Uncertainty Analysis of Provincial Carbon Emission Inventories: A Comparative Assessment of Emission Factors Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Method
2.1.1. Carbon Emission Accounting
2.1.2. Improved Monte Carlo Simulation
2.1.3. Testing the Effectiveness of the Improved Monte Carlo Simulation
2.2. Data Sources
3. Results and Analysis
3.1. Comparison of Provincial Carbon Emissions Calculated by Different EFs
3.2. Uncertainty Analysis of Carbon Emission Accounting
4. Discussions
5. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Zhu, D.; Steve, D.; Ciais, P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 2023, 4, 205–206. [Google Scholar] [CrossRef]
- Steininger, W.K.; Lininger, C.; Meyer, H.L.; Muñoz, P.; Schinko, T. Multiple carbon accounting to support just and effective climate policies. Nat. Clim. Change 2016, 6, 35–41. [Google Scholar] [CrossRef]
- Keith, H.; Vardon, M.; Obst, C.; Young, V.; Houghton, R.A.; Mackey, B. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 2021, 769, 144341. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.Y.; Wang, S.J.; Liao, Y.T.; Feng, K.S. Carbon emissions embodied in investment: Assessing emissions reduction responsibility through multi-regional input-output analysis. Appl. Energy 2024, 358, 122558. [Google Scholar] [CrossRef]
- Wisdom, O.; Apollos, N.; Samuel, O. Carbon accounting and economic development in sub–Saharan Africa. Asian J. Econ. Bus. Account. 2022, 6, 81–89. [Google Scholar] [CrossRef]
- ISO 14064–3:2006; Greenhouse Gases—Part 3: Specification with Guidance for the Validation and Verification of Greenhouse Gas Assertions. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products–Requirements and Guidelines for Quantification. International Organization for Standardization: Geneva, Switzerland, 2018.
- Li, J.F.; Guo, J.F.; Gao, S.J.; Gu, A.L. The current situation, problems and challenges of national carbon emission accounting work. Dev. Res. 2020, 37, 9–14. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef]
- Li, S.H.; Cao, S.S.; Yang, Y.; Cheng, D.Y.; Fan, L.P.; Liu, M. Accounting and uncertainty analysis of black carbon emissions in the Yangtze River Delta from 2000 to 2019. J. Earth Environ. 2023, 14, 86–97, 109. [Google Scholar] [CrossRef]
- Li, Y.N. Statistical categories, measurement methods, and indicator selection for Carbon Accounting. Financ. J. 2021, 11, 29–34. [Google Scholar]
- Liu, Z. Near-real-time methodology for assessing global carbon emissions. Chin. Sci. Bull. 2023, 68, 830–840. [Google Scholar] [CrossRef]
- Guo, J.J.; Liao, Q.H.; Bai, K.M.; Ming, W.; Feng, J.S. A brief analysis of the carbon accounting data model and the construction of carbon accounting standardization system. Stand. Sci. 2024, 11, 92–100. [Google Scholar] [CrossRef]
- Cai, B.F. Research on greenhouse gas emissions inventory in the cities of China. China Popul. Resour. Environ. 2012, 22, 21–27. [Google Scholar] [CrossRef]
- Ren, X.G. Accelerate the establishment of a unified and standardized carbon emission statistical accounting system, and steadily consolidate the data foundation for carbon peak and carbon neutrality—Interpretation 1 of “implementation plan for accelerating the establishment of a unified and standardized carbon emission statistical accounting system”. Ind. China 2022, 16, 16–19. [Google Scholar]
- Li, J.; Zhou, J.; Li, Q.Y.; Li, S.Z.; Ming, Z.J.; Yu, X.T. Evolution and application analysis of carbon accounting methods in urban ecosystem. J. Environ. Eng. Technol. 2025, 15, 474–485. [Google Scholar] [CrossRef]
- Wu, X.W.; Zhu, F.H.; Yang, J.T.; Zhou, D.B.; Yan, L.; Teng, N.; Yi, Y.P. Measurements of emission factors of greenhouse gas (CO2, N2O) from thermal power plants in China. Res. Environ. Sci. 2010, 23, 170–176. [Google Scholar] [CrossRef]
