Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Analysis
2.3. Procedure for the Estimation of Groundwater Volumes
2.3.1. Hydrograph Separation
2.3.2. Goodness of Fit
2.3.3. Estimating Stored Volume
2.4. Glacier Mass Variation
2.5. Precipitation
2.6. Trend Analysis
3. Results
3.1. Estimation of Groundwater Volumes
3.2. Variation in Glacial Mass
3.3. Analysis of the Relationship Between Glacier Mass Variation, Groundwater Volumes, and Precipitation
4. Discussion
Global Perspective
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bórquez, R.; Larraín, S.; Polanco, R. Glaciares Chilenos: Reservas Estratégicas de Agua Dulce Para la Sociedad, Los Ecosistemas Y la Economía, 1st ed. Available online: https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/49a05fb5-30ed-438b-be5e-63df2c749eff/content (accessed on 18 December 2024).
- Schoolmeester, T.; Johansen, K.S.; Alfthan, B.; Baker, E.; Hesping, M.; Verbist, K. Atlas de Glaciares Y Aguas Andinos: El Impacto Del Retroceso de Los Glaciares Sobre Los Recursos Hídricos; Schoolmeester, T., Verbist, K., Eds.; Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura; UNESCO Publications: Paris, France, 2018; ISBN 978-92-3-300103-9. [Google Scholar]
- Rivera, A.; Bown, F.; Napoleoni, F.; Muñoz, C.; Vuille, M. Manual Balance de Masa Glaciar, 1st ed.; Centro de Estudios Científicos (CECs), University at Albany, Department of Atmospheric and Environmental Sciences, Eds.; CECs—Centro de Estudios Científicos: Valdivia, Chile, 2017; ISBN 978-956-362-316-1. [Google Scholar]
- Castillo Ávalos, Y.A. Caracterización de la Hidrología Glaciar de la Cuenca Del Río Maipo Mediante la Implementación de Un Modelo Glacio-Hidrológico Semi-Distribuido Físicamente Basado. Master’s Thesis, Universidad de Chile, Santiago, Chile, 2015. [Google Scholar]
- Segovia Rocha, A.A.; Videla Giering, Y.A. Caracterización Glaciológica de Chile. Investig. Geográficas 2017, 3, 3–24. [Google Scholar] [CrossRef]
- Andinas, A. Glaciares Y Cuencas Andinas: Olivars-Maipo-Mapocho: Hielos en Peligro; Aguas Andinas: Santiago, Chile, 2019; ISBN 978-956-09271-1-8. [Google Scholar]
- Dirección General de Aguas (DGA); Ministerio de Obras Públicas. Atlas Del Agua: Chile 2016; Ministerio de Obras Públicas: Santiago, Chile, 2015; ISBN 978-956-7970-30-8.
- Valdés-Pineda, R.; Valdés, J.B.; Diaz, H.F.; Pizarro-Tapia, R. Analysis of Spatio-temporal Changes in Annual and Seasonal Precipitation Variability in South America-Chile and Related Ocean–Atmosphere Circulation Patterns. Int. J. Climatol. 2016, 36, 2979–3001. [Google Scholar] [CrossRef]
- Banco Mundial. Chile: Diagnóstico de la Gestión de Los Recursos Hídricos; Grupo Banco Mundial: Washington, DC, USA, 2011; p. 81. [Google Scholar]
- Centro de Ciencia del Clima y la Resiliencia (CR2). La Megasequía 2010–2015: Una Lección Para El Futuro. Available online: https://www.cr2.cl/wp-content/uploads/2015/11/informe-megasequia-cr21.pdf (accessed on 18 December 2024).
