Deep Learning for Sustainable Aquaculture: Opportunities and Challenges
Abstract
:1. Introduction
2. Typical Deep Learning Models and Their Suitability of Aquaculture
- Superior automatic feature extraction capability: In traditional machine learning workflows, classification tasks typically involve a sequence of stages, including preprocessing, feature extraction, feature selection, learning, and classification [73]. Among these, feature selection is particularly critical and often demands substantial domain expertise, which limits the effectiveness of conventional machine learning in handling natural data [37]. Fish species identification serves as a foundational task in aquaculture, fisheries, and aquatic environment monitoring, with its accuracy directly influencing the effectiveness of resource conservation and the scientific basis of water management decisions. Traditional identification methods are often costly and unsuitable for large-scale deployment. In contrast, deep learning networks eliminate the need for manual feature engineering in image processing tasks [48], significantly reducing training costs compared to expert-driven feature design. As a result, deep learning shows broad application potential in fisheries-related tasks, particularly in scenarios involving image, video, and spatial data analysis. For example, Banan et al. [74] propose a CNN-based identification method that demonstrates strong capabilities in phenotypic feature extraction for fish species recognition.
- Efficient handling of unstructured data: Aquaculture production involves a substantial amount of unstructured data, particularly in relation to interdependent water quality parameters. Traditional machine learning approaches often lack robustness and long-term modeling capabilities when dealing with such data types [75]. Aquatic organisms are highly sensitive to physical and chemical factors such as dissolved oxygen, pH, and temperature; as a result, fluctuations in water quality directly impact production efficiency. Conventional water quality prediction methods often suffer from poor adaptability, low accuracy, and limited stability, making them unsuitable for long-term forecasting tasks. In contrast, attention-enhanced temporal models such as LSTM and Transformer are capable of effectively capturing the long-range temporal dynamics of water quality parameters. For example, Hu et al. [76] developed a deep LSTM-based model for water quality prediction, achieving 98.56% and 98.57% accuracy in pH and temperature forecasting, respectively. Furthermore, tasks such as fish behavior analysis, species recognition, and counting also involve the processing and interpretation of large volumes of unstructured data.
- Real-time monitoring and rapid response: Real-time detection and monitoring are critical for advancing the intelligence and sustainability of aquaculture systems. However, achieving real-time performance requires both high responsiveness and minimal feedback latency, while contending with challenges such as imaging difficulties and the complexity of underwater object detection. Deep learning techniques are capable of extracting high-dimensional features and capturing deep information from data, as well as modeling nonlinear relationships. As a result, they have been widely applied in areas such as water quality monitoring and fish behavior tracking [77]. For instance, Hu et al. [78] propose an improved YOLO-V4 network that successfully enables the real-time detection of underwater feed pellets with higher accuracy and lower computational cost.
3. Main Applications of Deep Learning in Aquaculture
- 1.
- Fish detection, identification, and counting;
- 2.
- Growth prediction and health monitoring;
- 3.
- Intelligent feeding systems;
- 4.
- Water quality monitoring and prediction;
- 5.
- Behavioral recognition and stress analysis.
3.1. Fish Detection, Identification, and Counting
3.1.1. Recognition Based on Video or Image Data
3.1.2. Multi-Fish Tracking and Behavior Analysis
- Complex underwater environments: Low visibility, scattering, and absorption degrade image quality and impair detection performance. Future work should focus on underwater image enhancement and restoration, along with targeted preprocessing algorithms to improve model adaptability.
- Severe occlusion: High fish density results in substantial body overlap, affecting recognition and tracking. Solutions may include scale normalization, optimized camera angles, and structural improvements to YOLO and Faster R-CNN for enhanced robustness and precision.
- Unstable detection accuracy: Existing models struggle with reduced accuracy and efficiency in scenarios involving large size variations, frequent movement, or occlusion. Leveraging large-scale datasets, future research should explore semi-supervised or unsupervised learning to optimize model architectures.
- High equipment costs: The high cost of deep learning-related equipment limits adoption in small- and medium-sized farms. Developing lightweight models and low-cost hardware solutions is crucial for promoting widespread application.
3.2. Growth Prediction and Health Monitoring
- Limited cross-species generalization: Current models are often trained on data from specific species, limiting their applicability to others due to phenotypic differences and inconsistent data distributions.
- Sensitivity to imaging quality: Variations in underwater lighting and turbidity affect image quality and, consequently, diagnostic accuracy.
- High training resource requirements: Deep learning models demand large volumes of high-quality data and stable training conditions, incurring high costs, long development cycles, and sensitivity to environmental factors.
- Lack of multimodal data fusion: Existing approaches mainly focus on visual data. Future systems should integrate images, water quality, sensor readings, and genomic information to build multi-dimensional decision-making models for more comprehensive and accurate disease diagnosis.
3.3. Intelligent Feeding Systems
- Limited generalization: Most models are trained in specific scenarios and exhibit performance degradation under complex real-world conditions such as poor lighting or cluttered backgrounds.
- Challenges with multimodal integration: While unimodal methods (image or acoustic) are easily disrupted, multimodal systems introduce increased training difficulty and architectural complexity.
- Limited robustness: Many models focus solely on feeding behavior and lack mechanisms to respond to abnormal conditions such as disease onset.
- Insufficient adaptability to individual variability: Feeding behavior varies among individual fish, making current models highly specialized with limited generalizability.
3.4. Water Quality Monitoring and Prediction
- Difficulty in high-dimensional data fusion: Water quality is influenced by numerous internal and external factors, resulting in high-dimensional, unstable datasets that current models struggle to integrate and interpret efficiently.
