A Study on the Intergenerational Distribution of Ecological Values of Cultivated Land: A Case of Lezhi County, China
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Framework
4. Measurement of EVCL in Lezhi County
4.1. Overview of the Study Area
4.2. Calculation Approach for the EVCL in Lezhi County
4.3. Measurement of One-Year EVCL in Lezhi County
4.3.1. Measurement of Supply Value of Agricultural Products and Raw Materials
4.3.2. Measurement of Water Source Storage Value
4.3.3. Measurement of the Value of Fixed CO2 and Released O2
4.3.4. Measurement of Soil and Water Conservation Value
- Reduction in soil erosion value
- 2.
- Reduction in soil nutrient loss value
- 3.
- Sedimentation reduction value
- 4.
- Total soil and water conservation value
4.4. Measurement of the EVCL in Lezhi County over an Indefinite Period of Time
4.4.1. Formula for Calculating the EVCL over an Indefinite Period of Time
4.4.2. Determination of Intergenerational Discount Rate
4.4.3. Measurement of Infinite-Year EVCL
5. Present and Future Generation Allocation of EVCL in Lezhi County
5.1. The Introduction of the Intergenerational Overlapping Model
5.2. Derivation of the Intergenerational Overlapping Model
5.3. Interpretation of the Intergenerational Overlapping Model After Derivation
5.4. Present and Future Generation Allocation of EVCL
5.4.1. Selection of Variables
5.4.2. Data Description
5.4.3. Model Estimation
5.4.4. Intergenerational Distribution of EVCL
6. Distribution of EVCL for Future Generations in Lezhi County
6.1. Introduction of the Pearl Growth Curve Formula
6.2. Development Stage Coefficient Curve of EVCL for Future Generations
6.2.1. Coefficient of Ecological Value Development Stage of EVCL of Future Generations
6.2.2. Determination of the Horizontal Coordinates of the Development Stage Coefficient Curve
6.2.3. Vertical Axis Values of the Development Stage Coefficient Curve
6.2.4. The Inflection Point of the Development Stage Coefficient Curve
6.2.5. Overall Shape of the Development Stage Coefficient Curve for Future Generations
6.3. Stage Coefficient Curves for the Development of Cropland for Future Generations in Lezhi County
6.3.1. Engel’s Coefficient Prediction for the Next Intergenerational Period
6.3.2. Calculation of the Development Stage Coefficient for the EVCL for Future Generations
6.4. EVCL Allocated to Future Generations in Lezhi County
7. Discussion
7.1. The Results of the Study on the EVCL Shared Between Present and Future Generations Can Justify the Equalization of Resources as the Optimal Intergenerational Allocation of Resources
7.2. Comparison with Existing Studies
7.2.1. Deriving the Theoretical Formula of Intergenerational Allocation and Getting Empirical Results
7.2.2. Applying the Development Stage Coefficient to Solve the Problem of Missing Value for Future Generations and Market Failure
7.3. Limitations and Directions for Further Research
7.3.1. Model Fitting for Multi-Geographic Samples to Improve the Universality of Research Methods and the Confidence of Conclusions
7.3.2. Assessing the Applicability of the Diamond Model Assumptions: Limitations and Directions for Future Research
7.3.3. Rethinking the Income–Cultivated Land Decoupling Phenomenon: Implications for Intergenerational Ecological Valuation
7.3.4. Optimization of the Universal Applicability for the Intra-Generational Consumption Elasticity Coefficient
7.3.5. Optimization of the Regional Applicability of the Development Stage Coefficient Model
7.3.6. Dynamic Integration of Institutional Factors
7.3.7. Carrying Out the Revision of EVCL for Contemporary People
7.4. Significance and Contributions of the Research
7.4.1. Theoretical Contribution
7.4.2. Relevance of the Study
7.4.3. Methodological Innovations
7.4.4. Contribution to Sustainable Development
8. Conclusions
8.1. Calculate the EVCL in Lezhi County
8.2. Calculating the Intergenerational Distribution of the EVCL with the Help of the Diamond Model, Which Can Simulate the Distribution of Value Between Present and Future Generations
8.3. Using Decoupling Theory as the Theoretical Basis for Variable Selection and Predictions, We Conclude That the Value of Present and Future Generations Is Equally Divided, and Obtain the EVCL for Present and Future Generations
8.4. A Development Stage Coefficient Formula Based on the Pearl Gowth Curve Model for Estimating the EVCL Allocated to Future Generations