- He, Q.; Kuang, X.; Chen, J.; Hao, Y.; Feng, Y.; Wu, P.; Zheng, C. Glacier Retreat and Its Impact on Groundwater System Evolution in the Yarlung Zangbo Source Region, Tibetan Plateau. J. Hydrol. Reg. Stud. 2023, 47, 101368. [Google Scholar] [CrossRef]
- Lin, L.; Gao, M.; Liu, J.; Wang, J.; Wang, S.; Chen, X.; Liu, H. Understanding the Effects of Climate Warming on Streamflow and Active Groundwater Storage in an Alpine Catchment: The Upper Lhasa River. Hydrol. Earth Syst. Sci. 2020, 24, 1145–1157. [Google Scholar] [CrossRef]
- Mackay, J.D.; Barrand, N.E.; Hannah, D.M.; Krause, S.; Jackson, C.R.; Everest, J.; MacDonald, A.M.; Ó Dochartaigh, B.É. Proglacial Groundwater Storage Dynamics under Climate Change and Glacier Retreat. Hydrol. Process. 2020, 34, 5456–5473. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Gao, M.; Hu, Q.; Liu, J. Changes in Nonlinearity and Stability of Streamflow Recession Characteristics under Climate Warming in a Large Glaciated Basin of the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2022, 26, 3901–3920. [Google Scholar] [CrossRef]
- Lone, S.A.; Jeelani, G.; Deshpande, R.D.; Mukherjee, A.; Jasechko, S.; Lone, A. Meltwaters Dominate Groundwater Recharge in Cold Arid Desert of Upper Indus River Basin (UIRB), Western Himalayas. Sci. Total Environ. 2021, 786, 147514. [Google Scholar] [CrossRef]
- Ó Dochartaigh, B.É.; MacDonald, A.M.; Black, A.R.; Everest, J.; Wilson, P.; Darling, W.G.; Jones, L.; Raines, M. Groundwater–Glacier Meltwater Interaction in Proglacial Aquifers. Hydrol. Earth Syst. Sci. 2019, 23, 4527–4539. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The Changing Nature of Groundwater in the Global Water Cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef]
- Müller, T.; Roncoroni, M.; Mancini, D.; Lane, S.N.; Schaefli, B. Current and Future Roles of Meltwater–Groundwater Dynamics in a Proglacial Alpine Outwash Plain. Hydrol. Earth Syst. Sci. 2024, 28, 735–759. [Google Scholar] [CrossRef]
- Flores Arenas, C. Modelación Operacional del río Aconcagua; Dirección General de Aguas (DGA): Santiago, Chile, 2020; p. 18. [Google Scholar]
- Ministerio del Medio Ambiente (MMA). Informe Técnico de la Elaboración del Proyecto Definitivo de Las Normas Secundarias de Calidad Ambiental Para la Protección de Las Aguas Continentalees Superficiales de la Cuenca del Río Aconcagua; Ministerio del Medio Ambiente: Santiago, Chile, 2021; p. 50.
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic Regionalisation of Continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Bown, F.; Rivera, A.; Acuna, C.; Jacka, J. Recent glacier variations at the Aconcagua Basin, central Chilean Andes. Ann. Glaciol. 2008, 48, 43–48. [Google Scholar] [CrossRef]
- R Development Core Team. R Core Team: A Language and Environment for Statistical Computing. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3887298 (accessed on 18 December 2024).
- QGIS Development Team. QGIS Geographic Information System. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3746058 (accessed on 18 December 2024).
- Centro del Clima y Resilencia (CR2). Caudales Diarios. Available online: https://www.cr2.cl/datos-de-caudales/ (accessed on 18 December 2024).
- Linsley, R.K. Hidrología Para Ingenieros, 2nd ed.; MacGraw-Hill: New York, NY, USA, 1977; ISBN 978-0-07-090914-4. [Google Scholar]
- Balocchi, F.; Pizarro, R.; Morales, C.; Olivares, C. Modelamiento matemático de caudales recesivos en la región mediterránea andina del Maule: El caso del estero Upeo, Chile. Tecnol. Cienc. Agua 2014, 5, 179–188. [Google Scholar]
- Cirugeda, J. Curso Internacional de Hidrología General y Aplicada. Available online: https://hispagua.cedex.es/formacion/curso/64435 (accessed on 18 December 2024).
