Climate on the Edge: Impacts and Adaptation in Ethiopia’s Agriculture
Abstract
:1. Introduction
- (i)
- How does climate change currently and potentially impact major cereal crop production and livestock feed quality in Ethiopia?
- (ii)
- What are the positive and negative impacts of climate change on smallholder farmers and pastoralists?
- (iii)
- What adaptation strategies have been proposed to mitigate these impacts?
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Data Extraction
- Past climate impact assessments;
- Future climate projections;
- Climate change impacts on cereal crop production;
- Effects on livestock production and feed quality;
- Potential adaptation strategies.
2.5. CLIFOOD Study Topics and Alignment with the SDGs
- Climate projections for Ethiopia using high-resolution CMIP6 data;
- Assessments of climate extremes and their impacts;
- Impacts of climate change on maize and wheat production;
- Farmers’ perceptions of climate change and their adaptation strategies;
- Model-based yield gap analysis for sorghum;
- Effects of elevated CO2 and temperature on barley;
- Locust infestations and their effects on agricultural productivity;
- Characterization of Ethiopia’s climate regions;
- Seasonal rainfall prediction for improved agricultural planning;
- Wheat production pathways and their implications for food security;
- Production, reproduction, and climate adaptation traits of Boran cattle;
- Nutritional value of indigenous crops and their role in livestock feed.
3. Results and Discussion
3.1. Past Climate Impact Assessment Based on Climatic Regions of Ethiopia
3.2. Climate Change Impact Projections in Ethiopia
3.3. Effect of Climate Change on Cereal Crops Production in Ethiopia
3.4. Effect of Climate Change on Feed Quality and Production of Livestock in Ethiopia
3.4.1. Temperature-Related Effects
3.4.2. Drought-Related Effects
3.4.3. Carbon Dioxide (CO2)-Related Effects
3.5. Potential Adaptation Strategies to Combat Climate Change and Enhance Cereal Crop Yield and Livestock Feed Quality
3.5.1. Agronomic Interventions
3.5.2. Technological and Management Approaches
3.5.3. Economic and Policy-Based Strategies
4. Conclusions, Policy Implications, and Future Research Directions
- Expanding financial incentives (e.g., subsidies, grants) for climate-smart agriculture and resilient crop varieties;
- Strengthening early-warning climate systems by improving farmers’ access to real-time weather forecasts;
- Encouraging public–private partnerships in climate adaptation research;
- Developing policies that integrate indigenous knowledge with modern scientific climate solutions.
- Multi-Factor Climate Impact on Forage Quality: Conduct long-term field trials to assess the combined effects of elevated CO₂, heat stress, and rainfall variability on forage nutritional composition, digestibility, and secondary metabolite production. This will help predict future feed availability and quality under changing climatic conditions.
- Livestock Metabolic and Physiological Adaptations: Investigate the metabolic, hormonal, and physiological responses of different livestock species to climate-induced nutritional stress. This includes studying changes in energy metabolism, gut microbiome composition, immune function, and reproductive performance under varying climate scenarios.
- Development of Climate-Resilient Livestock Breeds: Explore genetic and cross-breeding strategies to develop livestock breeds that are more tolerant to heat stress, feed scarcity, and disease outbreaks. This research should integrate genomic selection, epigenetic studies, and adaptive trait mapping to enhance resilience in both indigenous and commercial breeds.
- Precision Livestock Farming for Climate Adaptation: Investigate the potential of smart farming technologies, including remote sensing, precision feeding, and automated health monitoring, to optimize livestock production in the face of climate change.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falegnami, A.; Romano, E.; Tomassi, A. The emergence of the GreenSCENT competence framework: A constructivist approach: The GreenSCENT theory. In The European Green Deal in Education, 1st ed.; Andrea, F., Elpidio, R., Andrea, T., Eds.; Taylor and Francis Group: Abingdon, UK, 2024; pp. 204–216. ISBN 9781003492597. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; p. 881. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; Cambridge University Press: Cambridge, UK, 2023; pp. 1–34. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2022: Contribution of Working Group Il to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather. Clim. Extrem. 2014, 3, 67–79. [Google Scholar] [CrossRef]
- World Bank. Commodity Price Data Cycles; World Bank: Washington, DC, USA, 2023. [Google Scholar]
- O’Neill, A. Ethiopia: Share of Economic Sectors in the Gross Domestic Product (GDP) from 2012 to 2022. Statista. Available online: https://www.statista.com/statistics/455149/share-of-economic-sectors-in-the-gdp-in-ethiopia/ (accessed on 22 December 2024).
