Enzyme-Induced Carbonate Precipitation for the Stabilization of Heavy Metal-Contaminated Landfill Soils: A Sustainable Approach to Resource Recovery and Environmental Remediation
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sample Preparation and Characterization
2.2. EICP Solution-Phase Feasibility Tests
2.3. Soil-Phase Remediation Experiments
2.4. Leachability and Reuse Potential Assessment
3. Results
3.1. Solution-Phase Feasibility Tests
3.2. Soil-Phase Remediation Trials
3.3. Parametric Optimization and Reuse Assessment
4. Discussion
4.1. Mechanistic Insights into Metal Stabilization
4.2. Engineering Parameters and Scalability
4.3. Environmental and Economic Sustainability
4.4. Limitations and Future Directions
5. Sustainability Implications
6. Conclusions
- EICP achieves a stabilization efficiency exceeding 85% by converting exchangeable heavy metals—specifically cadmium (Cd), lead (Pb), and chromium (Cr)—into carbonate-bound phases. Among them, cadmium exhibited the highest conversion rate, with over 70% of its exchangeable fraction transformed into stable otavite crystals, as confirmed by XRD. Lead and chromium also showed significant reductions in bioavailable forms, though their stabilization mechanisms were dominated by surface complexation with calcite and incorporation into amorphous carbonate phases rather than crystalline structures;
- Vacuum-assisted filtration improves clay soil remediation by 29.2%, decreases treatment time by 50%, and ensures compliance with TCLP thresholds (Cd: 0.85 mg/L). The most effective protocol, consisting of 1.0 U/mL urease and 0.5 M CaCl2 applied in three cycles, achieves a balance between efficiency (91.5%) and cost-effectiveness (265 units);
- Treated soils comply with reuse standards for landscaping and construction, potentially decreasing landfill usage by 30–50% and sequestering 0.3–0.5 t CO2-eq per ton of soil.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Xiao, B.H.; Ali, M.U.; Xiao, P.W.; Zhao, P.; Wang, H.Y.; Bibi, S. Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicol. Environ. Saf. 2024, 274, 116189. [Google Scholar] [CrossRef] [PubMed]
- Angon, P.B.; Islam, M.S.; Shreejana, K.C.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for heavy metal removal: A review. SN Appl. Sci. 2023, 5, 125. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Tian, S.; Liu, Z.W.; Mao, Q.; Ye, H.M.; Tian, C.S.; Zhu, Y.C.; Zhang, L.N. Leaching characteristics and environmental impact of heavy metals in tailings under rainfall conditions: A case study of an ion-adsorption rare earth mining area. Ecotoxicol. Environ. Saf. 2024, 281, 116642. [Google Scholar] [CrossRef]
- Xu, W.; Jin, Y.; Zeng, G. Introduction of heavy metals contamination in the water and soil: A review on source, toxicity and remediation methods. Green Chem. Lett. Rev. 2024, 17, 2404235. [Google Scholar] [CrossRef]
- Vithanage, M.; Bandara, P.C.; Novo, L.A.B.; Kumar, A.; Ambade, B.; Naveendrakumar, G.; Ranagalage, M.; Magana-Arachchi, D.N. Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere 2022, 303, 135051. [Google Scholar] [CrossRef]
- Xu, D.M.; Fu, R.B.; Wang, J.X.; Shi, Y.X.; Guo, X.P. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods—A critical review. J. Clean. Prod. 2021, 321, 128730. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Lee, H.; Sam, K.; Coulon, F.; Gisi, S.; Notarnicola, M.; Labianca, C. Recent developments and prospects of sustainable remediation treatments for major contaminants in soil: A review. Sci. Total Environ. 2024, 912, 168769. [Google Scholar] [CrossRef] [PubMed]
- Alsabhan, A.H.; Hamid, W. Innovative Thermal Stabilization Methods for Expansive Soils: Mechanisms, Applications, and Sustainable Solutions. Processes 2025, 13, 775. [Google Scholar] [CrossRef]