- Correndo, A.A.; Rosso, L.H.M.; Hernandez, C.H.; Bastos, L.M.; Nieto, L.; Holzworth, D.; Ciampitti, I.A. Metrica: An R Package to Evaluate Predictionperformance of Regression and Classification Point-Forecastmodels. J. Open Source Softw. 2022, 7, 4655. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Huenante Gutiérrez, J.A. Procesamiento Y análisis de Radio Eco-Sondaje (Res) Sobre Glaciares Chilenos: Relación Entre Volumen de Hielo Y áRea Superficial. Master’s Thesis, Universidad de Chile, Santiago, Chile, 2018. [Google Scholar]
- Chen, J.; Ohmura, A. Estimation of Alpine Glacier Water Resources and Their Change since the 1870s. In Proceedings of the Hydrology in Mountainous Regions I. Hydrological Measurements, the Water Cycle; International Association of Hydrological Sciences (IAHS): Lausanne, Switzerland; 1990; Volume 193, pp. 127–135. [Google Scholar]
- Bahr, D.B.; Meier, M.F.; Peckham, S.D. The Physical Basis of Glacier Volume-area Scaling. J. Geophys. Res. Solid Earth 1997, 102, 20355–20362. [Google Scholar] [CrossRef]
- Radić, V.; Hock, R. Regional and Global Volumes of Glaciers Derived from Statistical Upscaling of Glacier Inventory Data. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Huss, M.; Farinotti, D. Distributed Ice Thickness and Volume of All Glaciers around the Globe. J. Geophys. Res. Earth Surf. 2012, 117, F04010. [Google Scholar] [CrossRef]
- Grinsted, A. An Estimate of Global Glacier Volume. Cryosphere 2013, 7, 141–151. [Google Scholar] [CrossRef]
- Centro de Ciencia del Clima y la Resiliencia (CR2) Precipitación Acumulada Diaria. Available online: https://www.cr2.cl/datos-de-precipitacion/ (accessed on 15 December 2024).
- Marchetto, A. Mann-Kendall Test, Seasonal and Regional Kendall Tests 2024. Available online: https://cran.r-project.org/web/packages/rkt/rkt.pdf (accessed on 15 December 2024).
- Jain, M.K. Recession of Discharge. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 922–924. ISBN 978-90-481-2641-5. [Google Scholar]
- Olivares Fernández, A.M. Estimación de Las Variaciones Volumétricas en Las Últimas Dos Décadas de Glaciar Juncal Norte (~33° S), Región de Valparaíso, Chile. Bachelor’s Thesis, Universidad Andrés Bello, Viña del Mar, Chile, 2022. [Google Scholar]
- Rodríguez, M. Separación Del Hidrograma en Dos Cuencas de Los Andes de Chile Central Mediante El Uso de Trazadores. Master’s Thesis, Universidad de Chile, Santiago, Chile, 2012. [Google Scholar]
- Liljedahl, A.K.; Gädeke, A.; O’Neel, S.; Gatesman, T.A.; Douglas, T.A. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 2017, 44, 6876–6885. [Google Scholar] [CrossRef]