- Ayal, D.Y.; Getahun, A.B.; Ture, K.; Zeleke, T.T.; Tesfaye, B. Climate variability induced household food insecurity coping strategy in Gambella Zuria Woreda, Southwestern, Ethiopia. Clim. Serv. 2023, 30, 2–12. [Google Scholar] [CrossRef]
- Demem, M. Impact and adaptation of climate variability and change on small-holders and agriculture in Ethiopia: A review. Heliyon 2023, 9, 2–11. [Google Scholar] [CrossRef]
- Mekonnen, Z.; Kidemu, M.; Abebe, H.; Semere, M.; Gebreyesus, M.; Worku, A.; Tesfaye, M.; Chernet, A. Traditional knowledge and institutions for sustainable climate change adaptation in Ethiopia. Curr. Res. Environ. Sustain. 2021, 3, 1–11. [Google Scholar] [CrossRef]
- CSA—Central Statistical Agency. The Federal democratic republic of Ethiopia central statistical agency. In Agricultural Sample Survey Volume I Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season), 2020/21 (2013 E.C); Statistical Bulletin: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- CSA—Central Statistical Agency. The Federal democratic republic of Ethiopia central statistical agency. In Agricultural Sample Survey Volume I Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season), 2021/222 (2014 E.C); Statistical Bulletin: Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Awulachew, M.T. Teff (Eragrostis Abyssinica) and teff based fermented cereals. J. Health Environ. Res. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Kassaye, A.Y.; Shao, G.; Wang, X.; Shifaw, E.; Wu, S. Impact of climate change on the staple food crops yield in Ethiopia: Implications for food security. Theor. Appl. Climatol. 2021, 145, 327–343. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization. Impact of the Ukraine-Russia Conflict on Global Food Security and Related Matters Under the Mandate of the Food and Agriculture Organization of the United Nations (FAO); FAO: Rome, Italy, 2022. [Google Scholar]
- Kassegn, A.; Endris, E. Review on socio-economic impacts of ‘Triple Threats’ of COVID-19, desert locusts, and floods in East Africa: Evidence from Ethiopia. Cogent Soc. Sci. 2021, 7, 1885122. [Google Scholar] [CrossRef]
- Ayalew, H.; Berhane, G.; Wondale, M.; Breisinger, C. Farming Under Fire: The Interplay of Armed Conflict and Climate-Induced Weather Disruptions in Agricultural Input Use; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2024. [Google Scholar]
- Mengistu, S.; Nurfeta, A.; Tolera, A.; Bezabih, M.; Adie, A.; Wolde-Meskel, E.; Zenebe, M. Livestock production challenges and improved forage production efforts in the Damot Gale District of Wolaita Zone, Ethiopia. Adv. Agric. 2021, 2021, 2–10. [Google Scholar] [CrossRef]
- Asmare, B.; Mekuriaw, Y. Assessment of livestock production system and feed balance in watersheds of North Achefer District, Ethiopia. J. Agric. Environ. Int. Dev. (JAEID) 2017, 111, 175–190. [Google Scholar] [CrossRef]
- Tadesse, A.; Melesse, A.; Titze, N.; Rodehutscord, M. Effect of substituting concentrate mix with Cajanus cajan leaf on growth performance traits and carcass components of yearling rams and its potential in mitigating methane production. J. Agric. Rural Dev. Trop. Subtrop. (JARTS) 2024, 125, 115–126. [Google Scholar] [CrossRef]
- Sinore, T.; Wang, F. Impact of climate change on agriculture and adaptation strategies in Ethiopia: A meta-analysis. Heliyon 2024, 10, e26103. [Google Scholar] [CrossRef] [PubMed]
- Bogale, G.A.; Erena, Z.B. Drought vulnerability and impacts of climate change on livestock production and productivity in different agro-Ecological zones of Ethiopia. J. Appl. Anim. Res. 2022, 50, 471–489. [Google Scholar] [CrossRef]
- Kramer, B. Climate insurance: Opportunities for improving agricultural risk management in Kenya. In Food Systems Transformation in Kenya: Lessons from the Past and Policy Options for the Future, 1st ed.; Breisinger, C., Keenan, M., Mbuthia, J., Njuki, J., Eds.; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2023; pp. 285–304. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Pearce, T.; Ford, J.D. Systematic review approaches for climate change adaptation research. Reg. Environ. Chang. 2015, 15, 755–769. [Google Scholar] [CrossRef]
- Rettie, F.M.; Gayler, S.; KD Weber, T.; Tesfaye, K.; Streck, T. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. PLoS ONE. 2022, 17, e0262951. [Google Scholar] [CrossRef] [PubMed]