- Anburuvel, A. The Engineering Behind Soil Stabilization with Additives: A State-of-the-Art Review. Geotech. Geol. Eng. 2024, 42, 1–42. [Google Scholar] [CrossRef]
- Guo, B.; Liu, B.; Yang, J.; Zhang, S.G. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manag. 2017, 193, 410–422. [Google Scholar] [CrossRef]
- Tyagi, S.; Annachhatre, A.P. A review on recent trends in solidification and stabilization techniques for heavy metal immobilization. J. Mater. Cycles Waste. Manag. 2023, 25, 733–757. [Google Scholar] [CrossRef]
- Phang, L.Y.; Mingyuan, L.; Mohammadi, M.; Tee, C.S.; Yuswan, M.H.; Cheng, H.; Lai, K.S. Phytoremediation as a viable ecological and socioeconomic management strategy. Environ. Sci. Pollut. Res. Int. 2024, 38, 50126–50141. [Google Scholar] [CrossRef]
- Lavanya, M.B.; Viswanath, D.S.; Sivapullaiah, P.V. Phytoremediation: An eco-friendly approach for remediation of heavy metal-contaminated soils-A comprehensive review. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100975. [Google Scholar] [CrossRef]
- Ahenkorah, I.; Rahman, M.M.; Karim, M.R.; Beecham, S. Enzyme induced calcium carbonate precipitation and its engineering application: A systematic review and meta-analysis. Constr. Build. Mater. 2021, 308, 125000. [Google Scholar] [CrossRef]
- Ahenkorah, I.; Rahman, M.M.; Karim, M.R.; Beecham, S.; Saint, C. A Review of Enzyme Induced Carbonate Precipitation (EICP): The Role of Enzyme Kinetics. Sustain. Chem. 2021, 2, 92–114. [Google Scholar] [CrossRef]
- Li, W.L.; Zhang, Y.H.; Achal, V. Mechanisms of cadmium retention on enzyme-induced carbonate precipitation (EICP) of Ca/Mg: Nucleation, chemisorption, and co-precipitation. J. Environ. Chem. Eng. 2022, 10, 107507. [Google Scholar] [CrossRef]
- Bian, Y.; Chen, Y.; Zhan, L.; Ke, H.; Gao, Y.; Wang, Q.; Qi, G. An Enzyme-Induced Carbonate Precipitation Method for Zn2+, Ni2+, and Cr(VI) Remediation: An Experimental and Simulation Study. Appl. Sci. 2024, 14, 6559. [Google Scholar] [CrossRef]
- Baruah, P.; Sharma, S. Chemico-mechanical activation of EICP-modified soil: Role of urease enzyme. Environ. Earth Sci. 2023, 82, 563. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Peng, L.; Lu, S.; Zhang, J.; Du, X. Research of Enzyme-Induced Carbonate Precipitation on Strength Behavior of Reinforced Sand. Appl. Sci. 2025, 15, 3558. [Google Scholar] [CrossRef]
- Chen, Y.B.; Wang, Q.Y.; Bian, Y.; Zhan, L.T.; Gao, Y.F.; Guo, H.W.; Wang, Y.Z.; Gao, Y.Q. Effects of enzyme-induced carbonate precipitation (EICP) with different urease sources on the zinc remediation. J. Hazard. Mater. 2024, 480, 136321. [Google Scholar] [CrossRef]
- Xue, Z.F.; Cheng, W.H.; Rahman, M.M.; Wang, L.; Xie, Y.X. Immobilization of Pb(II) by Bacillus megaterium-based microbial-induced phosphate precipitation (MIPP) considering bacterial phosphorolysis ability and Ca-mediated alleviation of lead toxicity. Environ. Pollut. 2024, 355, 124229. [Google Scholar] [CrossRef]
- Xue, Z.F.; Cheng, W.H.; Wang, L.; Xie, Y.X.; Qin, P.; Shi, C. Immobilizing lead in aqueous solution and loess soil using microbially induced carbonate/phosphate precipitation (MICP/MIPP) under harsh pH environments. J. Hazard. Mater. 2024, 480, 135884. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, L.; Cao, Y.; Liang, T.; Wang, P.P.; Luo, H.L.; Yu, J.J.; Zhang, D.D.; Xing, B.S.; Yang, B. Stabilization and remediation of heavy metal-contaminated soils in China: Insights from a decade-long national survey. Environ. Sci. Pollut. Res. 2022, 29, 39077–39087. [Google Scholar] [CrossRef]
- Qi, S.; Ma, W.; Zhang, X.; Wang, J.; Hu, X.; Wei, Z.; Liu, J. Effects of Remolding Water Content and Compaction Degree on the Dynamic Behavior of Compacted Clay Soils. Buildings 2024, 14, 2258. [Google Scholar] [CrossRef]
- GB 5085.3-2007; Identification Standards for Hazardous Wastes—Identification for Extraction Toxicity. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2007.
