Probabilistic Modeling of Fish Growth in Smart Aquaculture Systems. Ksii Trans. Internet Inf. Syst. 2023, 17, 2259–2277. [Google Scholar] [CrossRef]
- Mustafa, S.; Shaleh, S.R.M.; Shapawi, R.; Estim, A.; Ching, F.F.; Ibrahim, A.A.A.; Tuzan, A.D.; Lim, L.S.; Chen, C.-A.; Jimat, A.; et al. Application of Fourth Industrial Revolution Technologies to Marine Aquaculture for Future Food: Imperatives, Challenges and Prospects. Sustain. Mar. Struct. 2021, 3, 22–31. [Google Scholar] [CrossRef]
- Chen, Y.; Zhen, Z.; Yu, H.; Xu, J. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture. Sensors 2017, 17, 153. [Google Scholar] [CrossRef]
- Parra, L.; Sendra, S.; Lloret, J.; Rodrigues, J.J. Design and Deployment of a Smart System for Data Gathering in Aquaculture Tanks Using Wireless Sensor Networks. Int. J. Commun. Syst. 2017, 30, e3335. [Google Scholar] [CrossRef]
- Saha, S.; Rajib, R.H.; Kabir, S. IoT Based Automated Fish Farm Aquaculture Monitoring System. In Proceedings of the 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), Chittagong, Bangladesh, 27–28 October 2018; pp. 201–206. [Google Scholar]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.; Upadhyay, R.; Martynenko, A. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2022, 9, 6305–6324. [Google Scholar] [CrossRef]
- Valencia-Arías, A.; Dávila, J.R.; Londoño-Celis, W.; Palacios-Moya, L.; Hernández, J.L.; Agudelo-Ceballos, E.; Uribe-Bedoya, H. Research Trends in the Use of the Internet of Things in Sustainability Practices: A Systematic Review. Sustainability 2024, 16, 2663. [Google Scholar] [CrossRef]
- Liu, L.-W.; Hsieh, S.-H.; Lin, S.-J.; Wang, Y.-M.; Lin, W.-S. Rice Blast (Magnaporthe oryzae) Occurrence Prediction and the Key Factor Sensitivity Analysis by Machine Learning. Agronomy 2021, 11, 771. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhang, W.; Ma, X. Prediction of plant uptake and translocation of engineered metallic nanoparticles by machine learning. Environ. Sci. Technol. 2021, 55, 7491–7500. [Google Scholar] [CrossRef]
- Kuo, H.-W. Tyramine beta hydroxylase-mediated octopamine synthesis pathway in Litopenaeus vannamei under thermal, salinity, and Vibrio alginolyticus infection stress. Fish Shellfish. Immunol. 2023, 142, 109096. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. An Ontology Model to Represent Aquaponics 4.0 System’s Knowledge. Inf. Process. Agric. 2022, 9, 514–532. [Google Scholar] [CrossRef]
- Chuyển, T.Đ.; Dien, N.D.; Cuong, N.C.; Thong, V.V. Design and Manufacture Control System for Water Quality Based on IoT Technology for Aquaculture in the Vietnam. Bull. Electr. Eng. Inform. 2023, 12, 1893–1900. [Google Scholar] [CrossRef]
- Muthmainnah, M.; Nashirudin, W.; Sasmitaninghidayah, N.; Chamidah, A.; Mulyono, I. The Development of an IoT-based Automated Temperature and pH Monitoring System to Enhance the Management of Gourami Fish Ponds. Arpn J. Eng. Appl. Sci. 2024, 19, 294–300. [Google Scholar] [CrossRef]
- Liu, L.-W.; Ismail, M.H.; Wang, Y.-M.; Lin, W.-S. Internet of Things based Smart Irrigation Control System for Paddy Field. AGRIVITA J. Agric. Sci. 2021, 43, 378–389. [Google Scholar] [CrossRef]
- Cavazza, A.; Mas, F.D.; Paoloni, P.; Manzo, M. Artificial Intelligence and New Business Models in Agriculture: A structured Literature Review and future Research Agenda. Br. Food J. 2023, 125, 436–461. [Google Scholar] [CrossRef]
- Elbaşi, E.; Mostafa, N.; Al-Arnaout, Z.; Zreikat, A.I.; Cina, E.; Varghese, G.; Shdefat, A.Y.; Topcu, A.E.; Abdelbaki, W.; Mathew, S.; et al. Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. IEEE Access 2023, 11, 171–202. [Google Scholar] [CrossRef]
- Nagaraja, G.S.; Soppimath, A.B.; Soumya, T.; Abhinith, A. IoT Based Smart Agriculture Management System. In Proceedings of the 2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India, 20–21 December 2019; pp. 1–5. [Google Scholar]
- Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Jayasundera, K.P.; Mukhopadhyay, S.C. An IoT-Enabled Portable Water Quality Monitoring System With MWCNT/PDMS Multifunctional Sensor for Agricultural Applications. IEEE Internet Things J. 2022, 9, 14307–14316. [Google Scholar] [CrossRef]
- Lal, J.; Vaishnav, A.; Verma, D.K.; Jana, A.; Jayaswal, R.; Chakraborty, A.; Kumar, S.; Devati; Pavankalyan, M. Sahil Emerging Innovations in Aquaculture: Navigating Towards Sustainable Solutions. Int. J. Environ. Clim. Change 2024, 14, 83–96. [Google Scholar] [CrossRef]
- Pathmudi, V.R.; Khatri, N.; Kumar, S.; Abdul-Qawy, A.S.H.; Vyas, A.K. A Systematic Review of IoT Technologies and Their Constituents for Smart and Sustainable Agriculture Applications. Sci. Afr. 2023, 19, e01577. [Google Scholar] [CrossRef]
- Sadiku, M.N.O.; Ashaolu, T.J.; Ajayi-Majebi, A.; Musa, S.M. Internet of Things in Agriculture: A Primer. Int. J. Sci. Adv. 2021, 2, 215–220. [Google Scholar] [CrossRef]
- Hassan, A.; Asif, R.M.; Rehman, A.U.; Nishtar, Z.; Kaabar, M.K.A.; Afsar, K. Design and Development of an Irrigation Mobile Robot. IAES Int. J. Robot. Autom. 2021, 10, 75. [Google Scholar] [CrossRef]
- Mustapha, U.F.; Alhassan, A.W.; Jiang, D.; Li, G.L. Sustainable Aquaculture Development: A Review on the Roles of Cloud Computing, Internet of Things and Artificial Intelligence (CIA). Rev. Aquac. 2021, 13, 2076–2091. [Google Scholar] [CrossRef]
- Manikandan, R.; Ranganathan, G.; Bindhu, V. Intelligent Computing and Control Framework for Smart Automated System. Intell. Autom. Soft Comput. 2022, 33, 173–189. [Google Scholar] [CrossRef]
- de Oliveira, M.P.G.; Zorzeto, T.Q.; Romis, R.d.F.A.; Rodrigues, L.H.A. Can Accuracy Issues of Low-Cost Sensor Measurements Be Overcome with Data Assimilation? Eng. Agrícola 2023, 43, e20220170. [Google Scholar] [CrossRef]
- Chen, L.-H.; Chen, J.; Chen, C. Effect of Environmental Measurement Uncertainty on Prediction of Evapotranspiration. Atmosphere 2018, 9, 400. [Google Scholar] [CrossRef]
- Pisanu, T.; Garau, S.; Ortu, P.; Schirru, L.; Macciò, C. Prototype of a Low-Cost Electronic Platform for Real Time Greenhouse Environment Monitoring: An Agriculture 4.0 Perspective. Electronics 2020, 9, 726. [Google Scholar] [CrossRef]