- Rettie, F.M.; Gayler, S.; Weber, T.K.; Tesfaye, K.; Streck, T. High-resolution CMIP6 climate projections for Ethiopia using the gridded statistical downscaling method. Sci. Data 2023, 10, 442. [Google Scholar] [CrossRef]
- Rettie, F.M.; Gayler, S.; Weber, T.K.; Tesfaye, K.; Streck, T. Comprehensive assessment of climate extremes in high-resolution CMIP6 projections for Ethiopia. Front. Environ. Sci. 2023, 11, 1127265. [Google Scholar] [CrossRef]
- Rettie, F.M.; Gayler, S.; Weber, T.K.; Tesfaye, K.; Bendel, D.; Streck, T. Regional-scale evaluation of uncertainty in the multi-model simulation of climate change impact on maize and wheat yield. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Gardi, M.W.; Malik, W.A.; Haussmann, B.I. Impacts of carbon dioxide enrichment on landrace and released Ethiopian barley (Hordeum vulgare L.) cultivars. Plants 2021, 10, 2691. [Google Scholar] [CrossRef]
- Gardi, M.W.; Haussmann, B.I.; Malik, W.A.; Högy, P. Effects of elevated atmospheric CO2 and its interaction with temperature and nitrogen on yield of barley (Hordeum vulgare L.): A meta-analysis. Plant Soil. 2022, 475, 535–550. [Google Scholar] [CrossRef]
- Gardi, M.W.; Memic, E.; Zewdu, E.; Graeff-Hönninger, S. Simulating the effect of climate change on barley yield in Ethiopia with the DSSAT-CERES-Barley model. Agron. J. 2022, 114, 1128–1145. [Google Scholar] [CrossRef]
- Habte, A.; Mamo, G.; Worku, W.; Ayalew, D.; Gayler, S. Spatial variability and temporal trends of climate change in Southwest Ethiopia: Association with farmers’ perception and their adaptation strategies. Adv. Meteorol. 2021, 2021, 2–13. [Google Scholar] [CrossRef]
- Habte, A.; Worku, W.; Mamo, G.; Ayalew, D.; Gayler, S. Rainfall variability and its seasonal events with associated risks for rainfed crop production in Southwest Ethiopia. Cogent Food Agric. 2023, 9, 2231693. [Google Scholar] [CrossRef]
- Ware, M.B.; Mori, P.; Warrach-Sagi, K.; Jury, M.; Schwitalla, T.; Beyene, K.H.; Wulfmeyer, V. Climate regionalization using objective multivariate clustering methods and characterization of climatic regions in Ethiopia. Meteorol. Z. 2022, 10, 432–454. [Google Scholar] [CrossRef]
- Habte, A.; Worku, W.; Gayler, S.; Ayalew, D.; Mamo, G. Model-based yield gap analysis and constraints of rainfed sorghum production in Southwest Ethiopia. J. Agric. Sci. 2020, 158, 855–869. [Google Scholar] [CrossRef]
- Ejeta, A.T. Extreme Climate Shock and Locust Infestation Impacts in Ethiopia: Farm-Level Agent-Based Simulation of Adaptation and Policy Options. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 2022. Available online: http://opus.uni-hohenheim.de/volltexte/2023/2154/ (accessed on 21 December 2024).
- Senbeta, A.F.; Worku, W.; Gayler, S.; Naimi, B. Unveiling Wheat’s Future Amidst Climate Change in the Central Ethiopia Region. Agriculture 2024, 14, 1408. [Google Scholar] [CrossRef]
- Senbeta, A.F.; Worku, W.; Gayler, S. Spatiotemporal climate variability and food security implications in the Central Ethiopia Region. Sci. Afr. 2024, 26, e02390. [Google Scholar] [CrossRef]
- Kayamo, S.E.; Troost, C.; Yismaw, H.; Berger, T. The financial value of seasonal forecast-based cultivar choice: Assessing the evidence in the Central Rift Valley of Ethiopia. Clim. Risk Manag. 2023, 41, 100541. [Google Scholar] [CrossRef]
- Bayssa, M.; Yigrem, S.; Betsha, S.; Tolera, A. Production, reproduction and some adaptation characteristics of Boran cattle breed under changing climate: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0244836. [Google Scholar] [CrossRef]
- Yimer, T.; Abera, G.; Beyene, S.; Rasche, F. Optimizing maize–bean cropping systems for sustainable intensification in southern Ethiopia. Agron. J. 2022, 114, 3283–3296. [Google Scholar] [CrossRef]
- Yimer, T.; Abera, G.; Beyene, S.; Ravensbergen, A.P.P.; Ukato, A.; Rasche, F. Optimizing fertilization schemes to narrow the maize yield gap in smallholder farming systems in southern Ethiopia. Heliyon 2024, 10, 2–14. [Google Scholar] [CrossRef]
- Wendimu, A.; Yoseph, T.Y.; Ayalew, T. Irrigation as a crucial tool for the attainment of sustainable development goals through hunger and poverty alleviation in Ethiopia: A review. Preprints 2022, 2022110468. [Google Scholar] [CrossRef]
- Wendimu, A.; Yoseph, T.; Ayalew, T. Ditching phosphatic fertilizers for phosphate-solubilizing biofertilizers: A step towards sustainable agriculture and environmental health. Sustainability 2023, 15, 1713. [Google Scholar] [CrossRef]