8.5. Institutional and Policy Implications for Sustainability
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EVCL | Ecological value of cultivated land |
Appendix A
Questionnaire on intergenerational discount rates for ecological values of cultivated land. Distinguished experts: I am very sorry to disturb your work and thank you for completing this questionnaire in your busy schedule. Determining a reasonable ecological intergenerational discount rate of cultivated land is very important for the intergenerational fair utilization of land resources, and the relative level of the intergenerational discount rate directly affects the amount of value of cultivated land resources as well as the intergenerational allocation efficiency. This questionnaire is designed for the following four ecological service functions of cultivated land: material production, water supply and storage, carbon sequestration and oxygen release, and soil and water conservation, and your assignment of the intergenerational discount rate of the four ecological service functions is the direct data for this cultivated land value measurement. The intergenerational discount rate corresponding to each ecological service value of cultivated land varies according to the function of resource and environmental impacts realized by each ecological value of cultivated land, the severity and reversibility of the impacts of the loss of the value function on the resource and environment, and the relationship with the level of economic and technological progress. Following the principle that the intergenerational discount rate decreases with time as the substitution difficulty between the intergenerational discount rate and man-made capital increases, please assign the intergenerational discount rate corresponding to the value of each ecological service of cultivated land according to your knowledge and experience, and please be precise to 4 decimals. Thank you for your help in completing this questionnaire in your busy schedule. |
January 2024 |
Appendix B
Types of Ecological Values | Value of Material Production | Water Supply Storage Value | Carbon Fixation and Oxygen Release Value | Soil and Water Conservation Values |
---|---|---|---|---|
Expert 1 | 0.2440 | 0.0421 | 0.0153 | 0.0039 |
Expert 2 | 0.1076 | 0.0417 | 0.0144 | 0.0045 |
Expert 3 | 0.0953 | 0.0338 | 0.0155 | 0.0053 |
Expert 4 | 0.0059 | 0.0370 | 0.0153 | 0.0049 |
Expert 5 | 0.0820 | 0.0372 | 0.0125 | 0.0055 |
Expert 6 | 0.0400 | 0.0295 | 0.0146 | 0.0047 |
Expert 7 | 0.1205 | 0.0260 | 0.0145 | 0.0039 |
Expert 8 | 0.1226 | 0.0318 | 0.0135 | 0.0051 |
Expert 9 | 0.2227 | 0.0271 | 0.0158 | 0.0041 |
Expert 10 | 0.0065 | 0.0179 | 0.0149 | 0.0048 |
Expert 11 | 0.1761 | 0.0458 | 0.0129 | 0.0048 |
Expert 12 | 0.0583 | 0.0264 | 0.0142 | 0.0036 |
Expert 13 | 0.0305 | 0.0156 | 0.0151 | 0.0061 |
Expert 14 | 0.0828 | 0.0291 | 0.0149 | 0.0049 |
Expert 15 | 0.0451 | 0.0418 | 0.0152 | 0.0060 |
Average value | 0.0960 | 0.0322 | 0.0146 | 0.0048 |
References
- Yu, B.; Lu, C. Change of cultivated land and its implications on food security in China. Chinese Geogr. Sci. 2006, 16, 299–305. [Google Scholar] [CrossRef]
- Li, S.; Shao, Y.; Hong, M.; Zhu, C.; Dong, B.; Li, Y.; Lin, Y.; Wang, K.; Gan, M.; Zhu, J.; et al. Impact mechanisms of urbanization processes on supply-demand matches of cultivated land multifunction in rapid urbanization areas. Habitat Int. 2023, 131, 102726. [Google Scholar] [CrossRef]
- Becker, R.A. Intergenerational equity: The capital-environment trade-off. J. Environ. Econ. Manag. 1982, 9, 165–185. [Google Scholar] [CrossRef]
- Hartwick, J.M. Intergenerational equity and the investing of rents from exhaustible resources. In The Economics of Sustainability; Routledge: London, UK, 2017; pp. 63–65. [Google Scholar]
- Xiang, L. Study on compensation mechanism for regional ecological protection under the background of ecological civilisation. Int. J. Data Sci. 2023, 8, 52–68. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Global Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Kang, N.; Hou, L.; Huang, J.; Liu, H. Ecosystem services valuation in China: A meta-analysis. Sci. Total Environ. 2022, 809, 151122. [Google Scholar] [CrossRef]
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 10 May 2025).