- Perdinan; Winkler, J.A.; Andresen, J.A. Evaluation of Multiple Approaches to Estimate Daily Solar Radiation for Input to Crop Process Models. Atmosphere 2020, 12, 8. [Google Scholar] [CrossRef]
- Roberson, T.L.; Badzmierowski, M.J.; Stewart, R.D.; Ervin, E.H.; Askew, S.D.; McCall, D.S. Improving Soil Moisture Assessment of Turfgrass Systems Utilizing Field Radiometry. Agronomy 2021, 11, 1960. [Google Scholar] [CrossRef]
- Cristo, E.d.; Sgarbossa, J.; Schwerz, F.; Nardini, C.; Tibolla, L.B.; Caron, B.O. Growth and Yield of Soybean Cultivated in Agroforestry Systems. Rev. Ceres 2020, 67, 165–175. [Google Scholar] [CrossRef]
- Gabriel, C.C.E.; Uribe-Opazo, M.Á.; Dalposso, G.H.; Cima, E.G. Spatial Analysis of Soybean Yield in the Western Mesoregion of Paraná Using Agrometeorological Variables. Res. Soc. Dev. 2022, 11, e7911325962. [Google Scholar] [CrossRef]
- Munaganuri, R.K.; Rao, Y.N. Cap-DiBiL: An Automated Model for Crop Water Requirement Prediction and Suitable Crop Recommendation in Agriculture. Environ. Res. Commun. 2023, 5, 095016. [Google Scholar] [CrossRef]
- Oh, Y.-J. Development of Self-generated and LPWA-based Crop Growth Environment Monitoring and Bigdata Analysis System. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 1701–1707. [Google Scholar] [CrossRef]
- Nikou, M.; Mavromatis, T. Demonstrating the Use of the Yield-Gap Concept on Crop Model Calibration in Data-Poor Regions: An Application to CERES-Wheat Crop Model in Greece. Land 2023, 12, 1372. [Google Scholar] [CrossRef]
- Reza, M.N.; Islam, M.N.; Iqbal, M.Z.; Kabir, M.S.N.; Chowdhury, M.; Gulandaz, M.A.; Ali, M.; Jang, M.-K.; Chung, S.O. Spatial, Temporal, and Vertical Variability of Ambient Environmental Conditions in Chinese Solar Greenhouses During Winter. Appl. Sci. 2023, 13, 9835. [Google Scholar] [CrossRef]
- Prasad, J.; Bhatnagar, V.; Chandra, R. Soil Moisture Sensors for Sustainable Irrigation: Comparison and Calibration. Int. J. Sustain. Agric. Manag. Inform. 2019, 5, 25. [Google Scholar] [CrossRef]
- Teixeira, J.C.; Santos, R. Exploring the Applicability of Low-Cost Capacitive and Resistive Water Content Sensors on Compacted Soils. Geotech. Geol. Eng. 2021, 39, 2969–2983. [Google Scholar] [CrossRef]
- Sharma, H.; Shukla, M.K.; Bosland, P.W.; Steiner, R.L. Soil Moisture Sensor Calibration, Actual Evapotranspiration, and Crop Coefficients for Drip Irrigated Greenhouse Chile Peppers. Agric. Water Manag. 2017, 179, 81–91. [Google Scholar] [CrossRef]
- Abdullah, E.T.; Ibrahim, O.A. Capacitance and Resistivity Measurements of Polythiophene/Metallic Nanoparticles-Based Humidity Sensors. Iraqi J. Sci. 2021, 62, 1158–1163. [Google Scholar] [CrossRef]
- Esmaili, P.; Cavedo, F.; Norgia, M. Liquid Level Sensor Based on Phase-Shifting of Radio-Frequency Wave. IEEE Sens. J. 2022, 22, 11144–11152. [Google Scholar] [CrossRef]
- Nolz, R.; Loiskandl, W. Evaluating Soil Water Content Data Monitored at Different Locations in a Vineyard with Regard to Irrigation Control. Soil Water Res. 2017, 12, 152–160. [Google Scholar] [CrossRef]
- Shintake, J.; Nagai, T.; Ogishima, K. Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures. Front. Robot. AI 2019, 6, 127. [Google Scholar] [CrossRef]
- Demori, M.; Baù, M.; Dalola, S.; Ferrari, M.; Ferrari, V. Low-Frequency RFID Signal and Power Transfer Circuitry for Capacitive and Resistive Mixed Sensor Array. Electronics 2019, 8, 675. [Google Scholar] [CrossRef]
- Han, S.; Kim, W.J.; Lee, H.J.; Joyce, R.; Lee, J. Continuous and Real-Time Measurement of Plant Water Potential Using an AAO-Based Capacitive Humidity Sensor for Irrigation Control. Acs Appl. Electron. Mater. 2022, 4, 5922–5932. [Google Scholar] [CrossRef]
- Arya, C. Iot Based Precision Farming and Agriculture—Aspects and Technologies. Math. Stat. Eng. Appl. 2021, 70, 1426–1433. [Google Scholar] [CrossRef]
- Kopawar, N.A.; Wankhede, K.G. Internet of Things in Agriculture: A Review. Int. J. Sci. Res. Sci. Eng. Technol. 2024, 11, 161–165. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Wadhwa, S.; Rani, S.; Khan, Z.; Boulila, W. EEDC: An Energy Efficient Data Communication Scheme Based on New Routing Approach in Wireless Sensor Networks for Future IoT Applications. Sensors 2023, 23, 8839. [Google Scholar] [CrossRef]
- Jagatheesan, M.; Janaki, G. Weather Monitoring System Using IoT for Smart Farming. ECS Trans. 2022, 107, 17439–17445. [Google Scholar] [CrossRef]
- Obaid, M.K.; Abood, B.S.; Alazzai, W.K.; Jasim, L. From Field to Fork: The Role of AI and IoT in Agriculture. E3S Web Conf. 2024, 491, 02006. [Google Scholar] [CrossRef]
- Purnama, S.; Sejati, W. Internet of Things, Big Data, and Artificial Intelligence in the Food and Agriculture Sector. Int. Trans. Artif. Intell. 2023, 1, 156–174. [Google Scholar] [CrossRef]
- Jadhav, N.; Rajnivas, B.; Subaprıya, V.; Sivaramakrishnan, S.; Premalatha, S. Enhancing Crop Growth Efficiency Through IoT-enabled Smart Farming System. EAI Endorsed Trans. Internet Things 2023, 10, 1. [Google Scholar] [CrossRef]
- Kosmas, I. Applying Internet of Things in Healthcare: A Survey. Percept. Reprod. Med. 2021, 4, 25–34. [Google Scholar] [CrossRef]
- Kanimozhi, A.; Vadivel, R. Optimized Water Management for Precision Agriculture Using IoT-based Smart Irrigation System. World J. Adv. Res. Rev. 2024, 21, 802–811. [Google Scholar] [CrossRef]
- Raju, K.L.; Vijayaraghavan, V. A Self-Powered, Real-Time, NRF24L01 IoT-Based Cloud-Enabled Service for Smart Agriculture Decision-Making System. Wirel. Pers. Commun. 2022, 124, 207–236. [Google Scholar] [CrossRef]
- Bauer, J.; Aschenbruck, N. Towards a Low-Cost RSSI-based Crop Monitoring. ACM Trans. Internet Things 2020, 1, 1–26. [Google Scholar] [CrossRef]
- Siddharam; Aiswarya, L.; Kambale, J.B.; Rajesh, G. Application of Internet of Things (IoT) in Protected Cultivation: A Review. Int. J. Environ. Clim. Change 2023, 13, 1518–1529. [Google Scholar] [CrossRef]
- Gade, S.; Deshmukh, P.; Amodkar, T.; Dhawale, M.; Jathar, Y. Smart Crop Advisor System Using Iot and Machine Learning. Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5, 2675–2679. [Google Scholar] [CrossRef]
- Singh, P.; Dixit, S.; Sammanit, D.; Krishnan, P. The Automated Farmlands of Tomorrow: An IoT Integration with Farmlands. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1218, 012048. [Google Scholar] [CrossRef]