- Tadesse, A.; Rodehutscord, M.; Melesse, A. Replacement of concentrate mix with sweet potato vine on weight gain of rams and its potential in methane reduction. In Proceedings of the Ankara International Congress on Scientific Research-VII, Ankara, Türkiye, 2–4 December 2022. [Google Scholar]
- Tadesse, A.; Rodehutscord, M.; Melesse, A. In vitro evaluation of some local browse and leaves for methane emission reduction. In Proceedings of the Ankara International Congress on Scientific Research-VII, Ankara, Türkiye, 2–4 December 2022. [Google Scholar]
- Tadesse, A.; Melesse, A.; Rodehutscord, M. Partial substitution of concentrate mix with dried Leucaena leucocephala leaf reduced in vitro methane production in rams without affecting the nutrient intake and performance traits. Trop. Subtrop. Agroecosyst. 2022, 25, 1–12. [Google Scholar] [CrossRef]
- Belete, S.; Tolera, A.; Betsha, S.; Dickhöfer, U. Feeding Values of Indigenous Browse Species and Forage Legumes for the Feeding of Ruminants in Ethiopia: A Meta-Analysis. Agriculture 2024, 14, 1475. [Google Scholar] [CrossRef]
- Senbeta, A.F.; Worku, W. Ethiopia’s wheat production pathways to self-sufficiency through land area expansion, irrigation advance, and yield gap closure. Heliyon 2023, 9, e20720. [Google Scholar] [CrossRef]
- Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 3. [Google Scholar] [CrossRef]
- Teka, A.M.; Woldu, G.T.; Fre, Z. Status and determinants of poverty and income inequality in pastoral and agro-pastoral communities: Household-based evidence from Afar Regional State, Ethiopia. World Dev. Perspect. 2019, 15, 100123. [Google Scholar] [CrossRef]
- Tesfahunegn, G.B.; Gebru, T.A. Smallholder farmers’ level of understanding on the impacts of climate change on water resources in northern Ethiopia catchment. GeoJournal 2022, 87, 565–583. [Google Scholar] [CrossRef]
- Nigatu, G.T.; Abebe, B.A.; Grum, B.; Kebedew, M.G.; Semane, E.M. Investigation of Flood incidence causes and mitigation: Case study of Ribb river, northwestern Ethiopia. Nat. Hazards Res. 2023, 3, 408–419. [Google Scholar] [CrossRef]
- Asmare, D. Landslide hazard zonation and evaluation around Debre Markos town, NW Ethiopia—A GIS-based bivariate statistical approach. Sci. Afr. 2022, 15, e01129. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Summary for policy makers. In Climate Change: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK, 2007. [Google Scholar]
- Yagaso, Z.S.; Bayu, T.Y.; Bedane, M.D. The interplay between Rainfall, temperature variability, and Food Security in Southern Ethiopia. Sustain. Clim. Chang. 2024, 17, 36–53. [Google Scholar] [CrossRef]
- Gebru, B.M.; Lee, W.-K.; Khamzina, A.; Wang, S.W.; Cha, S.; Song, C.; Lamchin, M. Spatiotemporal multi-index analysis of desertification in dry Afromontane forests of northern Ethiopia. Environ. Dev. Sustain. 2021, 23, 423–450. [Google Scholar] [CrossRef]
- Das, T.; Majumdar, M.H.D.; Devi, R.T.; Rajesh, T. Climate change impacts on plant diseases. SAARC J. Agric. 2016, 14, 200–209. [Google Scholar] [CrossRef]
- Olasunkanmi, D. Challenges of soil fertility management under changing climatic conditions: A review. GSJ. 2019, 7, 1–13. [Google Scholar] [CrossRef]
- Gizaw, W.; Assegid, D. Trend of cereal crops production area and productivity, in Ethiopia. J. Cereals Oilseeds 2021, 12, 9–17. [Google Scholar] [CrossRef]
- Reynolds, M.; Kropff, M.; Crossa, J.; Koo, J.; Kruseman, G.; Molero Milan, A.; Rutkoski, J.; Schulthess, U.; Sonder, K.; Tonnang, H. Role of modelling in international crop research: Overview and some case studies. Agronomy 2018, 8, 291. [Google Scholar] [CrossRef]
- Feleke, H.G.; Savage, M.; Tesfaye, K. Calibration and validation of APSIM–Maize, DSSAT CERES–Maize and AquaCrop models for Ethiopian tropical environments. S. Afr. J. Plant Soil 2021, 38, 36–51. [Google Scholar] [CrossRef]
- Feleke, H.G.; Savage, M.J.; Fantaye, K.T.; Rettie, F.M. The role of crop management practices and adaptation options to minimize the impact of climate change on maize (Zea mays L.) production for Ethiopia. Atmosphere 2023, 14, 497. [Google Scholar] [CrossRef]
- Nsafon, B.E.K.; Lee, S.-C.; Huh, J.-S. Responses of yield and protein composition of wheat to climate change. Agriculture 2020, 10, 59. [Google Scholar] [CrossRef]