- Proffitt, F.; Kaiser, J. Wounding earth’s fragile skin. Science 2004, 304, 1616–1618. [Google Scholar]
- Solow, R.M. On the intergenerational allocation of natural resources. Scand. J. Econ. 1986, 88, 141–149. [Google Scholar] [CrossRef]
- Bertram, D. ‘For You Will (Still) Be Here Tomorrow’: The Many Lives of Intergenerational Equity. Trans. Environ. Law 2023, 12, 121–149. [Google Scholar] [CrossRef]
- Becker, G.S.; Tomes, N. An equilibrium theory of the distribution of income and intergenerational mobility. J. Polit. Econ. 1979, 87, 1153–1189. [Google Scholar] [CrossRef]
- Asheim, G.B.; Banerjee, K.; Mitra, T. How stationarity contradicts intergenerational equity. Econ. Theor. 2021, 72, 423–444. [Google Scholar] [CrossRef]
- Solow, R.M. The economics of resources or the resources of economics. In Classic Papers in Natural Resource Economics; Palgrave Macmillan: London, UK, 1974; pp. 257–276. [Google Scholar]
- Hartwick, J.M. Investment of rents from exhaustible resources and intergenerational equity. Am. Econ. Rev. 1977, 67, 972–974. [Google Scholar]
- Howarth, R.B.; Norgaard, R.B. Intergenerational transfers and the social discount rate. Environ. Resour. Econ. 1993, 3, 337–358. [Google Scholar] [CrossRef]
- Asheim, G.B.; Buchholz, W.; Tungodden, B. Justifying sustainability. J. Environ. Econ. Manag. 2001, 41, 252–268. [Google Scholar] [CrossRef]
- Li, S.; Ma, S. A quantitative analysis on the coordination of regional ecological and economic development based on the ecosystem service evaluation. Land 2024, 13, 207. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Li, J.C. Value assessment is the key of environmental assessment. Chin. J. Popul. Resour. 2022, 3, 13–19. (In Chinese) [Google Scholar]
- The People’s Government of Lezhi County. Lezhi County 2022 Statistical Yearbook. 22 March 2023. Available online: http://www.lezhi.gov.cn/lzxrmzf/xztjxx/pc/content/content_1822877523613446144.html (accessed on 1 February 2024). (In Chinese)
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Whyte, A. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef]
- Costanza, R.; Kubiszewski, I.; Stoeckl, N.; Kompas, T. Pluralistic discounting recognizing different capital contributions: An example estimating the net present value of global ecosystem services. Ecol. Econ. 2021, 183, 106961. [Google Scholar] [CrossRef]
- Hu, B.; Xie, M.; He, R.; Shi, Z.; Zhou, Y.; Ni, H.; Li, H. Spatio-temporal evolution of cultivated land ecosystem services value and its spatially varying dominate over the past two decades: A case study in Jiangxi Province in southern China. J. Clean. Prod. 2023, 427, 139228. [Google Scholar] [CrossRef]
- Zhao, G.; Tian, S.; Jing, Y.; Cao, Y.; Liang, S.; Han, B.; Cheng, X.; Liu, B. Establishing a quantitative assessment methodology framework of water conservation based on the water balance method under spatiotemporal and different discontinuous ecosystem scales. J. Environ. Manag. 2023, 346, 119006. [Google Scholar] [CrossRef] [PubMed]
- Egusa, T.; Oda, T.; Sato, T.; Sato, T.; Kumagai, T. Estimation of sub-annual inter-catchment groundwater flow using short-term water balance method. Hydrol. Processes 2021, 35, e14368. [Google Scholar] [CrossRef]