- Tsiropoulos, Z.; Skoubris, E.; Fountas, S.; Gravalos, İ.; Gemtos, T. Development of an Energy Efficient and Fully Autonomous Low-Cost IoT System for Irrigation Scheduling in Water-Scarce Areas Using Different Water Sources. Agriculture 2022, 12, 1044. [Google Scholar] [CrossRef]
- Bouhachlaf, L.; Benslimane, O.; Hajjaji, S.E. Monitoring Soil Elements for Irrigation Management Using Internet of Things (IoT) Sensors. World Water Policy 2023, 9, 756–766. [Google Scholar] [CrossRef]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef]
- Rahman, M.B.; Chakma, J.D.; Momin, M.A.; Islam, S.; Uddin, M.A.; Islam, M.A.; Aryal, S. Smart Crop Cultivation System Using Automated Agriculture Monitoring Environment in the Context of Bangladesh Agriculture. Sensors 2023, 23, 8472. [Google Scholar] [CrossRef] [PubMed]
- Ghadge, S.V. The Smart Agriculture System Using IOT and ML. J. Electr. Syst. 2024, 20, 1539–1548. [Google Scholar] [CrossRef]
- Seid, A.M.; Lu, J.; Abishu, H.N.; Ayall, T.A. Blockchain-Enabled Task Offloading with Energy Harvesting in Multi-Uav-Assisted IoT Networks: A Multi-Agent DRL Approach. IEEE J. Sel. Areas Commun. 2022, 40, 3517–3532. [Google Scholar] [CrossRef]
- Lima, M.C.F.; Maria Elisa Damascena de Almeida, L.; Ubierna, C.V.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic Detection and Monitoring of Insect Pests—A Review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Xiao, Q.; Zheng, W.; He, Y.; Chen, Z.; Meng, F.; Wu, L. Research on the Agricultural Pest Identification Mechanism Based on an Intelligent Algorithm. Agriculture 2023, 13, 1878. [Google Scholar] [CrossRef]
- Cardoso, B.; Silva, C.; Cósta, J.; Ribeiro, B. Internet of Things Meets Computer Vision to Make an Intelligent Pest Monitoring Network. Appl. Sci. 2022, 12, 9397. [Google Scholar] [CrossRef]
- Potamitis, I.; Eliopoulos, P.A.; Rigakis, I. Automated Remote Insect Surveillance at a Global Scale and the Internet of Things. Robotics 2017, 6, 19. [Google Scholar] [CrossRef]
- Ahmed, S.; Marwat, S.N.K.; Brahim, G.B.; Khan, W.U.; Khan, S.N.; Al-Fuqaha, A.; Koziel, S. IoT Based Intelligent Pest Management System for Precision Agriculture. Sci. Rep. 2024, 14, 31917. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Miller, S.R.; Kelley, L. Performance Evaluation of Soil Moisture Sensors in Coarse- And Fine-Textured Michigan Agricultural Soils. Agriculture 2020, 10, 598. [Google Scholar] [CrossRef]
- Deka, N.; Neogi, D.; Islam, A.U.; Borkakoty, S. An Automated Crop Monitoring and Irrigation System with Predictive Analysis. Periódico Tchê Química 2024, 21, 24–41. [Google Scholar] [CrossRef]
- Jiao, J.; Gu, L.; Wang, C.; Wang, Q.; Gao, Y.; Gu, R. Internet of Things_Based Real_Time Farmland Environment Monitoring. Adv. J. Food Sci. Technol. 2016, 11, 643–650. [Google Scholar] [CrossRef]
- Sott, M.K.; Nascimento, L.d.S.; Foguesatto, C.R.; Furstenau, L.B.; Faccin, K.; Zawislak, P.A.; Garcia, B.R.M.; Kong, J.D.; Bragazzi, N.L. A Bibliometric Network Analysis of Recent Publications on Digital Agriculture to Depict Strategic Themes and Evolution Structure. Sensors 2021, 21, 7889. [Google Scholar] [CrossRef]
- Lin, C.; Hu, F.; Peng, J.; Wang, J.; Zhai, R. Segmentation and Stratification Methods of Field Maize Terrestrial LiDAR Point Cloud. Agriculture 2022, 12, 1450. [Google Scholar] [CrossRef]
- Nan, Y.; Zhang, H.; Zheng, J.; Yang, K.; Ge, Y. Low-Volume Precision Spray for Plant Pest Control Using Profile Variable Rate Spraying and Ultrasonic Detection. Front. Plant Sci. 2023, 13, 1042769. [Google Scholar] [CrossRef]
- Gokeda, V.; Yalavarthi, R. Deep Hybrid Model for Pest Detection: IoT-UAV-Based Smart Agriculture System. J. Phytopathol. 2024, 172, e13381. [Google Scholar] [CrossRef]
- Sun, L.; Sun, H.; Cao, N.; Han, X.; Cao, G.; Huo, W.; Zhu, D.; Higgs, R. Intelligent Agriculture Technology Based on Internet of Things. Intell. Autom. Soft Comput. 2022, 32, 429–439. [Google Scholar] [CrossRef]
- Lin, J.Y.; Tsai, H.-L.; Lyu, W.-H. An Integrated Wireless Multi-Sensor System for Monitoring the Water Quality of Aquaculture. Sensors 2021, 21, 8179. [Google Scholar] [CrossRef]
- Engle, C.R.; Senten, J.v. Resilience of Communities and Sustainable Aquaculture: Governance and Regulatory Effects. Fishes 2022, 7, 268. [Google Scholar] [CrossRef]
- Islam, M.J.; Kunzmann, A.; Slater, M.J. Responses of Aquaculture Fish to Climate Change-induced Extreme Temperatures: A Review. J. World Aquac. Soc. 2021, 53, 314–366. [Google Scholar] [CrossRef]
- Kolman, R.; Khudyi, O.; Kushniryk, O.; Khuda, L.; Prusińska, M.; Wiszniewski, G. Influence of temperature and Artemia enriched with ω-3 PUFAs on the early ontogenesis of Atlantic sturgeon, Acipenser oxyrinchus Mitchill, 1815. Aquac. Res. 2018, 49, 1740–1751. [Google Scholar] [CrossRef]
- Reverter, M.; Tapissier-Bontemps, N.; Sasal, P.; Saulnier, D. Use of Medicinal Plants in Aquaculture. In Diagnosis and Control of Diseases of Fish and Shellfish; Woo, P.T.K., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 223–261. [Google Scholar] [CrossRef]
- Gentry, R.R.; Lester, S.E.; Kappel, C.V.; White, C.; Bell, T.W.; Stevens, J.; Gaines, S.D. Offshore Aquaculture: Spatial Planning Principles for Sustainable Development. Ecol. Evol. 2016, 7, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-H.; Chen, C.H.; Mao, N.; Lu, S.-T. Fishmeal Supplier Evaluation and Selection for Aquaculture Enterprise Sustainability With a Fuzzy McDm Approach. Symmetry 2017, 9, 286. [Google Scholar] [CrossRef]
- Is-Haak, J.; Koydon, S.; Iampichai, Y.; Ngamphongsai, C. Effects of Ammonia, Temperature and Their Interaction on Oxygen Consumption Rate of Asian Seabass (Lates calcarifer) Juveniles. Agric. Nat. Resour. 2022, 56, 917–924. [Google Scholar] [CrossRef]
- Cai, J.; Leung, P. Popularity and parity assessment for more inclusive and balanced aquaculture development. Sci. Rep. 2024, 14, 25317. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, D.; Song, J.; Bao, E.; Wang, Q.; Qiu, Y.; Wu, Z. Numerical Calculation and Experimental Analysis of Thermal Environment in Industrialized Aquaculture Facilities. PLoS ONE 2023, 18, e0290449. [Google Scholar] [CrossRef]