- Alimagham, S.; van Loon, M.P.; Ramirez-Villegas, J.; Adjei-Nsiah, S.; Baijukya, F.; Bala, A.; Chikowo, R.; Silva, J.V.; Soulé, A.M.; Taulya, G.; et al. Climate change impact and adaptation of rainfed cereal crops in sub-Saharan Africa. Eur. J. Agron. 2024, 155, 127137. [Google Scholar] [CrossRef]
- Rao, A.N.; Korres, N.E. Climate Change and Ecologically Based Weed Management. In Ecologically-Based Weed Management: Concepts, Challenges, and Limitations; Wiley: Hoboken, NJ, USA, 2023; pp. 23–48. [Google Scholar] [CrossRef]
- Pace, B.A.; Perales, H.R.; Gonzalez-Maldonado, N.; Mercer, K.L. Physiological traits contribute to growth and adaptation of Mexican maize landraces. PLoS ONE 2024, 19, e0290815. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Li, G.; Yang, H.; Yang, J.; Liu, H.; Struik, P.C.; Luo, W.; Yin, X.; Di, L.; Guo, X. Do all leaf photosynthesis parameters of rice acclimate to elevated CO2, elevated temperature, and their combination, in FACE environments? Glob. Chang. Biol. 2018, 24, 1685–1707. [Google Scholar] [CrossRef] [PubMed]
- Fontes, F.; Gorst, A.; Palmer, C. Threshold effects of extreme weather events on cereal yields in India. Clim. Chang. 2021, 165, 2–20. [Google Scholar] [CrossRef]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Summary for Policymakers in Climate Change. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change. Impacts, Adaptation, and Vulnerability. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M., Canziani, O., Palutikof, J., van der Linden, P., Hanson, C., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lotze-Campen, H.; Schellnhuber, H.-J. Climate impacts and adaptation options in agriculture: What we know and what we don’t know. J. Verbrauch. Leb. 2009, 4, 145–150. [Google Scholar] [CrossRef]
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef]
- Brychkova, G.; Kekae, K.; McKeown, P.C.; Hanson, J.; Jones, C.S.; Thornton, P.; Spillane, C. Climate change and land-use change impacts on future availability of forage grass species for Ethiopian dairy systems. Sci. Rep. 2022, 12, 20512. [Google Scholar] [CrossRef]
- Tiruneh, S.; Tegene, F. Impacts of climate change on livestock production and productivity and different adaptation strategies in Ethiopia. J. Appl. Adv. Res. 2018, 3, 52–58. [Google Scholar] [CrossRef]
- Lee, M.A.; Davis, A.P.; Chagunda, M.G.; Manning, P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017, 14, 1403–1417. [Google Scholar]
- El Hage, F.; Legland, D.; Borrega, N.; Jacquemot, M.-P.; Griveau, Y.; Coursol, S.; Méchin, V.; Reymond, M. Tissue lignification, cell wall p-coumaroylation and degradability of maize stems depend on water status. J. Agric. Food Chem. 2018, 66, 4800–4808. [Google Scholar] [CrossRef]
- Goma, A.A.; Phillips, C.J. The impact of anthropogenic climate change on Egyptian livestock production. Animals 2021, 11, 3127. [Google Scholar] [CrossRef] [PubMed]
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Bhatta, R. Physiological adaptability of livestock to heat stress: An updated review. J. Anim. Behav. Biometeorol. 2020, 6, 62–71. [Google Scholar] [CrossRef]
- Catunda, K.L.; Churchill, A.C.; Zhang, H.; Power, S.A.; Moore, B.D. Short-term drought is a stronger driver of plant morphology and nutritional composition than warming in two common pasture species. J. Agron. Crop Sci. 2022, 208, 841–852. [Google Scholar] [CrossRef]
- Moore, K.J.; Lenssen, A.W.; Fales, S.L. Factors affecting forage quality. Forages Sci. Grassl. Agric. 2020, 2, 701–717. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef]
- Alulu, V.H.; Shikuku, K.M.; Lepariyo, W.; Paliwal, A.; Galgallo, D.; Gobu, W.; Banerjee, R. The impact of forage condition on household food security in northern Kenya and southern Ethiopia. Food Secur. 2024, 16, 1265–1289. [Google Scholar] [CrossRef]
- Morgan, J.A. Rising atmospheric CO2 and global climate change: Responses and management implications for grazing lands. In Grasslands, 1st ed.; Reynolds, S., Ed.; Taylor and Francis: Oxfordshire, UK, 2019; pp. 235–260. [Google Scholar] [CrossRef]
- Hawkins, J.W.; Komarek, A.M.; Kihoro, E.M.; Nicholson, C.F.; Omore, A.O.; Yesuf, G.U.; Ericksen, P.J.; Schoneveld, G.C.; Rufino, M.C. High-yield dairy cattle breeds improve farmer incomes, curtail greenhouse gas emissions and reduce dairy import dependency in Tanzania. Nat. Food 2022, 3, 957–967. [Google Scholar] [CrossRef]