- Li, C.; Fang, S.; Geng, X.; CNY, Y.; Zheng, X.; Zhang, D.; Li, R.; Sun, W.; Wang, X. Coastal ecosystem service in response to past and future land use and land cover change dynamics in the Yangtze river estuary. J. Clean. Prod. 2023, 385, 135601. [Google Scholar] [CrossRef]
- Metcalf, G.E. Designing a carbon tax to reduce US greenhouse gas emissions. Rev. Environ. Econ. Policy 2009, 3, 14375–14410. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Z.; Govers, G. Soil and water conservation measures reduce soil and water losses in China but not down to background levels: Evidence from erosion plot data. Geoderma 2019, 337, 729–741. [Google Scholar] [CrossRef]
- Okeyo, A.I.; Mucheru-Muna, M.; Mugwe, J.; Ngetich, K.F.; Mugendi, D.N.; Diels, J.; Shisanya, C.A. Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya. Agric. Water Manag. 2014, 137, 52–58. [Google Scholar] [CrossRef]
- Hassangavyar, M.B.; Samani, A.N.; Rashidi, S.; Tiefenbacher, J.P. Catchment-scale soil conservation: Using climate, vegetation, and topo-hydrological parameters to support decision making and implementation. Sci. Total Environ. 2020, 712, 136124. [Google Scholar]
- Arrow, K.J.; Kruz, M. Public Investment, the Rate of Return, and Optimal Fiscal Policy; RFF Press: Washington, DC, USA, 2013. [Google Scholar]
- TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; TEEB: Geneva, Switzerland, 2010. [Google Scholar]
- Ma, X.L.; Qu, F.L. Cost-benefit analysis and intergenerational equity: A new intergenerational discounting approach. Chin. J. Popul. Resour. 2011, 21, 22–28. (In Chinese) [Google Scholar]
- Sumaila, L.R.; Walters, C. Intergenerational discounting: A new intuitive approach. Ecol. Econ. 2005, 52, 135–142. [Google Scholar] [CrossRef]
- Linstone, H.A.; Turoff, M. The Delphi Method; Addison: Wesley, MA, USA, 1975. [Google Scholar]
- Samuelson, P.A. An exact consumption-loan model of interest with or without the social contrivance of money. J. Polit. Econ. 1958, 66, 467–482. [Google Scholar] [CrossRef]
- Diamond, P. National debt in a neoclassical growth model. Am. Econ. Rev. 1965, 55, 1126–1150. [Google Scholar]
- Aksoy, E.; Gregor, M.; Schröder, C.; Löhnertz, M.; Louwagie, G. Assessing and analysing the impact of land take pressures on arable land. Solid Earth 2017, 8, 683–695. [Google Scholar] [CrossRef]
- Padilla, E. Intergenerational equity and sustainability. Ecol. Econ. 2002, 41, 69–83. [Google Scholar] [CrossRef]
- Markin, R.J. The role of rationalization in consumer decision processes: A revisionist approach to consumer behavior. J. Acad. Market Sci. 1979, 7, 316–334. [Google Scholar] [CrossRef]
- Tapio, P.; Banister, D.; Luukkanen, J.; Vehmas, V.; Willamo, R. Energy and transport in comparison: Immaterialisatio, dematerialization and decarbonisation in the EU15 between 1970 and 2000. Energ. Policy 2007, 35, 433–451. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, T.; Yang, S. Carbon emission and its decoupling research of transportation in Jiangsu Province. J. Clean. Prod. 2017, 142, 907–914. [Google Scholar] [CrossRef]
- Luo, H.; Li, L.; Lei, Y.; Wu, S.; Yan, D.; Fu, X.; Luo, X.; Wu, L. Decoupling analysis between economic growth and resources environment in Central Plains Urban Agglomeration. Sci. Total Environ. 2021, 752, 142284. [Google Scholar] [CrossRef]