- Falconer, L.; Ytteborg, E.; Goris, N.; Lauvset, S.K.; Sandø, A.B.; Hjøllo, S.S. Context Matters When Using Climate Model Projections for Aquaculture. Front. Mar. Sci. 2023, 10, 1198451. [Google Scholar] [CrossRef]
- Tamim, A.T.; Begum, H.; Shachcho, S.A.; Khan, M.M.; Yeboah-Akowuah, B.; Masud, M.; Al-Amri, J.F. Development of IoT Based Fish Monitoring System for Aquaculture. Intell. Autom. Soft Comput. 2022, 32, 55–71. [Google Scholar] [CrossRef]
- Kumar, G.; Hegde, S.; Senten, J.v.; Engle, C.R.; Boldt, N.C.; Parker, M.; Quagrainie, K.K.; Posadas, B.C.; Asche, F.; Dey, M.M.; et al. Economic Contribution of U.S. Aquaculture Farms. J. World Aquac. Soc. 2024, 55, e13091. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, Q.; Zhou, K. The effect of circulation rate on the water quality of container-type recirculation aquaculture system under different feeding rates of Schizothorax wangchiachii. bioRxiv 2023. [Google Scholar] [CrossRef]
- Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Mukhopadhyay, S.C. Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. Computers 2021, 10, 26. [Google Scholar] [CrossRef]
- Dhinakaran, D. IoT-Based Environmental Control System for Fish Farms with Sensor Integration and Machine Learning Decision Support. Int. J. Recent Innov. Trends Comput. Commun. 2023, 11, 203–217. [Google Scholar] [CrossRef]
- Lemos, C.H.P.; Chung, S.; Caio Paiva Vaz Sampaio, R.; Copatti, C.E. Growth and Biochemical Variables in Amazon Catfish (Pseudoplatystoma reticulatum ♀ X Leiarius marmoratus ♂) Under Different Water pH. An. Acad. Bras. Ciências 2018, 90, 3573–3581. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, J.; Ge, X.; Chen, S.; Ma, Z. The Effects of Short-Term Exposure to pH Reduction on the Behavioral and Physiological Parameters of Juvenile Black Rockfish (Sebastes schlegelii). Biology 2023, 12, 876. [Google Scholar] [CrossRef] [PubMed]
- Kustija, J.; Andika, F. Control—Monitoring System of Oxygen Level, Ph, Temperature and Feeding in Pond Based on Iot. Reka Elkomika J. Pengabdi. Kpd. Masy. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Wibisono, A.B.; Jayadi, R. Experimental IoT System to Maintain Water Quality in Catfish Pond. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 393. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, H.; Xu, L.; Yu, H.; Chen, Y. A Review of Deep Learning-Based Stereo Vision Techniques for Phenotype Feature and Behavioral Analysis of Fish in Aquaculture. Artif. Intell. Rev. 2024, 58, 7. [Google Scholar] [CrossRef]
- Sun, Z.; Cai, C.; Guo, F.; Ye, C.; Luo, Y.; Ye, S.; Luo, J.; Zhu, F.; Jiang, C. Oxygen Sensitive Polymeric Nanocapsules for Optical Dissolved Oxygen Sensors. Nanotechnology 2018, 29, 145704. [Google Scholar] [CrossRef]
- Xia, P.; Zhou, H.; Sun, H.; Sun, Q.-F.; Griffiths, R. Research on a Fiber Optic Oxygen Sensor Based on All-Phase Fast Fourier Transform (apFFT) Phase Detection. Sensors 2022, 22, 6753. [Google Scholar] [CrossRef]
- Shehata, N.; Kandas, I.; Samir, E. In-Situ Gold–Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved Oxygen. Nanomaterials 2020, 10, 314. [Google Scholar] [CrossRef]
- Li, F.; Wei, Y.; Chen, Y.; Li, D.; Zhang, X. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism. Sensors 2015, 15, 30913–30926. [Google Scholar] [CrossRef]
- Yuan, X.; Wu, X.; He, M.; Lai, J.P.; Sun, H. A Ratiometric Fiber Optic Sensor Based on CdTe QDs Functionalized with Glutathione and Mercaptopropionic Acid for on-Site Monitoring of Antibiotic Ciprofloxacin in Aquaculture Water. Nanomaterials 2022, 12, 829. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Sutarlie, L.; Loh, X.J. Sensors, Biosensors, and Analytical Technologies for Aquaculture Water Quality. Research 2020, 2020, 8272705. [Google Scholar] [CrossRef] [PubMed]
- Butinyac, M.G.; Montaño, V.A.; Downes, J.; Ruane, N.M.; Ryder, E.; Egan, F.; Staessen, T.; Paull, B.; Murray, E. Continuous Nitrite and Nitrate Monitoring of Recirculating Aquaculture Systems Using a Deployable Ion Chromatography-Based Analyser. Aquac. Int. 2023, 32, 1013–1026. [Google Scholar] [CrossRef]
- Turcios, A.E.; Papenbrock, J. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef]
- Paul, D.; Hall, S. Biochar and Zeolite as Alternative Biofilter Media for Denitrification of Aquaculture Effluents. Water 2021, 13, 2703. [Google Scholar] [CrossRef]
- Rajeev, M.; Jung, I.; Kang, I.; Cho, J.C. Genome-Centric Metagenomics Provides Insights into the Core Microbial Community and Functional Profiles of Biofloc Aquaculture. Msystems 2024, 9, e0078224. [Google Scholar] [CrossRef]
- Ibrahim, H.; Yin, S.; Satyanarayana, M.; Zhu, Y.; Castellano, M.J.; Dong, L. In Planta Nitrate Sensor Using a Photosensitive Epoxy Bioresin. ACS Appl. Mater. Interfaces 2022, 14, 25949–25961. [Google Scholar] [CrossRef]
- Deng, M.; Dai, Z.; Song, K.; Wang, Y.; He, X. Integrating Microbial Protein Production and Harvest Systems into Pilot-Scale Recirculating Aquaculture Systems for Sustainable Resource Recovery: Linking Nitrogen Recovery to Microbial Communities. Environ. Sci. Technol. 2021, 55, 16735–16746. [Google Scholar] [CrossRef]
- Kokkuar, N.; Li, L.; Srisapoome, P.; Dong, S.; Tian, X. Application of Biodegradable Polymers as Carbon Sources in Ex Situ Biofloc Systems: Water Quality and Shift of Microbial Community. Aquac. Res. 2021, 52, 3570–3579. [Google Scholar] [CrossRef]
- Rustini, H.A.; Sapei, A.; Riani, E.; Machfud; Sunaryani, A.; Santoso, A.B.; Nomosatryo, S.; Setiawan, F.; Rahmadya, A. Suitability Assessment of a Volcanic Endorheic Lake for Aquaculture. IOP Conf. Ser. Earth Environ. Sci. 2024, 1359, 012121. [Google Scholar] [CrossRef]
- Gil-Núñez, J.C.; Martínez-Córdova, L.R.; Servín-Villegas, R.; Magallón-Barajas, F.J.; Bórquez-López, R.A.; González-Galavíz, J.R.; Casillas-Hernández, R. Production of Penaeus vannamei in Low Salinity, Using Diets Formulated with Different Protein Sources and Percentages. Lat. Am. J. Aquat. Res. 2020, 48, 396–405. [Google Scholar] [CrossRef]
- Pattusamy, A.; Hittinahalli, C.M.; Chadha, N.K.; Sawant, P.B.; Krishna, H.; Verma, A.K. Water Budgeting for Culture of Penaeus vannamei (Boone, 1931) in Earthen Grow-out Ponds Using Inland Saline Groundwater. Aquac. Res. 2022, 53, 4521–4530. [Google Scholar] [CrossRef]