- Complexity in data acquisition: Variability across aquaculture environments makes it difficult to obtain consistent and reusable datasets.
- High computational demands: Deep learning models require significant training and inference time, limiting their responsiveness to rapid changes in water quality.
- Limited cross-regional adaptability: Existing models often fail to generalize across different water bodies, climates, and cultured species, necessitating large volumes of locally sourced data for retraining, which increases deployment costs and development cycles.
3.5. Behavioral Recognition and Stress Analysis
- Lack of data resources: The scarcity of high-quality, annotated datasets for abnormal fish behaviors hinders model generalization.
- High behavioral complexity: Abnormal behaviors manifest in diverse ways, including movement variations, reduced feeding, and color changes, which are difficult to model comprehensively using a single architecture.
- Weak modeling of group behavior: In intensive aquaculture systems, severe occlusion among individuals complicates instance segmentation and interaction modeling.
- Real-time processing burden: High-frame-rate video data impose heavy computational demands, limiting scalability in large-scale deployment scenarios.
4. Datasets, Data Augmentation, and Model Training Strategies
4.1. Public Aquaculture and Underwater Vision Datasets
4.2. Data Acquisition and Augmentation Methods
4.3. Typical Training and Transfer Learning Pipelines
5. Discussions
5.1. Current Challenges
5.2. Future Directions and Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W.; Cavalli, R.O. Aquaculture in Brazil: Past, present and future. Aquac. Rep. 2021, 19, 100611. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, H.; Zhu, N.; Jiang, Y.; Tan, J.; Guo, Y. Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit (GRU). Inf. Process. Agric. 2021, 8, 185–193. [Google Scholar] [CrossRef]
- Yang, J.; Jia, L.; Guo, Z.; Shen, Y.; Li, X.; Mou, Z.; Yu, K.; Lin, J.C.W. Prediction and control of water quality in Recirculating Aquaculture System based on hybrid neural network. Eng. Appl. Artif. Intell. 2023, 121, 106002. [Google Scholar] [CrossRef]
- Haq, K.R.A.; Harigovindan, V. Water quality prediction for smart aquaculture using hybrid deep learning models. IEEE Access 2022, 10, 60078–60098. [Google Scholar]
- Yilmaz, S.; Yilmaz, E.; Dawood, M.A.; Ringø, E.; Ahmadifar, E.; Abdel-Latif, H.M. Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture 2022, 547, 737514. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Zhao, S.; Wang, Q.; Li, D.; Zhao, R. Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++. Comput. Electron. Agric. 2022, 192, 106512. [Google Scholar] [CrossRef]
- Hu, W.C.; Chen, L.B.; Huang, B.K.; Lin, H.M. A computer vision-based intelligent fish feeding system using deep learning techniques for aquaculture. IEEE Sens. J. 2022, 22, 7185–7194. [Google Scholar] [CrossRef]
- Aung, T.; Abdul Razak, R.; Rahiman Bin Md Nor, A. Artificial intelligence methods used in various aquaculture applications: A systematic literature review. J. World Aquac. Soc. 2025, 56, e13107. [Google Scholar] [CrossRef]
- Serra-Toro, C.; Montoliu, R.; Traver, V.J.; Hurtado-Melgar, I.M.; Núnez-Redó, M.; Cascales, P. Assessing water quality by video monitoring fish swimming behavior. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 428–431. [Google Scholar]
- Beyan, C.; Fisher, R.B. A filtering mechanism for normal fish trajectories. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2286–2289. [Google Scholar]
- Liu, C.; Wang, Z.; Li, Y.; Zhang, Z.; Li, J.; Xu, C.; Du, R.; Li, D.; Duan, Q. Research progress of computer vision technology in abnormal fish detection. Aquac. Eng. 2023, 103, 102350. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Aurpa, T.T.; Azad, M.A.K. Fish disease detection using image based machine learning technique in aquaculture. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5170–5182. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Xia, W.K.; Chu, H.Q.; Su, W.H.; Wang, R.F.; Wang, H. A Comprehensive Review of Deep Learning Applications in Cotton Industry: From Field Monitoring to Smart Processing. Plants 2025, 14, 1481. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef]
- Cui, K.; Zhu, R.; Wang, M.; Tang, W.; Larsen, G.D.; Pauca, V.P.; Alqahtani, S.; Yang, F.; Segurado, D.; Lutz, D.; et al. Detection and Geographic Localization of Natural Objects in the Wild: A Case Study on Palms. arXiv 2025, arXiv:2502.13023. [Google Scholar]
- Li, Y.; Wang, H.; Li, Z.; Wang, S.; Dev, S.; Zuo, G. DAANet: Dual Attention Aggregating Network for Salient Object Detection. In Proceedings of the 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), Koh Samui, Thailand, 4–9 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 20–25 June 2021; pp. 6836–6846. [Google Scholar]
- Wang, H.; Zhu, B.; Li, Y.; Gong, K.; Wen, Z.; Wang, S.; Dev, S. SYGNet: A SVD-YOLO based GhostNet for real-time driving scene parsing. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2701–2705. [Google Scholar]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Tang, W.; Cui, K.; Chan, R.H. Optimized hard exudate detection with supervised contrastive learning. In Proceedings of the 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 27–30 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar]
- Wang, R.F.; Tu, Y.H.; Chen, Z.Q.; Zhao, C.T.; Su, W.H. A Lettpoint-Yolov11l Based Intelligent Robot for Precision Intra-Row Weeds Control in Lettuce. 2025. Available online: https://ssrn.com/abstract=5162748 (accessed on 20 May 2025).