- Wu, Y.; CNY, C.; Liu, Z.; Wu, H.; Wei, X. Decoupling relationship between the non-grain production and intensification of cultivated land in China based on Tapio decoupling model. J. Clean. Prod. 2023, 424, 138800. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Li, X.; Qian, C. Assessment on land-water resources carrying capacity of countries in Central Asia from the perspective of self-supplied agricultural products. Land 2022, 11, 278. [Google Scholar] [CrossRef]
- Ives, A.R.; Abbott, K.C.; Ziebarth, N.L. Analysis of ecological time series with ARMA (p, q) models. Ecology 2010, 91, 858–871. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence oil-price shock, hypothesis on and the the great crash, unit-root the eric. J. Bus. Econ. Stat. 1992, 10, 251–270. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE T. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Bohm, P. Estimating Willingness to Pay: Why and How? Measurement in Public Choice; Palgrave Macmillan: London, UK, 1979; pp. 1–12. [Google Scholar]
- Liu, M.; Zhang, A.; Zhang, X.; Xiong, Y. Research on the game mechanism of cultivated land ecological compensation standards determination: Based on the empirical analysis of the Yangtze River Economic Belt, China. Land 2022, 11, 1583. [Google Scholar] [CrossRef]
- Kucharavy, D.; De Guio, R. Application of S-shaped curves. Proc. Eng. 2011, 9, 559–572. [Google Scholar] [CrossRef]
- Yu, G.; Liu, D.; Liao, X.; Wang, T.; Tian, Q.; Liao, Y. Quantitative research on regional ecological compensation from the perspective of carbon-neutral: The case of Hunan Province, China. Sustainability 2017, 9, 1095. [Google Scholar] [CrossRef]
- Bu, J.F. Study on Domestic and Abroad Development Stage Coefficient of the Ecological Value. Master’s Thesis, Beijing Technology and Business University, Beijing, China, 2006. [Google Scholar]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Mao, M.; Chirwa, E.C. Application of grey model GM (1, 1) to vehicle fatality risk estimation. Technol. Forecast. Soc. 2006, 73, 588–605. [Google Scholar] [CrossRef]
- Hsu, L.; Wang, C. Forecasting the output of integrated circuit industry using a grey model improved by the Bayesian analysis. Technol. Forecast. Soc. 2007, 74, 843–853. [Google Scholar] [CrossRef]
- Asheim, G.B. Intergenerational equity. Annu. Rev. Econ. 2010, 2, 197–222. [Google Scholar] [CrossRef]
- Sandler, T.; Smith, V.K. Intertemporal and intergenerational Pareto efficiency. J. Environ. Econ. Manag. 1976, 2, 151–159. [Google Scholar] [CrossRef]
- Folbre, N.; Wolf, D. The intergenerational welfare state. Popul. Dev. Rev. 2013, 38, 36–51. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- World Bank. Global Economic Prospects, June 2022; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Chai, A.; Moneta, A. Retrospectives: Engel curves. J. Econ. Perspect. 2010, 24, 225–240. [Google Scholar] [CrossRef]
- Moon, J.; Hwang, J.; Lee, W.S. Relationship between the Engel coefficient, life satisfaction, and subjective health for senior citizens in Korea: Moderating effect of COVID-19. Behav. Sci. 2022, 13, 22. [Google Scholar] [CrossRef]
- Yang, S.; Wang, W.; Feng, D.; Lu, J. Impact of pilot environmental policy on urban eco-innovation. J. Clean. Prod. 2022, 341, 130858. [Google Scholar] [CrossRef]
- Li, H.; Song, W. Spatial transformation of changes in global cultivated land. Sci. Total Environ. 2023, 859, 160194. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 1 June 2025).