- Madrigal, I.E.V.; Valenzuela-Quiñónez, W.; Esparza-Leal, H.M.; Quiroz, G.R.; Noriega, E.A.A. Efecto De La Composición Iónica Sobre El Crecimiento Y La Supervivencia De Camarón Blanco Litopenaeus vannamei Cultivado en Agua De Pozo De Baja Salinidad. Rev. Biol. Mar. Oceanogr. 2019, 52, 103–112. [Google Scholar] [CrossRef]
- Rao, C.V.; Chari, N.V.H.K.; Muralikrishna, R. The Impact of Shrimp Pond Effluent on Water Quality of Vasishta Godavari Estuary With Respect to Brackishwater Aquaculture, East Coast of India. Egypt. J. Aquat. Biol. Fish. 2019, 23, 245–255. [Google Scholar] [CrossRef]
- Santos, H.M.; Tsai, C.Y.; Maquiling, K.R.A.; Tayo, L.L.; Mariatulqabtiah, A.R.; Lee, C.-W.; Chuang, K.P. Diagnosis and Potential Treatments for Acute Hepatopancreatic Necrosis Disease (AHPND): A Review. Aquac. Int. 2019, 28, 169–185. [Google Scholar] [CrossRef]
- Wardhany, V.A.; Yuliandoko, H.; Subono, A.M.U.H.; Astawa, I.G.P. Smart System and Monitoring of Vanammei Shrimp Ponds. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 1366. [Google Scholar] [CrossRef]
- Hou, D.; Zhou, R.; Zeng, S.; Wei, D.; Deng, X.; Xing, C.; Yu, L.; Deng, Z.; Wang, H.; Weng, S.; et al. Intestine Bacterial Community Composition of Shrimp Varies Under Low- And High-Salinity Culture Conditions. Front. Microbiol. 2020, 11, 589164. [Google Scholar] [CrossRef]
- Stiller, K.T.; Kolarevic, J.; Lazado, C.C.; Gerwins, J.; Good, C.; Summerfelt, S.T.; Mota, V.C.; Espmark, Å.M.O. The Effects of Ozone on Atlantic Salmon Post-Smolt in Brackish Water—Establishing Welfare Indicators and Thresholds. Int. J. Mol. Sci. 2020, 21, 5109. [Google Scholar] [CrossRef] [PubMed]
- Putri, F.R.; Budiyanto, I.R.; Afauly, R.A.P. Is Water Oxidation-Reduction Potential (ORP) Value Relevant for Aquaculture Applications in Shrimp Farming? E3S Web Conf. 2023, 442, 02015. [Google Scholar] [CrossRef]
- Halla, P.T.H.B.; Lalel, H.; Santoso, P. Short Communication: Comparison of the Water Environment Aspects and Production of Nile Tilapia (Oreochromis niloticus) Between Biofloc and Conventional Aquaculture Systems in Tropical Dryland Region. Int. J. Trop. Drylands 2023, 7, 102. [Google Scholar] [CrossRef]
- Siskandar, R.; Wiyoto, W.; Hendriana, A.; Ekasari, J.; Kusumah, B.R.; Halim, G.; Nugraha, I.J. Automated Redox Monitoring System (ARMS): An Instrument for Measuring Dissolved Oxygen Levels Using a Potential Redox Sensor (ORP) in a Prototype of Shrimp Farming Pond with an Internet-Based Monitoring System. J. Aquac. Fish Health 2022, 11, 238–246. [Google Scholar] [CrossRef]
- Qu, X.; Xia, W.; Wang, R.; Zhang, Y.; Xie, Z.; Trushenski, J.; Chen, Y. Effects of Aquaculture on Lakes in the Central Yangtze River Basin, China, II: Benthic Macroinvertebrates. North Am. J. Aquac. 2018, 80, 369–378. [Google Scholar] [CrossRef]
- Tolon, M.T.; Tokaç, A.; Kostak, E.N.; Strehse, C. A Photonic Sensor System for Real-Time Monitoring of Turbidity Changes in Aquaculture. North Am. J. Aquac. 2024, 86, 424–432. [Google Scholar] [CrossRef]
- Amijar, M.I.S.M.; Ramli, N.M.; Nurulhuda, K.; Aziz, S.A. Portable Spectrophotometer for Water Quality Monitoring in Recirculating Aquaculture Systems. IOP Conf. Ser. Earth Environ. Sci. 2024, 1359, 012028. [Google Scholar] [CrossRef]
- Ende, S.S.; Larceva, E.; Bögner, M.; Lugert, V.; Slater, M.J.; Henjes, J. Low Turbidity in Recirculating Aquaculture Systems (RAS) Reduces Feeding Behavior and Increases Stress-Related Physiological Parameters in Pikeperch (Sander lucioperca) During Grow-Out. Transl. Anim. Sci. 2021, 5, txab223. [Google Scholar] [CrossRef]
- Munif, M.M.; Nasir, H.J.A.; Ahmad, M.I. Optimizing Ant Colony System Algorithm with Rule-Based Data Classification for Smart Aquaculture. Indones. J. Electr. Eng. Comput. Sci. 2024, 33, 261. [Google Scholar] [CrossRef]
- Mota, V.C.; Striberny, A.; Verstege, G.C.; Difford, G.F.; Lazado, C.C. Evaluation of a Recirculating Aquaculture System Research Facility Designed to Address Current Knowledge Needs in Atlantic Salmon Production. Front. Anim. Sci. 2022, 3, 876504. [Google Scholar] [CrossRef]
- Jayaraj, K.; Saravanan, P.; Bhowmick, G.D. Performance Evaluation of Aquaponics-Waste-Based Biochar as a Cathode Catalyst in Sediment Microbial Fuel Cells for Integrated Multitrophic Aquaculture Systems. Energies 2023, 16, 5922. [Google Scholar] [CrossRef]
- Mahmud, H.; Rahaman, M.A.; Hazra, S.; Ahmed, S. IoT Based Integrated System to Monitor the Ideal Environment for Shrimp Cultivation With Android Mobile Application. Eur. J. Inf. Technol. Comput. Sci. 2023, 3, 22–27. [Google Scholar] [CrossRef]
- Alahmad, T.; Neményi, M.; Nyéki, A. Applying IoT Sensors and Big Data to Improve Precision Crop Production: A Review. Agronomy 2023, 13, 2603. [Google Scholar] [CrossRef]
- Vatin, N.; Joshi, S.K.; Acharya, P.; Sharma, R.; Rajasekhar, N. Precision Agriculture and Sustainable Yields: Insights from IoT-Driven Farming and the Precision Agriculture Test. Bio Web Conf. 2024, 86, 01091. [Google Scholar] [CrossRef]
- Hussein, A.H.A.; Jabbar, K.A.; Mohammed, A.; Jasim, L. Harvesting the Future: AI and IoT in Agriculture. E3S Web Conf. 2024, 477, 00090. [Google Scholar] [CrossRef]
- Senoo, E.E.K.; Anggraini, L.; Kumi, J.A.; Karolina, L.B.; Akansah, E.; Sulyman, H.A.; Mendonça, I.; Aritsugi, M. IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities. Electronics 2024, 13, 1894. [Google Scholar] [CrossRef]
- Alturif, G.; Saleh, W.; El-Bary, A.A.; Osman, R.A. Towards Efficient IoT Communication for Smart Agriculture: A Deep Learning Framework. PLoS ONE 2024, 19, e0311601. [Google Scholar] [CrossRef]
- Chacko, N.M.; Narendra, V.G.; Balachandra, M.; Rathinam, S. Exploring IoT-Blockchain Integration in Agriculture: An Experimental Study. IEEE Access 2023, 11, 130439–130450. [Google Scholar] [CrossRef]
- Monteleone, S.; Moraes, E.A.d.; Faria, B.T.d.; Aquino, P.T.; Maia, R.F.; Neto, A.T.; Toscano, A. Exploring the Adoption of Precision Agriculture for Irrigation in the Context of Agriculture 4.0: The Key Role of Internet of Things. Sensors 2020, 20, 7091. [Google Scholar] [CrossRef]