- Gao, J.L.; Xu, X.Y.; Zheng, F.Q.; Huo, R. Calculation and uncertainty analysis of coal carbon emissions inventory based on the whole life cycle. China Coal 2017, 43, 22–26. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, X.L.; Ren, J.; Tu, G.P.; Zheng, X.M.; Deng, C.Y. Simulation and uncertainty assessment of continuous online monitoring process of carbon dioxide emissions. J. Metrol. 2022, 43, 120–126. [Google Scholar] [CrossRef]
- Evans, M.; Kholod, N.; Kuklinski, T.; Denysenko, A.; Smith, S.J.; Staniszewski, A.; Hao, W.M.; Liu, L.; Bond, T.C. Black carbon emissions in Russia: A critical review. Atmos. Environ. 2017, 163, 9–21. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Xu, M.F.; Li, H. Research progress of low-carbon binders. Mater. Rep. 2024, 38, 22050304–22050309. [Google Scholar] [CrossRef]
- Leao, B.D.; do Nascimento, L.F.M.; de Andrade, J.C.S.; de Oliveira, J.A.P. Carbon accounting approaches and reporting gaps in urban emissions: An analysis of the greenhouse gas inventories and climate action plans in Brazilian cities. J. Clean. Prod. 2020, 245, 118930. [Google Scholar] [CrossRef]
- Leng, H.; Zhao, Y.R.; Yuan, Q. Research on the application path of carbon accounting method in spatial planning under the goal of “Carbon Emissions Peak and Carbon Neutrality”. Urban Plan. Int. 2023, 7, 9–16. [Google Scholar] [CrossRef]
- Izumi, Y.; Lizuka, A.; Ho, H.-J. Calculation of greenhouse gas emissions for a carbon recycling system using mineral carbon capture and utilization technology in the cement industry. J. Clean. Prod. 2021, 312, 127618. [Google Scholar] [CrossRef]
- Hickmann, T. Voluntary global business initiatives and the international climate negotiations: A case study of the Greenhouse Gas Protocol. J. Clean. Prod. 2017, 169, 94–104. [Google Scholar] [CrossRef]
- Li, Y.; Jin, X.Y.; Wang, G.L.; Ren, Y.Q.; Tan, H.Q.; Li, N. Construction and application of a carbon emission model for China’s coal production enterprises and result analysis. Front. Energy Res. 2022, 10, 889877. [Google Scholar] [CrossRef]
- Daskalakis, G.; Psychoyios, D.; Markellos, R.N. Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme. J. Bank. Financ. 2009, 7, 1230–1241. [Google Scholar] [CrossRef]
- Zhang, H.X.; Sun, W.Q.; Li, W.D.; Ma, G.Y. A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material-energy-carbon hub. Appl. Energy 2022, 309, 118485. [Google Scholar] [CrossRef]
- Xu, D.; Liu, G.Y.; Meng, F.X.; Yan, N.Y.; Li, H.; Agostinho, F.; Almeida, C.M.V.B.; Giannetti, B.F. Sector aggregation effect on embodied carbon emission based on city-centric global multiregion input-output (CCG-MRIO) model. Ecol. Model. 2023, 484, 110487. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, C.; Xie, H.; Li, Y.; Zhu, C.; Liu, M.J. Carbon accounting and carbon emission reduction potential analysis of sponge cities based on life cycle assessment. Water 2023, 15, 3565. [Google Scholar] [CrossRef]
- Wu, Y.N.; Li, D.; Zhao, F.; Tang, W.; Meng, C. Research on greenhouse gas emissions accounting methods in environmental impact assessment of construction projects: A case of thermal power project. J. Environ. Eng. Technol. 2022, 12, 1890–1897. [Google Scholar] [CrossRef]
- Chen, P.; Wang, H.; Guo, M.; Wang, J.J.; Cai, S.N.; Li, M.; Sun, K.N.; Wang, Y.K. Decomposition analysis of regional embodied carbon flow and driving factors: Taking Shanghai as an example. Sustainability 2022, 14, 11109. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, L.; Wang, H.F.; Zhao, J.S.; Zhao, B.H.; Wang, C. Uncertainty assessment of industry plant accounting carbon emissions. J. Metrol. 2022, 43, 420–428. [Google Scholar] [CrossRef]
- Wang, X.H.; Chen, B.Z.; Zhang, H.F. Analysis of the provincial carbon list uncertainty. J. Arid. Land Resour. Environ. 2015, 29, 7–11. [Google Scholar] [CrossRef]
- Sheikholeslami, R.; Razavi, S. Progressive Latin hypercube sampling: An efficient approach for robust sampling-based analysis of environmental models. Environ. Model. Softw. 2017, 93, 109–126. [Google Scholar] [CrossRef]