Type of Value | Value of Agricultural Products and Raw Material Supply | Value of Water Supply and Storage | Value of Fixing Carbon Dioxide and Releasing Oxygen | Value of Soil and Water Conservation |
---|---|---|---|---|
One-year value (in CNY) | 334,340.000 | 3091.196 | 62,918.147 | 4,905,193.188 |
Generational discount rate | 10% | 3% | 1.5% | 0.5% |
Unlimited life value (in CNY) | 3,343,400 | 103,039.867 | 4,194,543.133 | 981,038,637.600 |
Particular Year | Per Capita Net Income of Farmers (CNY) | Cultivated Land Area (Hectares) | θ-Value |
---|---|---|---|
1984 | 247 | 85,278 | |
1985 | 253 | 85,106 | −0.083 |
1986 | 308 | 84,978 | −0.007 |
1987 | 319 | 84,712 | −0.088 |
1988 | 347 | 84,697 | −0.002 |
1989 | 412 | 84,455 | −0.015 |
1990 | 458 | 83,321 | −0.120 |
1991 | 485 | 82,644 | −0.138 |
1992 | 549 | 82,102 | −0.050 |
1993 | 553 | 81,800 | −0.505 |
1994 | 743 | 81,751 | −0.002 |
1995 | 925 | 81,588 | −0.008 |
1996 | 1199 | 81,580 | 0.000 |
1997 | 1458 | 81,461 | −0.007 |
1998 | 1599 | 81,451 | −0.001 |
1999 | 1658 | 81,267 | −0.061 |
2000 | 1740 | 81,243 | −0.006 |
2001 | 1748 | 81,258 | 0.040 |
2002 | 1894 | 80,272 | −0.145 |
2003 | 2061 | 79,010 | −0.178 |
2004 | 2534 | 76,335 | −0.148 |
2005 | 2814 | 76,330 | −0.001 |
2006 | 3065 | 76,298 | −0.005 |
2007 | 3588 | 76,365 | 0.005 |
2008 | 4140 | 76,353 | −0.001 |
2009 | 4483 | 79,202 | 0.450 |
2010 | 5201 | 78,851 | −0.028 |
2011 | 6307 | 78,872 | 0.001 |
2012 | 7238 | 78,941 | 0.006 |
2013 | 8227 | 78,951 | 0.001 |
2014 | 9214 | 78,948 | 0.000 |
2015 | 12,179 | 78,825 | −0.005 |
2016 | 13,331 | 78,854 | 0.004 |
2017 | 14,561 | 78,882 | 0.004 |
2018 | 15,876 | 78,867 | −0.002 |
2019 | 17,464 | 78,754 | −0.014 |
2020 | 18,942 | 76,969 | −0.268 |
2021 | 20,851 | 75,075 | −0.244 |
2022 | 22,098 | 75,336 | 0.058 |
Variable Name | α1 | α2 | γ | β | τ | Threshold Value | p-Value | ||
---|---|---|---|---|---|---|---|---|---|
1% | 5% | 10% | |||||||
Per capita net income of farmers | 2.159 | 0.050 | −0.402 | 2 | (−3.424) | −4.235 | −3.540 | −3.202 | 0.064 |
Cultivated land area | 73.229 | −0.026 | −6.436 | 9 | (−5.292) | −4.468 | −3.645 | −3.261 | 0.002 |
Variable Name | α0 | α1 | α2 | β |
---|---|---|---|---|
Per capita net income of farmers | 7.802 (4.143) | 1.765 (14.115) | −0.770 (−6.068) | 0 |
Cultivated land area | 11.291 (458.130) | 1.273 (10.666) | −0.318 (−2.409) | 0 |
Particular Year | X: Per Capita Net Income of Farmers (CNY) | Y: Crop Land Area (Hectares) | θ-Value (ΔY/ΔX) |
---|---|---|---|
2023 | 772.894 | 80,416.240 | |
2024 | 789.537 | 80,392.950 | −0.013 |
2025 | 806.220 | 80,371.230 | −0.013 |
2026 | 822.937 | 80,350.990 | −0.012 |
2027 | 839.682 | 80,332.120 | −0.012 |
2028 | 856.449 | 80,314.520 | −0.011 |
2029 | 873.231 | 80,298.110 | −0.010 |
2030 | 890.023 | 80,282.810 | −0.010 |
2031 | 906.818 | 80,268.550 | −0.009 |
2032 | 923.610 | 80,255.250 | −0.009 |