- Bakthavatchalam, K.; Karthik, B.; Thiruvengadam, V.S.; Muthal, S.; Jose, D.V.; Kotecha, K.; Vijayakumar, V. IoT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms. Technologies 2022, 10, 13. [Google Scholar] [CrossRef]
- Quý, V.K.; Nguyen, V.-H.; Anh, D.V.; Quý, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Alharbi, H.A.; Aldossary, M. Energy-Efficient Edge-Fog-Cloud Architecture for IoT-Based Smart Agriculture Environment. IEEE Access 2021, 9, 110480–110492. [Google Scholar] [CrossRef]
- Wang, T.; Lu, Y.; Cao, Z.; Shu, L.; Zheng, X.; Liu, A.; Xie, M. When Sensor-Cloud Meets Mobile Edge Computing. Sensors 2019, 19, 5324. [Google Scholar] [CrossRef] [PubMed]
- Cocos, H.-N.; Merkl, D. Decentralized Data Processing on the Edge—Accessing Wireless Sensor Networks with Edge Computing. In Proceedings of the 16th International Conference on Applied Computing, Cagliari, Italy, 7–9 November 2019; pp. 265–268. [Google Scholar]
- Sepulveda, F.; Thangraj, J.S.; Pulliam, J. The Edge of Exploration: An Edge Storage and Computing Framework for Ambient Noise Seismic Interferometry Using Internet of Things Based Sensor Networks. Sensors 2022, 22, 3615. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, M.; Gunasekaran, K. Effective Nutrient Removal From Aquaculture Wastewater Utilizing an Indoor Nutrient Film Technique Hydroponic System. Environ. Qual. Manag. 2024, 34, e22262. [Google Scholar] [CrossRef]
- Klonoff, D.C. Fog Computing and Edge Computing Architectures for Processing Data from Diabetes Devices Connected to the Medical Internet of Things. J. Diabetes Sci. Technol. 2017, 11, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Sathyamoorthy, S.; Matthew, U.O.; Adekunle, T.S.; Okafor, N. Advances and Challenges in IoT Sensors Data Handling and Processing in Environmental Monitoring Networks. JSMT 2024, 5, 40–60. [Google Scholar] [CrossRef]
- Guastella, D.A.; Marcillaud, G.; Valenti, C. Edge-Based Missing Data Imputation in Large-Scale Environments. Information 2021, 12, 195. [Google Scholar] [CrossRef]
- Ooi, M.P.; Sohail, S.; Huang, V.; Hudson, N.; Baughman, M.; Rana, O.; Hinze, A.; Chard, K.; Chard, R.; Foster, I.; et al. Measurement and Applications: Exploring the Challenges and Opportunities of Hierarchical Federated Learning in Sensor Applications. IEEE Instrum. Meas. Mag. 2023, 26, 21–31. [Google Scholar] [CrossRef]
- Wang, W.; Feng, C.; Zhang, B.; Gao, H. Environmental Monitoring Based on Fog Computing Paradigm and Internet of Things. IEEE Access 2019, 7, 127154–127165. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Jiang, J.; Kim, Y.; Joo, B.; Zheng, S.; Lee, S.; Yu, W.J.; Kong, B.S.; Yang, H. In-Sensor Reservoir Computing for Language Learning via Two-Dimensional Memristors. Sci. Adv. 2021, 7, eabg1455. [Google Scholar] [CrossRef]
- Xu, Y.P.; Jin, J.; Zeng, S.; Zhang, Y.; Xiao, Q. Development and Evaluation of An Iot-Based Portable Water Quality Monitoring System for Aquaculture. Inmateh Agric. Eng. 2023, 70, 359–368. [Google Scholar] [CrossRef]
- Ghazali, D.M.; Nor, N.S.M.; Mohaini, M.A.; Saputra, H.M. Smart IoT Based Monitoring System for Fish Breeding. J. Adv. Res. Appl. Mech. 2023, 104, 1–11. [Google Scholar] [CrossRef]
- Sung, W.T.; Isa, I.G.T.; Hsiao, S.J. An IoT-Based Aquaculture Monitoring System Using Firebase. Comput. Mater. Contin. 2023, 76, 2179–2200. [Google Scholar] [CrossRef]
- Ragavi, R.; Ramya, A.; Sowndharya, G.; Sunmathy, S. Hybrid Power Source in Fish Farming with Help of IoT Technology. Ir. Interdiscip. J. Sci. Res. 2024, 8, 61–70. [Google Scholar] [CrossRef]
- Marini, R.; Mikhaylov, K.; Pasolini, G.; Buratti, C. Low-Power Wide-Area Networks: Comparison of LoRaWAN and NB-IoT Performance. IEEE Internet Things J. 2022, 9, 21051–21063. [Google Scholar] [CrossRef]
- Pointl, M.; Fuchs-Hanusch, D. Assessing the Potential of LPWAN Communication Technologies for Near Real-Time Leak Detection in Water Distribution Systems. Sensors 2021, 21, 293. [Google Scholar] [CrossRef] [PubMed]
- Alqurashi, H.; Bouabdallah, F.; Khairullah, E.F. SCAP SigFox: A Scalable Communication Protocol for Low-Power Wide-Area IoT Networks. Sensors 2023, 23, 3732. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Rahmani, M.H.; Weyn, M.; Berkvens, R. Joint Communication and Sensing: A Proof of Concept and Datasets for Greenhouse Monitoring Using LoRaWAN. Sensors 2022, 22, 1326. [Google Scholar] [CrossRef]
- Abhijna, K.C.; Prasanna, R.; Ganavi, G.S.; Ghosh, D. Sensors, Internet and Cloud Computing-Based Smart Agriculture. Int. J. Eng. Res. Comput. Sci. Eng. 2022, 9, 62–65. [Google Scholar] [CrossRef]
- Bhaskaran, H.S.; Gordon, M.; Neethirajan, S. Development of a Cloud-Based IoT System for Livestock Health Monitoring Using AWS and Python. bioRxiv 2024. [Google Scholar] [CrossRef]
- Pierleoni, P.; Concetti, R.; Belli, A.; Palma, L. Amazon, Google and Microsoft Solutions for IoT: Architectures and a Performance Comparison. IEEE Access 2020, 8, 5455–5470. [Google Scholar] [CrossRef]
- Chakraborty, S.; Aithal, P.S. Let Us Create an IoT Inside the AWS Cloud. Int. J. Case Stud. Bus. It Educ. 2023, 7, 211–219. [Google Scholar] [CrossRef]
- Barros, T.G.F.; Eronides, F.d.S.N.; Neto, J.A.; Andre, G.M.D.S.; Aquino, V.B.; Teixeira, E.S. The Anatomy of IoT Platforms—A Systematic Multivocal Mapping Study. IEEE Access 2022, 10, 72758–72772. [Google Scholar] [CrossRef]
- Mijuskovic, A.; Ullah, I.; Bemthuis, R.; Meratnia, N.; Havinga, P. Comparing Apples and Oranges in IoT Context: A Deep Dive Into Methods for Comparing IoT Platforms. IEEE Internet Things J. 2021, 8, 1797–1816. [Google Scholar] [CrossRef]
- Li, X.; Zou, B. An automated data engineering pipeline for anomaly detection of IoT sensor data. arXiv 2021, arXiv:2109.13828. [Google Scholar]
- Dauda, A.; Flauzac, O.; Nolot, F. A Survey on IoT Application Architectures. Sensors 2024, 24, 5320. [Google Scholar] [CrossRef]
- Baeza, V.M.; Marban, M.A. High Altitude Platform Stations Aided Cloud-Computing Solution for Rural-Environment IoT Applications. Comput. Netw. Commun. 2023, 11, 2107. [Google Scholar] [CrossRef]
- El-Basioni, B.M.M.; El-Kader, S.M.A. Laying the Foundations for an IoT Reference Architecture for Agricultural Application Domain. IEEE Access 2020, 8, 190194–190230. [Google Scholar] [CrossRef]