- Zhao, C.T.; Wang, R.F.; Tu, Y.H.; Pang, X.X.; Su, W.H. Automatic lettuce weed detection and classification based on optimized convolutional neural networks for robotic weed control. Agronomy 2024, 14, 2838. [Google Scholar] [CrossRef]
- Wang, R.F.; Su, W.H. The application of deep learning in the whole potato production Chain: A Comprehensive review. Agriculture 2024, 14, 1225. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Chakraborty, S.; Varatharajoo, R.; Gite, S.; Alamri, A. Deep-Transfer-Learning Strategies for Crop Yield Prediction Using Climate Records and Satellite Image Time-Series Data. Remote Sens. 2024, 16, 4804. [Google Scholar] [CrossRef]
- Razavi, M.; Mavaddati, S.; Koohi, H. ResNet deep models and transfer learning technique for classification and quality detection of rice cultivars. Expert Syst. Appl. 2024, 247, 123276. [Google Scholar] [CrossRef]
- Subeesh, A.; Kumar, S.P.; Chakraborty, S.K.; Upendar, K.; Chandel, N.S.; Jat, D.; Dubey, K.; Modi, R.U.; Khan, M.M. UAV imagery coupled deep learning approach for the development of an adaptive in-house web-based application for yield estimation in citrus orchard. Measurement 2024, 234, 114786. [Google Scholar] [CrossRef]
- Tsai, S.M.; Chuang, M.L.; Huang, P.S. Detection and counting of algae based on deep learning. In Proceedings of the 2022 IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 597–598. [Google Scholar]
- Kaewta, C.; Pitakaso, R.; Khonjun, S.; Srichok, T.; Luesak, P.; Gonwirat, S.; Enkvetchakul, P.; Jutagate, A.; Jutagate, T. Application of AMIS-optimized vision transformer in identifying disease in Nile Tilapia. Comput. Electron. Agric. 2024, 227, 109676. [Google Scholar] [CrossRef]
- Hamzaoui, M.; Ould-Elhassen Aoueileyine, M.; Romdhani, L.; Bouallegue, R. An improved deep learning model for underwater species recognition in aquaculture. Fishes 2023, 8, 514. [Google Scholar] [CrossRef]
- VP, H.; KP, R.A.H.; Bhide, A. Attention-driven LSTM and GRU deep learning techniques for precise water quality prediction in smart aquaculture. Aquac. Int. 2024, 32, 8455–8478. [Google Scholar]
- Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 1–20. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [Google Scholar] [CrossRef]
- Liu, H.; Ma, X.; Yu, Y.; Wang, L.; Hao, L. Application of deep learning-based object detection techniques in fish aquaculture: A review. J. Mar. Sci. Eng. 2023, 11, 867. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, R.F.; Cui, K. A Local Perspective-based Model for Overlapping Community Detection. arXiv 2025, arXiv:2503.21558. [Google Scholar]
- Zhou, G.; Wang, R.F. The Heterogeneous Network Community Detection Model Based on Self-Attention. Symmetry 2025, 17, 432. [Google Scholar] [CrossRef]
- Meng, S.; Shi, Z.; Li, G.; Peng, M.; Liu, L.; Zheng, H.; Zhou, C. A novel deep learning framework for landslide susceptibility assessment using improved deep belief networks with the intelligent optimization algorithm. Comput. Geotech. 2024, 167, 106106. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, N.; Bao, X.; Wu, J.; Cui, X. Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion. Environ. Model. Softw. 2024, 178, 106091. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Qin, Y.M.; Tu, Y.H.; Li, T.; Ni, Y.; Wang, R.F.; Wang, H. Deep Learning for Sustainable Agriculture: A Systematic Review on Applications in Lettuce Cultivation. Sustainability 2025, 17, 3190. [Google Scholar] [CrossRef]
- Li, Z.; Sun, C.; Wang, H.; Wang, R.F. Hybrid Optimization of Phase Masks: Integrating Non-Iterative Methods with Simulated Annealing and Validation via Tomographic Measurements. Symmetry 2025, 17, 530. [Google Scholar] [CrossRef]
- Cui, K.; Tang, W.; Zhu, R.; Wang, M.; Larsen, G.D.; Pauca, V.P.; Alqahtani, S.; Yang, F.; Segurado, D.; Fine, P.; et al. Real-time localization and bimodal point pattern analysis of palms using uav imagery. arXiv 2024, arXiv:2410.11124. [Google Scholar]
- Zhang, W.; Ma, M.; Jiang, Y.; Lian, R.; Wu, Z.; Cui, K.; Ma, X. Center-guided Classifier for Semantic Segmentation of Remote Sensing Images. arXiv 2025, arXiv:2503.16963. [Google Scholar]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A review of convolutional neural networks in computer vision. Artif. Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61–67. [Google Scholar]
- Cui, K.; Shao, Z.; Larsen, G.; Pauca, V.; Alqahtani, S.; Segurado, D.; Pinheiro, J.; Wang, M.; Lutz, D.; Plemmons, R.; et al. PalmProbNet: A Probabilistic Approach to Understanding Palm Distributions in Ecuadorian Tropical Forest via Transfer Learning. In Proceedings of the 2024 ACM Southeast Conference, Marietta, GA, USA, 18–20 April 2024; pp. 272–277. [Google Scholar]
- Li, J.; Xu, W.; Deng, L.; Xiao, Y.; Han, Z.; Zheng, H. Deep learning for visual recognition and detection of aquatic animals: A review. Rev. Aquac. 2023, 15, 409–433. [Google Scholar] [CrossRef]
- Feng, J.; Yang, L.T.; Ren, B.; Zou, D.; Dong, M.; Zhang, S. Tensor recurrent neural network with differential privacy. IEEE Trans. Comput. 2023, 73, 683–693. [Google Scholar] [CrossRef]
- Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [Google Scholar]
- Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer Nature: Dordrecht, The Netherlands, 2012; pp. 37–45. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [PubMed]
- Camalan, S.; Cui, K.; Pauca, V.P.; Alqahtani, S.; Silman, M.; Chan, R.; Plemmons, R.J.; Dethier, E.N.; Fernandez, L.E.; Lutz, D.A. Change detection of amazonian alluvial gold mining using deep learning and sentinel-2 imagery. Remote Sens. 2022, 14, 1746. [Google Scholar] [CrossRef]
- Ma, M.; Mao, Z. Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Trans. Ind. Inform. 2020, 17, 1658–1667. [Google Scholar] [CrossRef]
- Li, W.; Wei, Y.; An, D.; Jiao, Y.; Wei, Q. LSTM-TCN: Dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network. Environ. Sci. Pollut. Res. 2022, 29, 39545–39556. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar]
- Barth, R.; Hemming, J.; Van Henten, E.J. Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation. Comput. Electron. Agric. 2020, 173, 105378. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, D.; Olaniyi, E.; Huang, Y. Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review. Comput. Electron. Agric. 2022, 200, 107208. [Google Scholar] [CrossRef]
- Bakht, A.B.; Jia, Z.; Din, M.U.; Akram, W.; Saoud, L.S.; Seneviratne, L.; Lin, D.; He, S.; Hussain, I. Mula-gan: Multi-level attention gan for enhanced underwater visibility. Ecol. Inform. 2024, 81, 102631. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Wang, M.; Lai, T.; Zhang, M. Self-supervised transformer-based pre-training method with General Plant Infection dataset. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Urumqi, China, 18–20 October 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 189–202. [Google Scholar]
- Gong, B.; Dai, K.; Shao, J.; Jing, L.; Chen, Y. Fish-TViT: A novel fish species classification method in multi water areas based on transfer learning and vision transformer. Heliyon 2023, 9, e16761. [Google Scholar] [CrossRef] [PubMed]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar]
- Zhu, X.; Ruan, Q.; Qian, S.; Zhang, M. A hybrid model based on transformer and Mamba for enhanced sequence modeling. Sci. Rep. 2025, 15, 11428. [Google Scholar] [CrossRef]
- Yang, C.; Xiang, J.; Li, X.; Xie, Y. FishDet-YOLO: Enhanced Underwater Fish Detection with Richer Gradient Flow and Long-Range Dependency Capture through Mamba-C2f. Electronics 2024, 13, 3780. [Google Scholar] [CrossRef]
- Yao, M.; Huo, Y.; Tian, Q.; Zhao, J.; Liu, X.; Wang, R.; Xue, L.; Wang, H. FMRFT: Fusion mamba and DETR for query time sequence intersection fish tracking. arXiv 2024, arXiv:2409.01148. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Prasetyo, E.; Purbaningtyas, R.; Adityo, R.D.; Suciati, N.; Fatichah, C. Combining MobileNetV1 and Depthwise Separable convolution bottleneck with Expansion for classifying the freshness of fish eyes. Inf. Process. Agric. 2022, 9, 485–496. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Banan, A.; Nasiri, A.; Taheri-Garavand, A. Deep learning-based appearance features extraction for automated carp species identification. Aquac. Eng. 2020, 89, 102053. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Liu, J.; Gao, Q.; Dong, S.; Zhou, C. Deep learning for smart fish farming: Applications, opportunities and challenges. Rev. Aquac. 2021, 13, 66–90. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. Sensors 2019, 19, 1420. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Zhao, S.; Lu, J.; Wang, Y.; Li, D.; Zhao, R. Fast detection of cannibalism behavior of juvenile fish based on deep learning. Comput. Electron. Agric. 2022, 198, 107033. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Zhao, Z.; Liu, J.; Yang, X.; Sun, C.; Chen, S.; Li, B.; Zhou, C. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network. Comput. Electron. Agric. 2021, 185, 106135. [Google Scholar] [CrossRef]
- Sung, M.; Yu, S.C.; Girdhar, Y. Vision based real-time fish detection using convolutional neural network. In Proceedings of the OCEANS 2017-Aberdeen, Aberdeen, UK, 19–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Li, D.; Du, L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish. Artif. Intell. Rev. 2022, 55, 4077–4116. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Li, X.; Shang, M.; Hao, J.; Yang, Z. Accelerating fish detection and recognition by sharing CNNs with objectness learning. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Tong, J.; Wang, W.; Xue, M.; Zhu, Z.; Han, J.; Tian, S. Automatic single fish detection with a commercial echosounder using YOLO v5 and its application for echosounder calibration. Front. Mar. Sci. 2023, 10, 1162064. [Google Scholar] [CrossRef]
- Ouis, M.Y.; Akhloufi, M. YOLO-based fish detection in underwater environments. Environ. Sci. Proc. 2023, 29, 44. [Google Scholar]
- Yu, X.; Wang, Y.; An, D.; Wei, Y. Counting method for cultured fishes based on multi-modules and attention mechanism. Aquac. Eng. 2022, 96, 102215. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Li, Y.; Qi, Y.; Li, Z.; Yue, J. LFCNet: A lightweight fish counting model based on density map regression. Comput. Electron. Agric. 2022, 203, 107496. [Google Scholar] [CrossRef]