2033 | 940.394 | 80,242.850 | −0.009 |
2034 | 957.164 | 80,231.290 | −0.008 |
2035 | 973.915 | 80,220.500 | −0.008 |
2036 | 990.641 | 80,210.450 | −0.007 |
2037 | 1007.336 | 80,201.080 | −0.007 |
2038 | 1023.997 | 80,192.340 | −0.007 |
2039 | 1040.617 | 80,184.180 | −0.006 |
2040 | 1057.192 | 80,176.580 | −0.006 |
2041 | 1073.716 | 80,169.500 | −0.006 |
2042 | 1090.187 | 80,162.890 | −0.005 |
2043 | 1106.598 | 80,156.720 | −0.005 |
2044 | 1122.946 | 80,150.980 | −0.005 |
2045 | 1139.226 | 80,145.620 | −0.005 |
2046 | 1155.435 | 80,140.620 | −0.004 |
2047 | 1171.568 | 80,135.960 | −0.004 |
2048 | 1187.621 | 80,131.610 | −0.004 |
2049 | 1203.591 | 80,127.560 | −0.004 |
2050 | 1219.475 | 80,123.780 | −0.004 |
2051 | 1235.269 | 80,120.260 | −0.003 |
2052 | 1250.969 | 80,116.970 | −0.003 |
Original Value | Predicted Value | ||||||
---|---|---|---|---|---|---|---|
Particular Year | Rural Engel’s Coefficient | Particular Year | Rural Engel’s Coefficient | Particular Year | Rural Engel’s Coefficient | Particular Year | Rural Engel’s Coefficient |
1984 | 61.4 | 2004 | 51.4 | 2023 | 41.92 | 2043 | 34.017 |
1985 | 63 | 2005 | 54.2 | 2024 | 41.485 | 2044 | 33.664 |
1986 | 61.4 | 2006 | 51.8 | 2025 | 41.054 | 2045 | 33.314 |
1987 | 59.4 | 2007 | 59.2 | 2026 | 40.627 | 2046 | 32.968 |
1988 | 58.8 | 2008 | 56.2 | 2027 | 40.205 | 2047 | 32.625 |
1989 | 59.9 | 2009 | 57.5 | 2028 | 39.787 | 2048 | 32.286 |
1990 | 61.2 | 2010 | 54.1 | 2029 | 39.374 | 2049 | 31.951 |
1991 | 60.6 | 2011 | 64.7 | 2030 | 38.965 | 2050 | 31.619 |
1992 | 58.8 | 2012 | 65.1 | 2031 | 38.56 | 2051 | 31.29 |
1993 | 55.8 | 2013 | 65.4 | 2032 | 38.159 | 2052 | 30.965 |
1994 | 45 | 2014 | 49.7 | 2033 | 37.763 | ||
1995 | 46.7 | 2015 | 34.6 | 2034 | 37.37 | ||
1996 | 50.4 | 2016 | 29.6 | 2035 | 36.982 | ||
1997 | 53.3 | 2017 | 33.9 | 2036 | 36.598 | ||
1998 | 53 | 2018 | 34.9 | 2037 | 36.217 | ||
1999 | 55.4 | 2019 | 34.6 | 2038 | 35.841 | ||
2000 | 48.2 | 2020 | 37.9 | 2039 | 35.469 | ||
2001 | 59.4 | 2021 | 36.8 | 2040 | 35.1 | ||
2002 | 55.7 | 2022 | 37.4 | 2041 | 34.735 | ||
2003 | 49.6 | 2042 | 34.374 |
Year | Inverse Value of the Rural Engel’s Coefficient | Development Stage Coefficient | Ecological Value Allocated to Future Generations | Year | Inverse Value of the Rural Engel’s Coefficient | Development Stage Coefficient | Ecological Value Allocated to Future Generations |
---|---|---|---|---|---|---|---|
1984 | 1.629 | 0.836 | 5485.659 | 2019 | 2.89 | 0.947 | 6214.018 |
1985 | 1.587 | 0.83 | 5446.288 | 2020 | 2.639 | 0.933 | 6122.153 |
1986 | 1.629 | 0.836 | 5485.659 | 2021 | 2.717 | 0.938 | 6154.962 |
1987 | 1.684 | 0.843 | 5531.591 | 2022 | 2.674 | 0.935 | 6135.276 |
1988 | 1.701 | 0.846 | 5551.277 | 2023 | 2.385 | 0.916 | 6010.602 |
1989 | 1.669 | 0.841 | 5518.468 | 2024 | 2.411 | 0.918 | 6023.726 |
1990 | 1.634 | 0.837 | 5492.221 | 2025 | 2.436 | 0.92 | 6036.850 |