- Seibert, R.; Donath, T.W.; Moser, G.; Laser, H.; Grünhage, L.; Schmid, T.; Müller, C. Effects of long-term CO2 enrichment on forage quality of extensively managed temperate grassland. Agric. Ecosyst. Environ. 2021, 312, 107347. [Google Scholar] [CrossRef]
- Dumont, B.; Andueza, D.; Niderkorn, V.; Lüscher, A.; Porqueddu, C.; Picon-Cochard, C. A meta-analysis of climate change effects on forage quality in grasslands: Specificities of mountain and Mediterranean areas. Grass Forage Sci. 2015, 70, 239–254. [Google Scholar] [CrossRef]
- Mertens, D.R.; Grant, R.J. Digestibility and intake. Forages Sci. Grassl. Agric. 2020, 2, 609–631. [Google Scholar] [CrossRef]
- Cherney, D.J.; Parsons, D. Predicting forage quality. Forages Sci. Grassl. Agric. 2020, 2, 687–699. [Google Scholar] [CrossRef]
- Leakey, A.D.; Ainsworth, E.A.; Bernacchi, C.J.; Zhu, X.; Long, S.P.; Ort, D.R. Photosynthesis in a CO2-rich atmosphere. In Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation; Springer Nature: Dordrecht, The Netherlands, 2012; pp. 733–768. [Google Scholar] [CrossRef]
- Dong, J.; Li, X.; Duan, Z.-Q. Biomass allocation and organs growth of cucumber (Cucumis sativus L.) under elevated CO2 and different N supply. Arch. Agron. Soil Sci. 2016, 62, 277–288. [Google Scholar] [CrossRef]
- Augustine, D.J.; Blumenthal, D.M.; Springer, T.L.; LeCain, D.R.; Gunter, S.A.; Derner, J.D. Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie. Ecol. Appl. 2018, 28, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bhatta, R.; Gaughan, J.; Dunshea, F.; Lacetera, N. Adaptation of animals to heat stress. Animal 2018, 12, s431–s444. [Google Scholar] [CrossRef]
- Vaghar Seyedin, S.M.; Zeidi, A.; Chamanehpour, E.; Nasri, M.H.F.; Vargas-Bello-Pérez, E. Methane emission: Strategies to reduce global warming in relation to animal husbandry units with emphasis on ruminants. Sustainability 2022, 14, 16897. [Google Scholar] [CrossRef]
- Eugène, M.; Klumpp, K.; Sauvant, D. Methane mitigating options with forages fed to ruminants. Grass Forage Sci. 2021, 76, 196–204. [Google Scholar] [CrossRef]
- Fagundes, G.M.; Benetel, G.; Carriero, M.M.; Sousa, R.L.; Muir, J.P.; Macedo, R.O.; Bueno, I.C. Tannin-rich forage as a methane mitigation strategy for cattle and the implications for rumen microbiota. Anim. Prod. Sci. 2020, 61, 26–37. [Google Scholar] [CrossRef]
- El-Zaiat, H.M.; Kholif, A.; Moharam, M.; Attia, M.; Abdalla, A.L.; Sallam, S.M.A. The ability of tanniniferous legumes to reduce methane production and enhance feed utilization in Barki rams: In vitro and in vivo evaluation. Small Rumin. Res. 2020, 193, 106259. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Bantider, A.; Hassen, A. Determinants in the adoption of climate change adaptation strategies: Evidence from rainfed-dependent smallholder farmers in north-central Ethiopia (Woleka sub-basin). Environ. Dev. Sustain. 2019, 21, 2535–2565. [Google Scholar] [CrossRef]
- Asrat, P.; Simane, B. Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia. Ecol. Process. 2018, 7, 7. [Google Scholar] [CrossRef]
- Addis, Y.; Abirdew, S. Smallholder farmers’ perception of climate change and adaptation strategy choices in Central Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 463–482. [Google Scholar] [CrossRef]
- Gemeda, D.O.; Korecha, D.; Garedew, W. Determinants of climate change adaptation strategies and existing barriers in Southwestern parts of Ethiopia. Clim. Serv. 2023, 30, 100376. [Google Scholar] [CrossRef]
- Tesfaye, T.; Nayak, D. Climate change adaptation measures by farm households in Gedeo zone, Ethiopia: An application of multivariate analysis approach. Environ. Dev. Sustain. 2023, 25, 3183–3209. [Google Scholar] [CrossRef]
- Menesch, J.; Godde, C.; Venables, W.; Renard, D.; Richardson, A.; Cobelli, O.; Waha, K. Agricultural diversification for crop yield stability: A smallholder adaptation strategy to climate variability in Ethiopia. Reg. Environ. Chang. 2023, 23, 34. [Google Scholar] [CrossRef]
- Sedebo, D.A.; Li, G.C.; Abebe, K.A.; Etea, B.G.; Ahiakpa, J.K.; Ouattara, N.B.; Olounlade, A.; Frimpong, S. Smallholder farmers’ climate change adaptation practices contribute to crop production efficiency in southern Ethiopia. Agron. J. 2021, 113, 4627–4638. [Google Scholar] [CrossRef]
- UN—United Nations. Department of Economic and Social Affairs, Sustainable Development. 2023. Available online: https://sdgs.un.org/goals (accessed on 23 February 2024).