- Zhang, W.J.; Shang, Z.Y.; Zhang, J.; Yan, S.J.; Deng, A.X.; Zhang, X.; Zheng, C.Y.; Song, Z.W. Standardization construction of statistical accounting system for agricultural greenhouse gas emission. Sci. Agric. Sin. 2023, 56, 4467–4477. [Google Scholar] [CrossRef]
- Li, Q.Q.; Su, Y.; Shang, L.; Wei, W.; Wang, M.H. Comparison analysis of China’s emissions accounting by typical international carbon databases. Clim. Change Res. 2018, 14, 275–280. [Google Scholar] [CrossRef]
- Cao, Z.; Shen, L.; Zhao, J.; Liu, L.; Zhong, S.; Sun, Y.; Yang, Y. Toward abetter practice for estimating the CO2 emission factors of cement production: An experience from China. J. Clean. Prod. 2016, 139, 527–539. [Google Scholar] [CrossRef]
- Yang, S.S. Accounting of total carbon emissions and analysis of carbon source structure in Hunan Province. Coop. Econ. Technol. 2022, 5, 4–6. [Google Scholar] [CrossRef]
- Li, N.; Liu, W.W.; Zhu, S.H.; Xing, X.W.; Tang, K.Q.; Wang, S.W.; Bai, L. Coordinated control of carbon emission reduction and air quality improvement in the industrial sector in Hunan province. Environ. Sci. 2024, 45, 1274–1283. [Google Scholar] [CrossRef]
- Ma, X.L.; Wang, Y.X.; Sun, J.W.; Li, J.X.; Cao, S.Y. Research on the uncertainty of carbon emission inventories in the application of natural gas stations. Energy Conserv. Meas. Pet. Petrochem. Ind. 2024, 14, 120–125. [Google Scholar] [CrossRef]
- Al Luhayb, A.S. The bootstrap method for Monte Carlo integration inference. J. King Saud Univ. Sci. 2023, 35, 102768. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Wang, G.J.; Chen, Y.N. Analysis on the uncertainty of carbon emission accounting based on energy balance sheet. Ecol. Econ. 2015, 31, 31–38. [Google Scholar]
- Zhou, Y.K.; Wu, J.G. Analysis of factors affecting China’s carbon emissions and exploration of carbon neutrality paths. China Land Resour. Econ. 2025, 38, 12–24. [Google Scholar] [CrossRef]
- Wang, M.Z.; Gao, G.K. Research on the influencing factors of carbon emissions from terminal energy consumption in six central provinces and their decoupling relationship with economic growth. J. Jiangxi Univ. Sci. Technol. 2023, 44, 55–64. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2008. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 18 May 2025).
- GB/T 213-2008; Determination of Calorific Value of Coal. Standards Press of China: Beijing, China, 2018.
- GB/T 476-2008; Determination of Carbon and Hydrogen in Coal. Standards Press of China: Beijing, China, 2018.
- Wei, C. Historical trend and drivers of China’s CO2 emissions from 2000 to 2020. Environ. Dev. Sustain. 2024, 26, 2225–2244. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havranek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, A.; Mendez, G.V. Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 2010, 38, 4828–4837. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Y.Y.; Liu, S.; Yi, M.J.; Fang, Q.S. Spatiotemporal evolution and influencing factors of CO2 emissions in the Yangtze River Delta region based on MElC data. Res. Environ. Sci. 2024, 37, 1666–1679. [Google Scholar] [CrossRef]
- Yang, B.; Qin, G.P.; Wu, Q. Analysis of carbon emission accounting in Chinese provinces under the “Dual Carbon” Target. Environ. Sci. 2022, 43, 5840–5849. [Google Scholar] [CrossRef]
Energy Name | IPCC Default Values | Measured EF Values | Literature EF Values | ||||||
---|---|---|---|---|---|---|---|---|---|
Distribution Type | Mean | SD | Distribution Type | Mean | SD | Distribution Type | Mean | SD | |
Raw coal | A | 0.7559 | 0.0189 | A | 0.5138 | 0.0380 | A | 0.7602 | 0.0285 |
Cleaned coal | B | 0.7559 | 0.0576 | B | 0.6425 | 0.0496 | B | 0.7132 | 0.0536 |
Coke | A | 0.8550 | 0.0416 | A | 0.7784 | 0.0547 | A | 0.8171 | 0.0482 |
Gasoline | A | 0.5538 | 0.0679 | A | 0.7801 | 0.0525 | A | 0.6161 | 0.0602 |