- Liu, C.-S.; Chen, X.-T.; Shih, W.-Y.; Lin, C.C.; Yen, J.-H.; Huang, C.-J.; Yen, Y.-T. Smart Water Quality Monitoring Technology for Fish Farms Using Cellphone Camera Sensor. Sens. Mater. 2023, 35, 3019. [Google Scholar] [CrossRef]
- Vo, T.T.E.; Ko, H.; Huh, J.H.; Kim, Y. Overview of Smart Aquaculture System: Focusing on Applications of Machine Learning and Computer Vision. Electronics 2021, 10, 2882. [Google Scholar] [CrossRef]
- Islam, S.I.; Ahammad, F.; Mohammed, H.H. Cutting-edge Technologies for Detecting and Controlling Fish Diseases: Current Status, Outlook, and Challenges. J. World Aquac. Soc. 2024, 55, e13051. [Google Scholar] [CrossRef]
- Kaur, G.; Adhikari, N.; Krishnapriya, S.; Wawale, S.G.; Malik, R.Q.; Zamani, A.S.; Falcón, J.P.; Osei-Owusu, J. Recent Advancements in Deep Learning Frameworks for Precision Fish Farming Opportunities, Challenges, and Applications. J. Food Qual. 2023, 2023, 4399512. [Google Scholar] [CrossRef]
- Dabas, A. Application of Support Vector Machines in Machine Learning. TechRxiv 2024. [Google Scholar] [CrossRef]
- Fang-an, D. Some New Properties of Wd-fuzzy Implication Algebras. Math. Lett. 2021, 7, 25. [Google Scholar] [CrossRef]
- Martins, J.A.; Azevedo, A.M.; Almeida, A.C.d.; da Silva, L.C.R.; Fernandes, A.C.G.; Valadares, N.R.; Aspiazú, I. Fuzzy Logic Is a Powerful Tool for the Automation of Milk Classification. Acta Sci. Technol. 2022, 44, e57860. [Google Scholar] [CrossRef]
- Li, B.; Shahzad, M.; Khan, H.; Bashir, M.; Ullah, A.; Siddique, M.H. Sustainable Smart Agriculture Farming for Cotton Crop: A Fuzzy Logic Rule Based Methodology. Sustainability 2023, 15, 13874. [Google Scholar] [CrossRef]
- Gutierrez, D.V.; Castañeda, J.; Vélez, G.C. Design and Implementation of a Greenhouse for Organic Tomatoes with Fuzzy Logic. J. Southwest Jiaotong Univ. 2023, 58, 14. [Google Scholar] [CrossRef]
- Nguyen, X.T.; Phung, K.P.; Dang, Q.H.; Vo, X.H.; Vũ, H.T. A Target Threat Assessment Method for Application in Air Defense Command and Control Systems. J. Russ. Univ. Radioelectron. 2023, 26, 90–98. [Google Scholar] [CrossRef]
- Putra, S.D.; Heriansyah, H.; Cahyadi, E.F.; Anggriani, K.; Jaya, M.H.I.S. Development of Smart Hydroponics System Using AI-based Sensing. J. Infotel 2024, 16, 474–485. [Google Scholar] [CrossRef]
- Silalahi, A.O.; Sinambela, A.; Panggabean, H.M.; Pardosi, J.T.N. Smart Automated Fish Feeding Based on IoT System Using LoRa TTGO SX1276 and Cayenne Platform. Eureka Phys. Eng. 2023, 66–79. [Google Scholar] [CrossRef]
- Tiutiunnyk, H.; Iermakova, O. Implementing Recirculation Systems in Ukrainian Aquaculture: Intersectoral Economic Measures and Proposals. In Proceedings of the V International Scientific and Practical Conference, Cambridge, UK, 18 August 2023; pp. 13–16. [Google Scholar]
- Rao, M.P.T.; Anil, B.; Siddhartha, G.; Shyam, Y.; Rao, B.P. Smart Farming Decision Support System for Precision Agriculture. J. Nonlinear Anal. Optim. 2024, 15, 1751–1758. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Nithya, N.; Saravanane, P.; Mariadoss, A.; Subramanian, E. Revolutionizing Rice Farming: Maximizing Yield with Minimal Water to Sustain the Hungry Planet. In Irrigation Systems and Applications; Sultan, M., Imran, M., Ahmad, F., Eds.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Mary, D.L.; Ramakrishnan, M.; Singh, A. Performance of Smart Farming Through Drip Irrigation and Managing of Fertilizers and Pesticides Through IoT and GSM. Int. J. Eng. Adv. Technol. 2020, 9, 3746–3750. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Ali, A.; Ashraf, I.; Siddiqui, M.T.H.; Knox, J. Evaluating Socio-economic and Environmental Factors Influencing Farm-level Water Scarcity in Punjab, Pakistan*. Irrig. Drain. 2020, 70, 797–808. [Google Scholar] [CrossRef]
- Marazky, M.E. Effect of Smart Irrigation Controllers Units on the Performance and Productivity of Subsurface and Surface Drip Irrigation Systems for Tomato Crop in Arid Regions. J. Soil Sci. Agric. Eng. 2015, 6, 27–46. [Google Scholar] [CrossRef]
- Arouna, A.; Dzomeku, I.K.; Abdul-Ganiyu, S.; Rahman, N.A. Water Management for Sustainable Irrigation in Rice (Oryza sativa L.) Production: A Review. Agronomy 2023, 13, 1522. [Google Scholar] [CrossRef]
- Sasikumar, R.; Lincy, L.L.; Sathyan, A.; Chellapandi, P. Design, Development, and Deployment of a Sensor-Based Aquaculture Automation System. Aquac. Int. 2024, 32, 6431–6447. [Google Scholar] [CrossRef]
- Vijayaram, S.; Mahendran, K.; Ringø, E.; Razafindralambo, H.; Kannan, S.; Sun, Y. Biogenic Dietary Promoters in Aquaculture: Nature-Based Solutions for Enhancing Growth, Health, and Sustainability. Ann. Anim. Sci. 2024, in press. [CrossRef]
- Gidiagba, J.O.; Nwaobia, N.K.; Biu, P.W.; Ezeigweneme, C.; Umoh, A.A. Review on the Evolution and Impact of Iot-Driven Predictive Maintenance: Assessing Advancements, Their Role in Enhancing System Longevity, and Sustainable Operations in Both Mechanical and Electrical Realms. Comput. Sci. It Res. J. 2024, 5, 166–189. [Google Scholar] [CrossRef]
- Kimothi, S.; Thapliyal, A.; Singh, R.; Rashid, M.; Gehlot, A.; Akram, S.V.; Javed, A.R. Comprehensive Database Creation for Potential Fish Zones Using IoT and ML With Assimilation of Geospatial Techniques. Sustainability 2023, 15, 1062. [Google Scholar] [CrossRef]
- Muthoka, M.; Ouko, K.O.; Mboya, J.B.; Ndambuki, M.N.; Outa, N.; Ogello, E.; Obiero, K.; Ogola, R.J.O.; Midamba, D.C.; Njogu, L. Socio-economic Impacts of Climate Change and Adaptation Actions Among Smallholder Fish Farmers in Sub-Saharan Africa. Aquac. Fish Fish. 2024, 4, e182. [Google Scholar] [CrossRef]
- Pullo, S.; Pareschi, R.; Piantadosi, V.; Salzano, F.; Carlini, R. Integrating IOTA’s Tangle with the Internet of Things for Sustainable Agriculture: A Proof-of-Concept Study on Rice Cultivation. Informatics 2023, 11, 3. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Shi, L.; Zhang, X.; Hu, Y.J. Productivity Versus Environmental Sustainability: A Broadscale Assessment of Freshwater Aquaculture’s Technical Efficiency and Ecological Efficiency in China’s Inland Provinces. J. World Aquac. Soc. 2024, 55, e13057. [Google Scholar] [CrossRef]