- Zou, Y.; Kuang, X.; Feng, Y.; Jiao, J.J.; Liu, J.; Wang, C.; Fan, L.; Wang, Q.; Chen, J.; Ji, F.; et al. Solid Water Melt Dominates the Increase of Total Groundwater Storage in the Tibetan Plateau. Geophys. Res. Lett. 2022, 49, e2022GL100092. [Google Scholar] [CrossRef]
- Quiroz, J.; Garcia-Chevesich, P.A.; Martínez, G.; Martínez, K.; Tejada, T.; McCray, J.E. Water Resources Evaluation and Sustainability Considering Climate Change and Future Anthropic Demands in the Arequipa Region of Southern Peru. Sustainability 2023, 15, 16270. [Google Scholar] [CrossRef]
Autor | Equation |
---|---|
Chen & Ohmura [32] | |
Bahr et al. [33] | |
Radic & Hock [34] | |
Huss and Farinotti [35] | |
Grinsted [36] | |
Huenante [31] |
R2 | KGE | |||||
---|---|---|---|---|---|---|
Year | Remenieras [27] | Potencial [28] | Balocchi et al. [27] | Remenieras [27] | Potencial [28] | Balocchi et al. [27] |
1990 | 0.837 | 0.805 | 0.704 | 0.730 | 0.686 | 0.641 |
1991 | 0.145 | 0.154 | 0.201 | 0.287 | 0.289 | 0.405 |
1992 | 0.862 | 0.840 | 0.708 | 0.803 | 0.798 | 0.655 |
1993 | 0.229 | 0.234 | 0.343 | 0.420 | 0.424 | 0.576 |
1994 | 0.375 | 0.361 | 0.258 | 0.427 | 0.419 | 0.290 |
1995 | 0.808 | 0.807 | 0.757 | 0.874 | 0.860 | 0.740 |
1996 | 0.254 | 0.242 | 0.196 | 0.499 | 0.486 | 0.419 |
1997 | 0.546 | 0.542 | 0.441 | 0.303 | 0.303 | 0.224 |
1998 | 0.928 | 0.924 | 0.889 | 0.792 | 0.817 | 0.745 |
1999 | 0.707 | 0.693 | 0.590 | 0.606 | 0.600 | 0.472 |
2000 | 0.704 | 0.708 | 0.717 | 0.830 | 0.840 | 0.788 |
2001 | 0.902 | 0.885 | 0.785 | 0.867 | 0.862 | 0.713 |
2002 | 0.704 | 0.718 | 0.715 | 0.808 | 0.819 | 0.742 |
2003 | 0.825 | 0.820 | 0.792 | 0.734 | 0.722 | 0.779 |
2004 | 0.339 | 0.326 | 0.223 | 0.558 | 0.547 | 0.425 |
2005 | 0.416 | 0.363 | 0.285 | 0.594 | 0.535 | 0.428 |
2006 | 0.923 | 0.929 | 0.872 | 0.823 | 0.829 | 0.703 |
2007 | 0.479 | 0.488 | 0.562 | 0.557 | 0.548 | 0.666 |
2009 | 0.664 | 0.670 | 0.668 | 0.742 | 0.748 | 0.660 |
2010 | 0.336 | 0.334 | 0.331 | 0.515 | 0.514 | 0.447 |
2011 | 0.466 | 0.467 | 0.464 | 0.556 | 0.560 | 0.483 |
2012 | 0.462 | 0.465 | 0.456 | 0.333 | 0.336 | 0.280 |
2013 | 0.670 | 0.668 | 0.574 | 0.568 | 0.567 | 0.446 |
2014 | 0.823 | 0.832 | 0.779 | 0.862 | 0.847 | 0.708 |
2015 | 0.546 | 0.526 | 0.434 | 0.664 | 0.642 | 0.522 |
2016 | 0.660 | 0.650 | 0.680 | 0.567 | 0.549 | 0.691 |
2017 | 0.689 | 0.688 | 0.619 | 0.609 | 0.611 | 0.506 |
2018 | 0.743 | 0.764 | 0.811 | 0.681 | 0.709 | 0.706 |
2019 | 0.687 | 0.683 | 0.644 | 0.787 | 0.795 | 0.700 |
2020 | 0.638 | 0.626 | 0.446 | 0.327 | 0.325 | 0.227 |
2021 | 0.363 | 0.358 | 0.346 | 0.485 | 0.483 | 0.410 |
2022 | 0.495 | 0.489 | 0.383 | 0.232 | 0.230 | 0.136 |
Mean * | 0.601 | 0.596 | 0.552 | 0.608 | 0.603 | 0.542 |
Period | Theil–Sen Slope (Hm3) | Tau | Score | Var | p-Value | Zmk |
---|---|---|---|---|---|---|