Kerosene | B | 0.5714 | 0.0372 | B | 0.8273 | 0.0304 | B | 0.6087 | 0.0338 |
Diesel oil | B | 0.5921 | 0.0236 | B | 0.8443 | 0.0421 | B | 0.6061 | 0.0329 |
Fuel oil | A | 0.6185 | 0.0607 | A | 0.8511 | 0.0496 | A | 0.6989 | 0.0552 |
Briquette | B | 0.6784 | 0.0386 | B | 0.6526 | 0.0564 | B | 0.6968 | 0.0475 |
Natural gas | B | 0.4483 | 0.0742 | B | 0.4905 | 0.0465 | B | 0.6082 | 0.0604 |
Year | Source of EF | Carbon Emissions (104 tons) | RD(%) | ||||
---|---|---|---|---|---|---|---|
Industrial Production | Thermal Power | Transportation | Resident Life | Total | |||
2016 | Measured EF | 12,925.84 | 3653.49 | 3234.39 | 913.88 | 20,727.60 | — |
Literature EF | 15,695.62 | 4396.41 | 2400.59 | 1326.47 | 23,819.08 | 14.91 | |
Default values | 15,754.49 | 4364.88 | 2281.22 | 1284.78 | 23,685.37 | 14.27 | |
2017 | Measured EF | 14,359.63 | 3864.33 | 3333.20 | 779.10 | 22,336.25 | — |
Literature EF | 16,666.19 | 4704.09 | 2477.73 | 1120.97 | 24,968.98 | 11.79 | |
Default values | 16,731.48 | 4670.22 | 2351.24 | 1072.36 | 24,825.30 | 11.14 | |
2018 | Measured EF | 12,517.60 | 4583.17 | 3452.66 | 757.67 | 21,311.10 | — |
Literature EF | 13,983.09 | 5769.82 | 2582.92 | 1086.24 | 23,422.06 | 9.91 | |
Default values | 14,066.08 | 5730.21 | 2437.49 | 1033.78 | 23,267.56 | 9.18 | |
2019 | Measured EF | 12,089.03 | 4471.91 | 3574.69 | 660.54 | 20,796.18 | — |
Literature EF | 13,382.86 | 5613.92 | 2673.68 | 940.81 | 22,611.27 | 8.73 | |
Default values | 13,448.37 | 5576.33 | 2523.59 | 886.89 | 22,435.18 | 7.88 | |
2020 | Measured EF | 11,627.13 | 3990.88 | 3483.73 | 624.06 | 19,726.06 | — |
Literature EF | 12,638.67 | 4902.28 | 2605.94 | 902.42 | 21,049.32 | 6.71 | |
Default values | 12,717.40 | 4868.74 | 2459.61 | 869.47 | 20,915.22 | 6.03 |
Emission Department | Measured EF Value | Literature EF Value | Default EF Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (104 t) | 2.5% Tantile (104 t) | 97.5% Tantile (104 t) | Uncertainty Range (%) | Mean (104 t) | 2.5% Tantile (104 t) | 97.5% Tantile (104 t) | Uncertainty Range (%) | Mean (104 t) | 2.5% Tantile (104 t) | 97.5% Tantile (104 t) | Uncertainty Range (%) | |
Industrial Production | 17,109.53 | 15,846.59 | 18,599.80 | −7.38–8.71 | 21,367.68 | 19,762.84 | 23,471.70 | −7.51–9.85 | 21,274.15 | 19,462.84 | 23,623.52 | −8.51–11.04 |
Thermal Power | 2696.78 | 2512.32 | 2916.30 | −6.84–8.14 | 3965.54 | 3626.72 | 4363.46 | −8.54–10.03 | 3896.01 | 3547.17 | 4312.27 | −8.95–10.68 |
Transportation | 2287.01 | 2192.87 | 2380.27 | −4.12–4.08 | 2082.64 | 1959.28 | 2237.52 | −5.92–7.44 | 2079.34 | 1967.18 | 2217.57 | −5.39–6.65 |
Resident Life | 1005.33 | 954.25 | 1067.21 | −5.08–6.16 | 1183.29 | 1098.27 | 1274.21 | −7.19–7.68 | 1186.30 | 1100.24 | 1278.39 | −7.25–7.76 |
Total Emissions | 22,958.42 | 21,739.86 | 24,834.54 | −5.31–8.17 | 24,199.15 | 22,534.43 | 26,384.75 | −6.88–9.03 | 23,789.20 | 22,416.51 | 26,415.25 | −5.77–9.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, J.; Dou, C. Uncertainty Analysis of Provincial Carbon Emission Inventories: A Comparative Assessment of Emission Factors Sources. Sustainability 2025, 17, 4787. https://doi.org/10.3390/su17114787
Liu X, Liu J, Dou C. Uncertainty Analysis of Provincial Carbon Emission Inventories: A Comparative Assessment of Emission Factors Sources. Sustainability. 2025; 17(11):4787. https://doi.org/10.3390/su17114787
Chicago/Turabian StyleLiu, Xianzhao, Jiaxi Liu, and Chenxi Dou. 2025. "Uncertainty Analysis of Provincial Carbon Emission Inventories: A Comparative Assessment of Emission Factors Sources" Sustainability 17, no. 11: 4787. https://doi.org/10.3390/su17114787
APA StyleLiu, X., Liu, J., & Dou, C. (2025). Uncertainty Analysis of Provincial Carbon Emission Inventories: A Comparative Assessment of Emission Factors Sources. Sustainability, 17(11), 4787. https://doi.org/10.3390/su17114787