1991 | 1.65 | 0.839 | 5505.344 | 2026 | 2.461 | 0.921 | 6043.411 |
1992 | 1.701 | 0.846 | 5551.277 | 2027 | 2.487 | 0.923 | 6056.535 |
1993 | 1.792 | 0.857 | 5623.457 | 2028 | 2.513 | 0.925 | 6069.659 |
1994 | 2.222 | 0.902 | 5918.737 | 2029 | 2.54 | 0.927 | 6082.782 |
1995 | 2.141 | 0.895 | 5872.805 | 2030 | 2.566 | 0.929 | 6095.906 |
1996 | 1.984 | 0.879 | 5767.816 | 2031 | 2.593 | 0.93 | 6102.467 |
1997 | 1.876 | 0.867 | 5689.075 | 2032 | 2.621 | 0.932 | 6115.591 |
1998 | 1.887 | 0.868 | 5695.636 | 2033 | 2.648 | 0.934 | 6128.715 |
1999 | 1.805 | 0.859 | 5636.580 | 2034 | 2.676 | 0.936 | 6141.838 |
2000 | 2.075 | 0.888 | 5826.872 | 2035 | 2.704 | 0.937 | 6148.400 |
2001 | 1.684 | 0.843 | 5531.591 | 2036 | 2.732 | 0.939 | 6161.524 |
2002 | 1.795 | 0.858 | 5630.018 | 2037 | 2.761 | 0.941 | 6174.647 |
2003 | 2.016 | 0.882 | 5787.501 | 2038 | 2.79 | 0.942 | 6181.209 |
2004 | 1.946 | 0.875 | 5741.569 | 2039 | 2.819 | 0.944 | 6194.333 |
2005 | 1.845 | 0.864 | 5669.389 | 2040 | 2.849 | 0.945 | 6200.894 |
2006 | 1.931 | 0.873 | 5728.445 | 2041 | 2.879 | 0.947 | 6214.018 |
2007 | 1.689 | 0.844 | 5538.153 | 2042 | 2.909 | 0.948 | 6220.580 |
2008 | 1.779 | 0.856 | 5616.895 | 2043 | 2.94 | 0.95 | 6233.703 |
2009 | 1.739 | 0.851 | 5584.086 | 2044 | 2.971 | 0.951 | 6240.265 |
2010 | 1.848 | 0.864 | 5669.389 | 2045 | 3.002 | 0.953 | 6253.389 |
2011 | 1.546 | 0.824 | 5406.917 | 2046 | 3.033 | 0.954 | 6259.951 |
2012 | 1.536 | 0.823 | 5400.356 | 2047 | 3.065 | 0.955 | 6266.512 |
2013 | 1.529 | 0.822 | 5393.794 | 2048 | 3.097 | 0.957 | 6279.636 |
2014 | 2.012 | 0.882 | 5787.501 | 2049 | 3.13 | 0.958 | 6286.198 |
2015 | 2.89 | 0.947 | 6214.018 | 2050 | 3.163 | 0.959 | 6292.759 |
2016 | 3.378 | 0.967 | 6345.254 | 2051 | 3.196 | 0.961 | 6305.883 |
2017 | 2.95 | 0.95 | 6233.703 | 2052 | 3.229 | 0.962 | 6312.445 |
2018 | 2.865 | 0.946 | 6207.456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Fan, X.; Xu, J.; Wang, H. A Study on the Intergenerational Distribution of Ecological Values of Cultivated Land: A Case of Lezhi County, China. Sustainability 2025, 17, 5221. https://doi.org/10.3390/su17115221
Yuan L, Fan X, Xu J, Wang H. A Study on the Intergenerational Distribution of Ecological Values of Cultivated Land: A Case of Lezhi County, China. Sustainability. 2025; 17(11):5221. https://doi.org/10.3390/su17115221
Chicago/Turabian StyleYuan, Li, Xun Fan, Jing Xu, and Haidong Wang. 2025. "A Study on the Intergenerational Distribution of Ecological Values of Cultivated Land: A Case of Lezhi County, China" Sustainability 17, no. 11: 5221. https://doi.org/10.3390/su17115221
APA StyleYuan, L., Fan, X., Xu, J., & Wang, H. (2025). A Study on the Intergenerational Distribution of Ecological Values of Cultivated Land: A Case of Lezhi County, China. Sustainability, 17(11), 5221. https://doi.org/10.3390/su17115221