1990–2009 | 0.433 | 0.135 | 23 | 817 | 0.441 | 0.77 |
1990–2022 | 0.012 | 0.060 | 30 | 3803 | 0.638 | 0.47 |
1990–2000 | 0.328 | 0.091 | 5 | 165 | 0.755 | 0.31 |
1990–2005 | −1.196 | −0.117 | −14 | 493 | 0.558 | −0.59 |
2000–2010 | 9.638 | 0.556 | 25 | 125 | 0.032 * | 2.15 |
2010–2022 | −1.211 | −0.308 | −24 | 269 | 0.161 | −1.40 |
Period | Theil–Sen Slope (Hm3) | Tau | Score | Var | p-Value | Zmk |
---|---|---|---|---|---|---|
1990–2009 | 1.080 | 0.042 | 8 | 950 | 0.820 | 0.23 |
1990–2018 | −2.696 | −0.281 | −114 | 2842 | 0.034 * | −2.16 |
Year | Area (km2) | Chen & Ohmura [32] | Bahr et al. [33] | Radic & Hock [34] | Huss and Farinotti [35] | Grinsted [36] | Huenante [31] |
---|---|---|---|---|---|---|---|
1987 | 9.6 | 614.39 | 599.04 | 819.56 | 572.11 | 703.52 | 397.48 |
1997 | 8.3 | 501.58 | 488.83 | 667.28 | 469.16 | 585.35 | 328.74 |
2006 | 9.0 | 561.09 | 546.96 | 747.56 | 523.52 | 647.97 | 365.12 |
2008 | 8.7 | 532.82 | 519.34 | 709.41 | 497.72 | 618.31 | 347.87 |
2010 | 9.2 | 574.79 | 560.35 | 766.06 | 536.02 | 662.30 | 373.45 |
2021 | 7.4 | 434.12 | 422.95 | 576.44 | 407.36 | 513.53 | 287.18 |
2022 | 7.4 | 429.69 | 418.63 | 570.47 | 403.30 | 508.78 | 284.44 |
2023 | 6.5 | 363.57 | 354.08 | 481.62 | 342.50 | 437.27 | 243.26 |
Period | Theil–Sen Slope (Hm3) | Tau | Score | Var (S) | p-Value | Zmk |
---|---|---|---|---|---|---|
1987–2023 | −3.786 | −0.643 | −18 | 65.3 | 0.035 | −2.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbina, V.; Pizarro, R.; Jara, S.; López, P.; Ibáñez, A.; Sangüesa, C.; Toledo, C.; Guillen, M.; Venegas-Quiñones, H.L.; Alejo, F.; et al. Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management. Sustainability 2025, 17, 4993. https://doi.org/10.3390/su17114993
Urbina V, Pizarro R, Jara S, López P, Ibáñez A, Sangüesa C, Toledo C, Guillen M, Venegas-Quiñones HL, Alejo F, et al. Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management. Sustainability. 2025; 17(11):4993. https://doi.org/10.3390/su17114993
Chicago/Turabian StyleUrbina, Verónica, Roberto Pizarro, Solange Jara, Paulina López, Alfredo Ibáñez, Claudia Sangüesa, Cristóbal Toledo, Madeleine Guillen, Héctor L. Venegas-Quiñones, Francisco Alejo, and et al. 2025. "Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management" Sustainability 17, no. 11: 4993. https://doi.org/10.3390/su17114993
APA StyleUrbina, V., Pizarro, R., Jara, S., López, P., Ibáñez, A., Sangüesa, C., Toledo, C., Guillen, M., Venegas-Quiñones, H. L., Alejo, F., McCray, J. E., & Garcia-Chevesich, P. A. (2025). Glacier Retreat and Groundwater Recharge in Central Chile: Analysis to Inform Decision-Making for Sustainable Water Resources Management. Sustainability, 17(11), 4993. https://doi.org/10.3390/su17114993