- CJ/T 340-2016; Technical Requirements of Planting Soil for Urban Landscaping. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2016.
- Guerrero, J.D.; Arias, E.R.; Gutierrez, L.B. Enhancing copper and lead adsorption in water by in-situ generation of calcium carbonate on alginate/chitosan biocomposite surfaces. Int. J. Biol. Macromol. 2024, 266, 131110. [Google Scholar] [CrossRef]
- Hamilton, T.; Huai, Y.Y.; Peng, Y.J. Lead adsorption on copper sulphides and the relevance to its contamination in copper concentrates. Miner. Eng. 2020, 154, 106381. [Google Scholar] [CrossRef]
- Pan, X.F.; Huang, X.; Deng, N. The fate of cadmium during ferrihydrite phase transformation affected by dissolved organic matter: Insights from organic-mineral interaction. Chem. Geol. 2024, 670, 122424. [Google Scholar] [CrossRef]
- Chen, J.J.; Gu, Z.L.; Perez-Aguilar, J.M.; Luo, Y.B.; Tian, K.F.; Luo, Y.Q. Molecular dynamics simulations reveal efficient heavy metal ion removal by two-dimensional Cu-THQ metal-organic framework membrane. Sci. Rep. 2025, 15, 199. [Google Scholar] [CrossRef]
- Elamin, N.Y.; Elamin, M.R.; Alhussain, H.; Alotaibi, M.T.; Alluhaybi, A.A.; El-Bindary, A.A. Electrospun nanofibers of polycaprolactone loaded with chitosan/carbon quantum dots composite for adsorptive removal of Cd(II) ions from wastewater: Adsorption, kinetics, thermodynamics, and BOX Behnken design. Int. J. Biol. Macromol. 2025, 308, 142680. [Google Scholar] [CrossRef]
- Xu, K.; Huang, M.; Zhen, J.J.; Xu, C.S.; Cui, M.J. Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct. J. Rock Mech. Geotech. Eng. 2023, 15, 1011–1022. [Google Scholar] [CrossRef]
- Alotaibi, E.; Arab, M.G.; Abdallah, M.; Nassif, N.; Omar, M. Life cycle assessment of biocemented sands using enzyme induced carbonate precipitation (EICP) for soil stabilization applications. Sci. Rep. 2022, 12, 6032. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Restuccia, L.; Ferro, G.A. The use of Biochar to reduce the carbon footprint of cement-based materials. Procedia Struct. Integr. 2020, 26, 199–210. [Google Scholar] [CrossRef]
- Guo, S.; Huang, R.; Yuan, J.; Chen, R.; Chen, F.X. Efficient removal of aromatic pollutants via catalytic wet peroxide oxidation over synthetic anisotropic ilmenite/carbon nanocomposites. npj Clean Water 2023, 6, 74. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Sherpa, K.; Bui, X.T.; Nguyen, V.T.; Vo, T.D.H.; Ho, H.T.T.; Chen, C.W.; Dong, C.D. Biochar for soil remediation: A comprehensive review of current research on pollutant removal. Environ. Pollut. 2023, 337, 122571. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhao, M.M.; Chen, L.; Gong, Z.Y.; Hu, J.J.; Ma, D.G. Electrokinetic remediation for the removal of heavy metals in soil: Limitations, solutions and prospection. Sci. Total Environ. 2023, 903, 165970. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.F.; Zhang, H.C.; Qiu, X.Y.; Liu, G.M.; Wang, Y.N.; Jang, J.H.; Wang, Y.; Wei, Z.D.; Cai, Z.W.; et al. Reliable and accessible methods for urea quantification in co-reduction of carbon-dioxide- and nitrogen-containing species. Chem. Catalysis 2025, 5, 101234. [Google Scholar] [CrossRef]