- Begum, S.S.; Mashl, H.; Karthikeyan, B.; Alanazi, F.Z. A Prediction of Heart Disease Using IoT Based ThingSpeak Basis and Deep Learning Method. J. Adv. Res. Appl. Sci. Eng. Technol. 2024, 47, 166–179. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Jin, Q.; Jia, D.; Liu, T. Ratiometric Optical Fiber Dissolved Oxygen Sensor Based on Fluorescence Quenching Principle. Sensors 2022, 22, 4811. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Jain, K.K.; Munilkumar, S.; Sudhagar, A. Alternate Feeding Strategies for Optimum Nutrient Utilization and Reducing Feed Cost for Semi-Intensive Practices in Aquaculture System-a Review. Agric. Rev. 2017, 38, 145–151. [Google Scholar] [CrossRef]
- Narsale, S.A.; Prakash, P.; Mohale, H.P.; Baraiya, R.; Sheikh, S.; Kirtikumar, P.B.; Mansukhbhai, C.R.; Kadam, R.V.; Tekam, I. Precision Aquaculture: A Way Forward for Sustainable Agriculture. J. Exp. Agric. Int. 2024, 46, 83–97. [Google Scholar] [CrossRef]
- Zuriati, Z.; Supriyatna, A.R.; Arifin, O. Design and Development of Feeding Automation System and Water Quality Monitoring on Freshwater Fish Cultivation. Iop Conf. Ser. Earth Environ. Sci. 2022, 1012, 012077. [Google Scholar] [CrossRef]
- Li, E.; Wang, X.; Chen, K.; Xu, C.; Qin, J.G.; Chen, L. Physiological Change and Nutritional Requirement of Pacific White Shrimp Litopenaeus vannamei at Low Salinity. Rev. Aquac. 2015, 9, 57–75. [Google Scholar] [CrossRef]
- Preden, J.; Kaugerand, J.; Suurjaak, E.; Astapov, S.; Motus, L.; Pahtma, R. Data to decision: Pushing situational information needs to the edge of the network. In Proceedings of the 2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision, Orlando, FL, USA, 9–12 March 2015; pp. 158–164. [Google Scholar]
- Liu, F.; Huang, Z.; Wang, L. Energy-Efficient Collaborative Task Computation Offloading in Cloud-Assisted Edge Computing for IoT Sensors. Sensors 2019, 19, 1105. [Google Scholar] [CrossRef]
- Liu, L.-W.; Lu, C.-T.; Wang, Y.-M.; Lin, K.-H.; Ma, X.; Lin, W.-S. Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms. Agriculture 2022, 12, 59. [Google Scholar] [CrossRef]
- Liu, L.-W.; Ma, X.; Wang, Y.-M.; Lu, C.-T.; Lin, W.-S. Using artificial intelligence algorithms to predict rice (Oryza sativa L.) growth rate for precision agriculture. Comput. Electron. Agric. 2021, 187, 106286. [Google Scholar] [CrossRef]
- Liu, L.; Ma, X. Prediction of Soil Field Capacity and Permanent Wilting Point Using Accessible Parameters by Machine Learning. AgriEngineering 2024, 6, 2592–2611. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; Iqbal, N.; Zaidi, S.M.H.; Zaidi, S.A.R.; Hussain, I.; Mahmood, Z. A Multi-Modal Approach for Crop Health Mapping Using Low Altitude Remote Sensing, Internet of Things (IoT) and Machine Learning. IEEE Access 2020, 8, 112708–112724. [Google Scholar] [CrossRef]
Aspect | Agriculture | Aquaculture |
---|---|---|
Political | Precision irrigation and disease forecasting align with national goals for water-saving and low-carbon agriculture [207,209]. | Automated water quality monitoring addresses wastewater discharge and antibiotic regulation policies [214,215]. |
Economic | Water use is reduced by 30–50%, yield is increased by 15–35%; fertilizer waste is cut by 20–40%, and nitrogen use efficiency is improved by 10–18% [208,209,210]. | Feed waste is reduced by 30%, productivity is improved by 20–50%, and mortality is reduced by 20–40% [112,123,196,214,221]. |
Social | Lower chemical input and nutrient runoff, supporting food safety and farmer adoption [209,212]. | Reduced antibiotic dependence, improving food quality and consumer trust [215,216]. |
Technological | AI disease detection occurs 5–10 days earlier; leaf wetness sensors reduce crop losses by 15–35% [62,212]. | Early-warning systems reduce disease-related mortality by 20–40%; integration challenges include sensor failure and model uncertainty [62,123,196]. |
Aspect | Agriculture | Aquaculture |
---|---|---|
Product | IoT-based irrigation, nutrient control, and AI pest detection [209,210,211]. | Water quality sensors (DO, pH, and NH3) and smart feeding systems [112,214]. |
Price | Initial cost high, offset by resource savings and yield gains [208]. | High investment, justified by waste reduction and improved yields [123]. |
Place | Applied in open fields, greenhouses, and high-tech farms [210]. | Used in ponds, recirculating aquaculture systems, and hatcheries [196]. |
Promotion | Government subsidies and pilot farms drive adoption [51,208]. | Public–private partnerships and regional demonstrations encourage use [41,215]. |
Aspect | Agriculture | Aquaculture |
---|---|---|
Benefit | 30–50% water savings, 12–30% yield improvement, and reduced pest/disease losses by 15–35% [44,207,211,212]. | 20–50% higher productivity, reduced feed waste, and improved survival rates [112,214,221]. |
Differentiation | Combines environmental sensing and AI for early alerts; 25% lower fertilizer cost and higher nutrient efficiency [209,210]. | Integrates multiple sensors for real-time water monitoring and disease prevention [123,196]. |
Intangible Value | Enables ESG-compliant sustainable farming; reduces environmental degradation [51,207]. | Reduces antibiotic use and pollution risk; improves environmental and public health perception [41,215,216]. |
Category | Agriculture—IoT | Aquaculture—IoT |
---|---|---|
Strengths [51,58,62,112,123,207,209,213,214] |
|
|
Weaknesses [58,59,123,210,222] |
|
|
Opportunities [70,71,209,223,224] |
|
|
Threats [60,191,222,225] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Cheng, W.; Kuo, H.-W. A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices. Sustainability 2025, 17, 5256. https://doi.org/10.3390/su17125256
Liu L, Cheng W, Kuo H-W. A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices. Sustainability. 2025; 17(12):5256. https://doi.org/10.3390/su17125256
Chicago/Turabian StyleLiu, Liwei, Winton Cheng, and Hsin-Wei Kuo. 2025. "A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices" Sustainability 17, no. 12: 5256. https://doi.org/10.3390/su17125256
APA StyleLiu, L., Cheng, W., & Kuo, H.-W. (2025). A Narrative Review on Smart Sensors and IoT Solutions for Sustainable Agriculture and Aquaculture Practices. Sustainability, 17(12), 5256. https://doi.org/10.3390/su17125256