- Cai, K.; Miao, X.; Wang, W.; Pang, H.; Liu, Y.; Song, J. A modified YOLOv3 model for fish detection based on MobileNetv1 as backbone. Aquac. Eng. 2020, 91, 102117. [Google Scholar] [CrossRef]
- Ben Tamou, A.; Benzinou, A.; Nasreddine, K. Multi-stream fish detection in unconstrained underwater videos by the fusion of two convolutional neural network detectors. Appl. Intell. 2021, 51, 5809–5821. [Google Scholar] [CrossRef]
- Patro, K.S.K.; Yadav, V.K.; Bharti, V.; Sharma, A.; Sharma, A. Fish detection in underwater environments using deep learning. Natl. Acad. Sci. Lett. 2023, 46, 407–412. [Google Scholar] [CrossRef]
- Lumauag, R.; Nava, M. Fish tracking and counting using image processing. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Álvarez-Ellacuría, A.; Palmer, M.; Catalán, I.A.; Lisani, J.L. Image-based, unsupervised estimation of fish size from commercial landings using deep learning. ICES J. Mar. Sci. 2020, 77, 1330–1339. [Google Scholar] [CrossRef]
- Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical convolutional features for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3074–3082. [Google Scholar]
- Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4310–4318. [Google Scholar]
- Lai, Y.C.; Huang, R.J.; Kuo, Y.P.; Tsao, C.Y.; Wang, J.H.; Chang, C.C. Underwater target tracking via 3D convolutional networks. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, 12–15 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 485–490. [Google Scholar]
- Sun, M.; Li, W.; Jiao, Z.; Zhao, X. A multi-target tracking platform for zebrafish based on deep neural network. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 637–642. [Google Scholar]
- Liu, T.; He, S.; Liu, H.; Gu, Y.; Li, P. A robust underwater multiclass fish-school tracking algorithm. Remote Sens. 2022, 14, 4106. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, D.; Zhang, Y.; Zhou, C.; Chen, W. Real-time nondestructive fish behavior detecting in mixed polyculture system using deep-learning and low-cost devices. Expert Syst. Appl. 2021, 178, 115051. [Google Scholar] [CrossRef]
- Wang, G.; Muhammad, A.; Liu, C.; Du, L.; Li, D. Automatic recognition of fish behavior with a fusion of RGB and optical flow data based on deep learning. Animals 2021, 11, 2774. [Google Scholar] [CrossRef]
- Han, F.; Zhu, J.; Liu, B.; Zhang, B.; Xie, F. Fish shoals behavior detection based on convolutional neural network and spatiotemporal information. IEEE Access 2020, 8, 126907–126926. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y. Growth models in aquaculture for hybrid and natural groupers based on early development stage. Aquaculture 2024, 578, 740026. [Google Scholar] [CrossRef]
- Endo, H.; Yonemori, Y.; Hibi, K.; Ren, H.; Hayashi, T.; Tsugawa, W.; Sode, K. Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish. Biosens. Bioelectron. 2009, 24, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hao, Y.; Akhter, M.; Li, D. A novel automatic detection method for abnormal behavior of single fish using image fusion. Comput. Electron. Agric. 2022, 203, 107435. [Google Scholar] [CrossRef]
- Yang, Y.; Xue, B.; Jesson, L.; Wylie, M.; Zhang, M.; Wellenreuther, M. Deep convolutional neural networks for fish weight prediction from images. In Proceedings of the 2021 36th International Conference on Image and Vision Computing New Zealand (IVCNZ), Tauranga, New Zealand, 9–10 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Yoshida, T.; Suzuki, K.; Kogo, K. Estimating body weight of caged sea cucumbers (Apostichopus japonicus) using an underwater time-lapse camera and image analysis by semantic segmentation. Smart Agric. Technol. 2024, 8, 100520. [Google Scholar] [CrossRef]
- Chirdchoo, N.; Mukviboonchai, S.; Cheunta, W. A deep learning model for estimating body weight of live pacific white shrimp in a clay pond shrimp aquaculture. Intell. Syst. Appl. 2024, 24, 200434. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Wang, Q.; Hao, Y. Advanced techniques for the intelligent diagnosis of fish diseases: A review. Animals 2022, 12, 2938. [Google Scholar] [CrossRef]
- Wagner, W.P. Trends in expert system development: A longitudinal content analysis of over thirty years of expert system case studies. Expert Syst. Appl. 2017, 76, 85–96. [Google Scholar] [CrossRef]
- Hu, J.; Li, D.; Duan, Q.; Han, Y.; Chen, G.; Si, X. Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput. Electron. Agric. 2012, 88, 133–140. [Google Scholar] [CrossRef]
- Raj, A.S.; Senthilkumar, S.; Radha, R.; Muthaiyan, R. Enhanced recurrent capsule network with hyrbid optimization model for shrimp disease detection. Sci. Rep. 2025, 15, 10400. [Google Scholar] [CrossRef]
- Wang, D.; Wu, M.; Zhu, X.; Qin, Q.; Wang, S.; Ye, H.; Guo, K.; Wu, C.; Shi, Y. Real-time detection and identification of fish skin health in the underwater environment based on improved YOLOv10 model. Aquac. Rep. 2025, 42, 102723. [Google Scholar] [CrossRef]