- Shavrukov, Y.; Kurishbayev, A.; Jatayev, S.; Shvidchenko, V.; Zotova, L.; Koekemoer, F.; De Groot, S.; Soole, K.; Langridge, P. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front. Plant Sci. 2017, 8, 1950. [Google Scholar] [CrossRef]
- Wasaya, A.; Zhang, X.; Fang, Q.; Yan, Z. Root phenotyping for drought tolerance: A review. Agronomy 2018, 8, 241. [Google Scholar] [CrossRef]
- Derese, S.A.; Shimelis, H.; Laing, M.; Mengistu, F. The impact of drought on sorghum production, and farmer’s varietal and trait preferences, in the north eastern Ethiopia: Implications for breeding. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 424–436. [Google Scholar] [CrossRef]
- Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies: Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [Google Scholar] [CrossRef]
- Habte, E.; Marenya, P.; Beyene, F.; Bekele, A. Reducing susceptibility to drought under growing conditions as set by farmers: The impact of new generation drought tolerant maize varieties in Uganda. Front. Sustain. Food Syst. 2023, 6, 854856. [Google Scholar] [CrossRef]
- Mwamahonje, A.; Eleblu, J.S.Y.; Ofori, K.; Deshpande, S.; Feyissa, T.; Bakuza, W.E. Sorghum production constraints, trait preferences, and strategies to combat drought in Tanzania. Sustainability. 2021, 13, 12942. [Google Scholar] [CrossRef]
- Mekonnen, M.; Abeje, T.; Addisu, S. Integrated watershed management on soil quality, crop productivity and climate change adaptation, dry highland of Northeast Ethiopia. Agric. Syst. 2021, 186, 102964. [Google Scholar] [CrossRef]
- Gashure, S. Adaptation strategies of smallholder farmers to climate variability and change in Konso, Ethiopia. Sci. Rep. 2024, 14, 19203. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, D.; Bewket, W.; Lal, R. Conservation effects on soil quality and climate change adaptability of Ethiopian watersheds. Land Degrad. Dev. 2016, 27, 1603–1621. [Google Scholar] [CrossRef]
- Mosissa, D. Soil and water conservation practices and its contribution to small holder farmers livelihoods in northwest Ethiopia: A shifting syndrome from natural resources rich areas. Mod. Concep. Dev. Agrono. 2019, 3, 362–371. [Google Scholar] [CrossRef]
- Adimassu, Z.; Langan, S.; Johnston, R.; Mekuria, W.; Amede, T. Impacts of soil and water conservation practices on crop yield, run-off, soil loss and nutrient loss in Ethiopia: Review and synthesis. Environ. Manag. 2017, 59, 87–101. [Google Scholar] [CrossRef]
- Abebe, T. Diversity in Homegarden Agroforestry Systems of Southern Ethiopia. Ph.D. Thesis, Wageningen University, Wageningen, The Netherland, 2005. [Google Scholar]
- Rolkier, G.G.; Abebe, T. Agroforestry potentials of under-exploited multipurpose trees and shrubs (MPTS) in lare woreda of gambella region, Ethiopia. Int. J. Sci. Technoledge 2015, 3, 23–39. [Google Scholar]
- Alambo, F.I. Agroforestry-based livelihoods in the face of cultural and socio-economic dynamics in rural Gedeo, Southern Ethiopia. J. Rural. Community Dev. 2020, 15, 113–131. [Google Scholar]
- Gifawesen, S.T.; Tola, F.K.; Duguma, M.S. Review on role of home garden agroforestry practices to improve livelihood of small-scale farmers and climate change adaptation and mitigation. J Plant Sci. 2020, 8, 134–145. [Google Scholar] [CrossRef]
- Darge, A.; Haji, J.; Beyene, F.; Ketema, M. Smallholder farmers’ climate change adaptation strategies in the Ethiopian Rift Valley: The case of home garden agroforestry systems in the Gedeo Zone. Sustainability 2023, 15, 8997. [Google Scholar] [CrossRef]
- Tsegaye, N.T. The impact of agroforestry practice on forest conservation and community livelihood improvement: A case of Buno Bedele Zone of west Ethiopia’S Chora district. Environ. Sustain. Indic. 2023, 17, 100229. [Google Scholar] [CrossRef]
- Kassie, G.W. Agroforestry and land productivity: Evidence from rural Ethiopia. Cogent Food Agric. 2016, 2, 1259140. [Google Scholar] [CrossRef]
- Amare, D.; Wondie, M.; Mekuria, W.; Darr, D. Agroforestry of smallholder farmers in Ethiopia: Practices and benefits. Small-Scale For. 2019, 18, 39–56. [Google Scholar] [CrossRef]
- Meragiaw, M. Role of agroforestry and plantation on climate change mitigation and carbon sequestration in Ethiopia. J. Tree Sci. 2017, 36, 1–15. [Google Scholar] [CrossRef]
- IFAD—International Fund for Agriculture Development. Report No. 2045-ET, IFAD, Addis Ababa. Country Programme Evaluation, Federal Democratic Republic of Ethiopia. 2009. Available online: https://www.ifad.org/documents/38714182/39713017/ethiopia.pdf (accessed on 3 February 2025).