- Xiang, J.; Shi, W.Z.; Jing, Z.J.; Guan, Y.L.; Yang, F.M.; Wang, G.M.; Sun, X.; Li, J.X.; Li, Q.; Zhang, H.C. Exogenous calcium-induced carbonate formation to increase carbon sequestration in coastal saline-alkali soil. Sci. Total Environ. 2024, 946, 174338. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Kanavaris, F.; Das, B.B.; Idrees, M. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. J. Build. Eng. 2024, 86, 108861. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, X.G.; Sun, Y.; Wang, Y.X.; Sha, H.Q.; He, X.S.; Sun, X.J. Natural and anthropogenic dissolved organic matter in landfill leachate: Composition, transformation, and their coexistence characteristics. J. Hazard. Mater. 2024, 465, 133081. [Google Scholar] [CrossRef]
- Guan, D.; Zhou, Y.; Shahin, M.A.; Tirkolaei, H.K.; Cheng, L. Assessment of urease enzyme extraction for superior and economic bio-cementation of granular materials using enzyme-induced carbonate precipitation. Acta Geotech. 2023, 18, 2263–2279. [Google Scholar] [CrossRef]
- Smirnova, M.; Nething, C.; Stolz, A.; Gröning, J.A.D.; Funaro, D.P.; Eppinger, E.; Reichert, M.; Frick, J.; Blandini, L. High strength bio-concrete for the production of building components. npj Mater. Sustain. 2023, 1, 4. [Google Scholar] [CrossRef]
Parameter | Solution-Phase Tests | Soil-Phase Tests |
---|---|---|
Target heavy metals | Cd, Pb, Cu | Cd, Pb, Cr |
Metal concentrations (mg/L or mg/kg) | Cd: 50, 250, 500 Pb: 50, 250, 500 Cu: 50, 250, 500 | Cd: 50, 100, 200 Pb: 300, 500, 800 Cr: 100, 200, 400 |
Urease activity (U/mL) | 0.5, 1.0, 1.5, 2.0 | 1.0 (fixed) |
CaCl2 concentration (M) | 0.25, 0.5, 1.0 | 0.5 (fixed) |
Urea concentration (M) | 0.25, 0.5, 1.0 | 0.5 (fixed) |
Reaction temperature (°C) | 30 | Ambient (25 ± 2) |
Reaction time | 24–48 h | 3 cycles × 24–48 h per cycle |
Solution-to-soil ratio (mL/g) | N/A | 0.5, 1.0, 2.0 |
Number of treatment cycles | N/A | 1, 2, 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zheng, J.; Cui, M.; Lai, H. Enzyme-Induced Carbonate Precipitation for the Stabilization of Heavy Metal-Contaminated Landfill Soils: A Sustainable Approach to Resource Recovery and Environmental Remediation. Sustainability 2025, 17, 4630. https://doi.org/10.3390/su17104630
Xu W, Zheng J, Cui M, Lai H. Enzyme-Induced Carbonate Precipitation for the Stabilization of Heavy Metal-Contaminated Landfill Soils: A Sustainable Approach to Resource Recovery and Environmental Remediation. Sustainability. 2025; 17(10):4630. https://doi.org/10.3390/su17104630
Chicago/Turabian StyleXu, Wangqing, Junjie Zheng, Mingjuan Cui, and Hanjiang Lai. 2025. "Enzyme-Induced Carbonate Precipitation for the Stabilization of Heavy Metal-Contaminated Landfill Soils: A Sustainable Approach to Resource Recovery and Environmental Remediation" Sustainability 17, no. 10: 4630. https://doi.org/10.3390/su17104630
APA StyleXu, W., Zheng, J., Cui, M., & Lai, H. (2025). Enzyme-Induced Carbonate Precipitation for the Stabilization of Heavy Metal-Contaminated Landfill Soils: A Sustainable Approach to Resource Recovery and Environmental Remediation. Sustainability, 17(10), 4630. https://doi.org/10.3390/su17104630