- Chai, X.; Sun, T.; Li, Z.; Zhang, Y.; Sun, Q.; Zhang, N.; Qiu, J.; Chai, X. Cross-Shaped Heat Tensor Network for Morphometric Analysis Using Zebrafish Larvae Feature Keypoints. Sensors 2024, 25, 132. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhao, H.; Cui, Z.; Wang, L.; Li, H.; Qu, K.; Cui, H. Early warning system for nocardiosis in largemouth bass (Micropterus salmoides) based on multimodal information fusion. Comput. Electron. Agric. 2024, 226, 109393. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Sun, C.; Wang, Y.; Xu, D.; Zhou, C. Feed intake prediction model for group fish using the MEA-BP neural network in intensive aquaculture. Inf. Process. Agric. 2020, 7, 261–271. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Sun, X.; Hong, Q.; Duan, Q. Intelligent fish feeding based on machine vision: A review. Biosyst. Eng. 2023, 231, 133–164. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z.; Wu, S.; Miao, Z.; Du, L.; Duan, Y. Automatic recognition methods of fish feeding behavior in aquaculture: A review. Aquaculture 2020, 528, 735508. [Google Scholar] [CrossRef]
- Yao, M.; Huo, Y.; Ran, Y.; Tian, Q.; Wang, R.; Wang, H. Neural radiance field-based visual rendering: A comprehensive review. arXiv 2024, arXiv:2404.00714. [Google Scholar]
- Atoum, Y.; Srivastava, S.; Liu, X. Automatic feeding control for dense aquaculture fish tanks. IEEE Signal Process. Lett. 2014, 22, 1089–1093. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, B.; Zheng, Q.; Cai, C.; Gao, X.; Xie, C.; Wu, Y.; Gul, H.S.; Liu, S.; Xu, L. A method for fusing attention mechanism-based ResNet and improved ConvNeXt for analyzing fish feeding behavior. Aquac. Int. 2025, 33, 193. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Du, R.; Kong, Q.; Li, D.; Liu, C. MSIF-MobileNetV3: An improved MobileNetV3 based on multi-scale information fusion for fish feeding behavior analysis. Aquac. Eng. 2023, 102, 102338. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Y.; Liu, Z.; Zhu, Z.; Wu, Y.; Pan, L. A method for detecting feeding fish in ponds based on FFishNet-YOLOv8. Comput. Electron. Agric. 2025, 230, 109873. [Google Scholar] [CrossRef]
- Smith, D.V.; Tabrett, S. The use of passive acoustics to measure feed consumption by Penaeus monodon (giant tiger prawn) in cultured systems. Aquac. Eng. 2013, 57, 38–47. [Google Scholar] [CrossRef]
- Cui, M.; Liu, X.; Zhao, J.; Sun, J.; Lian, G.; Chen, T.; Plumbley, M.D.; Li, D.; Wang, W. Fish feeding intensity assessment in aquaculture: A new audio dataset AFFIA3K and a deep learning algorithm. In Proceedings of the 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP), Xi’an, China, 22–25 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Huang, X.; Ma, X.; Jin, J.; Fan, S.; Xie, Y.; Cai, W. Assessment of feeding intensity of Oreochromis niloticus (tilapia) based on improved VGG16 and voice spectrograms. Aquac. Int. 2025, 33, 246. [Google Scholar] [CrossRef]
- Gu, X.; Zhao, S.; Duan, Y.; Meng, Y.; Li, D.; Zhao, R. MMFINet: A multimodal fusion network for accurate fish feeding intensity assessment in recirculating aquaculture systems. Comput. Electron. Agric. 2025, 232, 110138. [Google Scholar] [CrossRef]
- Jasmin, S.A.; Ramesh, P.; Tanveer, M. An intelligent framework for prediction and forecasting of dissolved oxygen level and biofloc amount in a shrimp culture system using machine learning techniques. Expert Syst. Appl. 2022, 199, 117160. [Google Scholar] [CrossRef]
- Ma, Q.; Li, S.; Qi, H.; Yang, X.; Liu, M. Rapid Prediction and Inversion of Pond Aquaculture Water Quality Based on Hyperspectral Imaging by Unmanned Aerial Vehicles. Water 2025, 17, 517. [Google Scholar] [CrossRef]
- Li, T.; Lu, J.; Wu, J.; Zhang, Z.; Chen, L. Predicting aquaculture water quality using machine learning approaches. Water 2022, 14, 2836. [Google Scholar] [CrossRef]
- Iniyan Arasu, M.; Subha Rani, S.; Thiyagarajan, K.; Ahilan, A. AQUASENSE: Aquaculture water quality monitoring framework using autonomous sensors. Aquac. Int. 2024, 32, 9119–9135. [Google Scholar]
- Ma, Y.; Fang, Q.; Xia, S.; Zhou, Y. Prediction of the Dissolved Oxygen Content in Aquaculture Based on the CNN-GRU Hybrid Neural Network. Water 2024, 16, 3547. [Google Scholar] [CrossRef]
- Song, L.; Song, Y.; Tian, Y.; Quan, J. DECSF-Net: A multi-variable prediction method for pond aquaculture water quality based on cross-source feedback fusion. Aquac. Int. 2025, 33, 1–25. [Google Scholar] [CrossRef]
- Arepalli, P.G.; Naik, K.J. A deep learning-enabled IoT framework for early hypoxia detection in aqua water using light weight spatially shared attention-LSTM network. J. Supercomput. 2024, 80, 2718–2747. [Google Scholar] [CrossRef]
- Arepalli, P.G.; Naik, K.J. An IoT based smart water quality assessment framework for aqua-ponds management using Dilated Spatial-temporal Convolution Neural Network (DSTCNN). Aquac. Eng. 2024, 104, 102373. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Yu, H.; Fang, X.; Song, L.; Li, D.; Chen, Y. Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: A review. Arch. Comput. Methods Eng. 2021, 28, 2785–2816. [Google Scholar] [CrossRef]