- Gebremeskel, G.; Gebremicael, T.; Girmay, A. Economic and environmental rehabilitation through soil and water conservation, the case of Tigray in northern Ethiopia. J. Arid. Environ. 2018, 151, 113–124. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L. Assessing drought risk and irrigation need in northern Ethiopia. Agric. For. Meteorol. 2011, 151, 425–436. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.; Gowda, P.; Zambreski, Z.; Ciampitti, I. Management options for mid-century maize (Zea mays L.) in Ethiopia. Sci. Total Environ. 2021, 758, 143635. [Google Scholar] [CrossRef]
- Beyene, B.; Tilahun, M.; Alemu, M. The impact of livelihood diversification as a climate change adaptation strategy on poverty level of pastoral households in southeastern and southern Ethiopia. Cogent Soc. Sci. 2023, 9, 2277349. [Google Scholar] [CrossRef]
- Weldegebriel, Z.B.; Prowse, M. Climate variability and livelihood diversification in northern Ethiopia: A case study of Lasta and Beyeda districts. Geogr. J. 2017, 183, 84–96. [Google Scholar] [CrossRef]
- Alexander, S.; Block, P. Integration of seasonal precipitation forecast information into local-level agricultural decision-making using an agent-based model to support community adaptation. Clim. Risk Manag. 2022, 36, 100417. [Google Scholar] [CrossRef]
- Feleke, H.G. Assessing weather forecasting needs of smallholder farmers for climate change adaptation in the Central Rift Valley of Ethiopia. J. Earth Sci. Clim. Chang. 2015, 6, 312. [Google Scholar] [CrossRef]
- Tesfaye, M.Z.; Balana, B.B.; Bizimana, J.-C. Assessment of smallholder farmers’ demand for and adoption constraints to small-scale irrigation technologies: Evidence from Ethiopia. Agric. Water Manag. 2021, 250, 106855. [Google Scholar] [CrossRef]
- Abebe, T.G.; Tamtam, M.R.; Abebe, A.A.; Abtemariam, K.A.; Shigut, T.G.; Dejen, Y.A.; Haile, E.G. Growing use and impacts of chemical fertilizers and assessing alternative organic fertilizer sources in Ethiopia. Appl. Environ. Soil Sci. 2022, 2022, 4738416. [Google Scholar] [CrossRef]
- Balehegn, M.; Balehey, S.; Fu, C.; Liang, W. Indigenous weather and climate forecasting knowledge among Afar pastoralists of north eastern Ethiopia: Role in adaptation to weather and climate variability. Pastoralism 2019, 9, 8. [Google Scholar] [CrossRef]
- Iticha, B.; Husen, A. Adaptation to climate change using indigenous weather forecasting systems in Borana pastoralists of southern Ethiopia. Clim. Dev. 2019, 11, 1507896. [Google Scholar] [CrossRef]
- Ouma, G.; Awuor, F.M.; Makiya, C.R.; Okanda, P. A Framework for Enhancing Adoption of Mobile-based Surveillance for Crop Pest and Disease Management by Farmers in Kenya. J. Agric. Inform. 2024, 15, 42–67. [Google Scholar] [CrossRef]
- Sartas, M.; Mudereri, B.T.; Senge, M.; Rabourn, T.R.; Ogunsami, T.; Uzamushaka, S.; Kihoro, E.; Kangethe, E.; Muzata, B.S.; Guchu, W.; et al. Assessing Delivery and Business Models for High Impact Digital Solutions at Scale: The Case of Rwanda Smart Nkunganire System (SNS). 2024. Available online: https://creativecommons.org/licenses/by/4.0/ (accessed on 20 January 2025).
Study Category | Author and Year | Study Region |
---|---|---|
Climate Change and Crop Yield Projections | Rettie, F.M. et al., 2022 [25], 2023a [26], 2023b [27], 2023c [28] Gardi, M.W. et al., 2021 [29], 2022a [30], 2022b [31] Habte, A. et al., 2021 [32], 2023 [33] | Amhara Region, Ethiopia Central and Western Highlands of Ethiopia Southwest Ethiopia |
Climate Variability and Adaptation Strategies | Ware, M.B. et al., 2022 [34] Habte, A. et al., 2020 [35] Ejeta, A.T., 2023 [36] Senbeta, A.F. et al., 2024a [37], 2024b [38] Kayamo, S.E. et al., 2023 [39] Bayssa, M. et al., 2021 [40] | Northeastern, Northwestern, Southeastern and Southwestern Region Central Ethiopia Region Central Rift Valley of Ethiopia Borana Lowlands of Ethiopia |
Fertilization Strategies and Agricultural Practices | Yimer, T. et al., 2022 [41], 2024 [42] Wendimu, A. et al., 2023a [43], 2023b [44] | Sidama Region, Southern Ethiopia Ethiopia |
Livestock Nutrition and Feed Alternatives | Tadesse, A. et al., 2022a [45], 2022b [46], 2022c [47], 2024 [20] Bayssa, M. et al., 2021 [40] Belete, S. et al., 2024 [48] | Sidama Region, Southern Ethiopia Borana Lowlands of Ethiopia Ethiopia |
Policy Implications | Senbeta, A.F. and Worku, W., 2023 [49] | Ethiopia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feleke, H.G.; Amdie, T.A.; Rasche, F.; Mersha, S.Y.; Brandt, C. Climate on the Edge: Impacts and Adaptation in Ethiopia’s Agriculture. Sustainability 2025, 17, 5119. https://doi.org/10.3390/su17115119
Feleke HG, Amdie TA, Rasche F, Mersha SY, Brandt C. Climate on the Edge: Impacts and Adaptation in Ethiopia’s Agriculture. Sustainability. 2025; 17(11):5119. https://doi.org/10.3390/su17115119
Chicago/Turabian StyleFeleke, Hirut Getachew, Tesfaye Abebe Amdie, Frank Rasche, Sintayehu Yigrem Mersha, and Christian Brandt. 2025. "Climate on the Edge: Impacts and Adaptation in Ethiopia’s Agriculture" Sustainability 17, no. 11: 5119. https://doi.org/10.3390/su17115119
APA StyleFeleke, H. G., Amdie, T. A., Rasche, F., Mersha, S. Y., & Brandt, C. (2025). Climate on the Edge: Impacts and Adaptation in Ethiopia’s Agriculture. Sustainability, 17(11), 5119. https://doi.org/10.3390/su17115119