- Beyan, C.; Fisher, R.B. Detecting abnormal fish trajectories using clustered and labeled data. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1476–1480. [Google Scholar]
- Du, L.; Lu, Z.; Li, D. Broodstock breeding behaviour recognition based on Resnet50-LSTM with CBAM attention mechanism. Comput. Electron. Agric. 2022, 202, 107404. [Google Scholar] [CrossRef]
- Zhao, J.; Bao, W.; Zhang, F.; Zhu, S.; Liu, Y.; Lu, H.; Shen, M.; Ye, Z. Modified motion influence map and recurrent neural network-based monitoring of the local unusual behaviors for fish school in intensive aquaculture. Aquaculture 2018, 493, 165–175. [Google Scholar] [CrossRef]
- Xu, W.; Wang, P.; Jiang, L.; Xuan, K.; Li, D.; Li, J. Intelligent recognition and behavior tracking of sea cucumber infected with Vibrio alginolyticus based on machine vision. Aquac. Eng. 2023, 103, 102368. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Du, L.; Zheng, Y.; Wang, Z. Recent advances in intelligent recognition methods for fish stress behavior. Aquac. Eng. 2022, 96, 102222. [Google Scholar] [CrossRef]
- Mei, S.; Chen, Y.; Qin, H.; Yu, H.; Li, D.; Sun, B.; Yang, L.; Liu, Y. A Method Based on Knowledge Distillation for Fish School Stress State Recognition in Intensive Aquaculture. CMES-Comput. Model. Eng. Sci. 2022, 131, 1315–1335. [Google Scholar] [CrossRef]
- Fisher, R.B.; Chen-Burger, Y.H.; Giordano, D.; Hardman, L.; Lin, F.P. Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data; Springer: Berlin/Heidelberg, Germany, 2016; Volume 104. [Google Scholar]
- Spampinato, C.; Palazzo, S.; Boom, B.; Fisher, R.B. Overview of the LifeCLEF 2014 Fish Task. In Proceedings of the CLEF (Working Notes), Sheffield, UK, 15–18 September 2014; pp. 616–624. [Google Scholar]
- Choi, S. Fish Identification in Underwater Video with Deep Convolutional Neural Network: SNUMedinfo at LifeCLEF Fish task 2015. In Proceedings of the CLEF (Working Notes), Toulouse, France, 8–11 September 2015; pp. 1–10. [Google Scholar]
- Joly, A.; Goëau, H.; Glotin, H.; Spampinato, C.; Bonnet, P.; Vellinga, W.P.; Champ, J.; Planqué, R.; Palazzo, S.; Müller, H. LifeCLEF 2016: Multimedia life species identification challenges. In Proceedings of the Experimental IR Meets Multilinguality, Multimodality, and Interaction: 7th International Conference of the CLEF Association (CLEF 2016), Évora, Portugal, 5–8 September 2016; Proceedings 7. Springer: Berlin/Heidelberg, Germany, 2016; pp. 286–310. [Google Scholar]
- Ali-Gombe, A.; Elyan, E.; Jayne, C. Fish classification in context of noisy images. In Proceedings of the Engineering Applications of Neural Networks: 18th International Conference (EANN 2017), Athens, Greece, 25–27 August 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 216–226. [Google Scholar]
- Sun, M.; Yang, X.; Xie, Y. Deep learning in aquaculture: A review. J. Comput 2020, 31, 294–319. [Google Scholar]
- Li, C.; Guo, J.; Guo, C. Emerging from water: Underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 2018, 25, 323–327. [Google Scholar] [CrossRef]
- Bianco, G.; Muzzupappa, M.; Bruno, F.; Garcia, R.; Neumann, L. A new color correction method for underwater imaging. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 25–32. [Google Scholar] [CrossRef]
- Gomes-Pereira, J.N.; Auger, V.; Beisiegel, K.; Benjamin, R.; Bergmann, M.; Bowden, D.; Buhl-Mortensen, P.; De Leo, F.C.; Dionísio, G.; Durden, J.M.; et al. Current and future trends in marine image annotation software. Prog. Oceanogr. 2016, 149, 106–120. [Google Scholar] [CrossRef]
- Duarte, A.; Codevilla, F.; Gaya, J.D.O.; Botelho, S.S. A dataset to evaluate underwater image restoration methods. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Wang, Z.; Chen, H.; Qin, H.; Chen, Q. Self-supervised pre-training joint framework: Assisting lightweight detection network for underwater object detection. J. Mar. Sci. Eng. 2023, 11, 604. [Google Scholar] [CrossRef]
- Jesus, A.; Zito, C.; Tortorici, C.; Roura, E.; De Masi, G. Underwater object classification and detection: First results and open challenges. In Proceedings of the OCEANS 2022-Chennai, Chennai, India, 21–24 February 2022; pp. 1–6. [Google Scholar]
- Li, Z.; Zhang, S.; Cao, P.; Zhang, J.; An, Z. Research on fine-tuning strategies for text classification in the aquaculture domain by combining deep learning and large language models. Aquac. Int. 2025, 33, 295. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Xu, X.; Bai, Z.; Han, J.; Cui, M.; Li, D. A review of aquaculture: From single modality analysis to multimodality fusion. Comput. Electron. Agric. 2024, 226, 109367. [Google Scholar] [CrossRef]
- Cui, S.; Zhou, Y.; Wang, Y.; Zhai, L. Fish detection using deep learning. Appl. Comput. Intell. Soft Comput. 2020, 2020, 3738108. [Google Scholar] [CrossRef]
- Yassir, A.; Andaloussi, S.J.; Ouchetto, O.; Mamza, K.; Serghini, M. Acoustic fish species identification using deep learning and machine learning algorithms: A systematic review. Fish. Res. 2023, 266, 106790. [Google Scholar] [CrossRef]
- Yu-Hao, T.; Rui-Feng, W.; Wen-Hao, S. Active Disturbance Rejection Control—New Trends in Agricultural Cybernetics in the Future: A Comprehensive Review. Machines 2025, 13, 111. [Google Scholar] [CrossRef]
- Jalal, A.; Salman, A.; Mian, A.; Shortis, M.; Shafait, F. Fish detection and species classification in underwater environments using deep learning with temporal information. Ecol. Inform. 2020, 57, 101088. [Google Scholar] [CrossRef]
- Deep, B.V.; Dash, R. Underwater fish species recognition using deep learning techniques. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 665–669. [Google Scholar]
- Salman, A.; Siddiqui, S.A.; Shafait, F.; Mian, A.; Shortis, M.R.; Khurshid, K.; Ulges, A.; Schwanecke, U. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system. ICES J. Mar. Sci. 2020, 77, 1295–1307. [Google Scholar] [CrossRef]
- Qian, Q.; Zhang, B.; Li, C.; Mao, Y.; Qin, Y. Federated transfer learning for machinery fault diagnosis: A comprehensive review of technique and application. Mech. Syst. Signal Process. 2025, 223, 111837. [Google Scholar] [CrossRef]
- Wan, S.; Zhao, K.; Lu, Z.; Li, J.; Lu, T.; Wang, H. A modularized ioT monitoring system with edge-computing for aquaponics. Sensors 2022, 22, 9260. [Google Scholar] [CrossRef] [PubMed]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Kang, S.; Hu, Z.; Liu, L.; Zhang, K.; Cao, Z. Object Detection YOLO Algorithms and Their Industrial Applications: Overview and Comparative Analysis. Electronics 2025, 14, 1104. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021, arXiv:2110.02178. [Google Scholar]
- Mehta, S.; Rastegari, M. Separable self-attention for mobile vision transformers. arXiv 2022, arXiv:2206.02680. [Google Scholar]
- Wadekar, S.N.; Chaurasia, A. Mobilevitv3: Mobile-friendly vision transformer with simple and effective fusion of local, global and input features. arXiv 2022, arXiv:2209.15159. [Google Scholar]
- Liu, D.; Li, Z.; Wu, Z.; Li, C. Digital Twin/MARS-CycleGAN: Enhancing Sim-to-Real Crop/Row Detection for MARS Phenotyping Robot Using Synthetic Images. J. Field Robot. 2024, 42, 625–640. [Google Scholar] [CrossRef]
- Li, Z.; Xu, R.; Li, C.; Fu, L. Visual navigation and crop mapping of a phenotyping robot MARS-PhenoBot in simulation. Smart Agric. Technol. 2025, 11, 100910. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, L.; Yan, J.; Feng, H.Y. Implementation of digital twin in actual production: Intelligent assembly paradigm for large-scale industrial equipment. Machines 2023, 11, 1031. [Google Scholar] [CrossRef]
Models | Advantages | Typical Application Scenarios |
---|---|---|
CNN | Strong local feature extraction; excels in image processing | Object detection, image classification, image segmentation |
RNN | Strong contextual understanding; effective for sequential data | Time series forecasting, speech recognition |
LSTM | Mitigates gradient vanishing/exploding; captures long-term dependencies | Machine translation, complex sequence modeling |
GAN | Strong in unsupervised learning; capable of generating high-quality data | Image generation, data augmentation, style transfer |
Transformer | Capable of modeling global dependencies; faster training speed | Natural language processing, video understanding |
Mamba | Excels in long-sequence modeling; high inference efficiency | Long text processing, time series modeling |
MobileNet | Lightweight; low computational cost, suitable for mobile deployment | Embedded vision detection, real-time object detection |
Dataset | Content | URL |
---|---|---|
Fish4Knowledge | 700,000 videos, over 100 h | Fish4Knowledge: https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/resources.htm (accessed on 6 May 2025) |
LifeCLEF | Thousands of high-resolution static fish images | ImageCLEF: https://www.imageclef.org (accessed on 6 May 2025) |
NCFM | 3777 fish images | Kaggle-NCFM: https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring (accessed on 6 May 2025) |
FRGT | 10,000 high-resolution underwater images | FRGT: https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/GROUNDTRUTH/RECOG (accessed on 6 May 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, A.-Q.; Li, K.-L.; Song, Z.-Y.; Lou, X.; Hu, P.; Yang, W.; Wang, R.-F. Deep Learning for Sustainable Aquaculture: Opportunities and Challenges. Sustainability 2025, 17, 5084. https://doi.org/10.3390/su17115084
Wu A-Q, Li K-L, Song Z-Y, Lou X, Hu P, Yang W, Wang R-F. Deep Learning for Sustainable Aquaculture: Opportunities and Challenges. Sustainability. 2025; 17(11):5084. https://doi.org/10.3390/su17115084
Chicago/Turabian StyleWu, An-Qi, Ke-Lei Li, Zi-Yu Song, Xiuhua Lou, Pingfan Hu, Weijun Yang, and Rui-Feng Wang. 2025. "Deep Learning for Sustainable Aquaculture: Opportunities and Challenges" Sustainability 17, no. 11: 5084. https://doi.org/10.3390/su17115084
APA StyleWu, A.-Q., Li, K.-L., Song, Z.-Y., Lou, X., Hu, P., Yang, W., & Wang, R.-F. (2025). Deep Learning for Sustainable Aquaculture: Opportunities and Challenges. Sustainability, 17(11), 5084. https://doi.org/10.3390/su17115084