Effects of Land-Use Patterns on Heavy Metal Pollution and Health Risk in the Surface Water of the Nandu River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land-Use Analysis
2.3. Sample Collection and Analysis
2.4. Pollution Level and Risk Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Heavy Metal Distributions in the Nandu River Surface Waters
3.2. Pollution Level of Heavy Metals in the Nandu River Surface Waters
3.3. Structural Characteristics of Land Use
3.4. Source Identification of Heavy Metals in Surface Water Based on Land Uses
3.5. Effect of Land-Use Patterns on Heavy Metal Pollution
3.6. Risk Assessment of Heavy Metals in the Nandu River Surface Water
3.7. Management Suggestions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef] [PubMed]
- Jaskula, J.; Sojka, M. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. CATENA 2022, 211, 105959. [Google Scholar] [CrossRef]
- Jin, X.; Liu, J.; Wang, L.; Yu, X.; Wang, J.; Jin, Y.; Qiu, S.; Liu, J.; Zhao, Y.; Sun, S. Distribution characteristics and ecological risk assessment of heavy metal pollution in seawater near the Yellow River Estuary of Laizhou Bay. Mar. Environ. Res. 2025, 203, 106776. [Google Scholar] [CrossRef]
- Liang, H.; Wang, G.; Guo, H.; Niu, L.; Yang, Q. Evaluation of heavy metal accumulation and sources in surface sediments of the Pearl River Estuary (China). Mar. Environ. Res. 2025, 204, 106948. [Google Scholar] [CrossRef]
- Kiran; Bharti, R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar] [CrossRef]
- Saravanan, P.; Saravanan, V.; Rajeshkannan, R.; Arnica, G.; Rajasimman, M.; Baskar, G.; Pugazhendhi, A. Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environ. Res. 2024, 258, 119440. [Google Scholar] [CrossRef]
- Hotez, P. Global urbanization and the neglected tropical diseases. PLOS Neglected Trop. Dis. 2017, 11, e0005308. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Jansen, L.J.M.; Di Gregorio, A. Land-use data collection using the “land cover classification system”: Results from a case study in Kenya. Land Use Policy 2003, 20, 131–148. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Cao, X.; Wang, Y.; Zhang, W.; Cheng, X. A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS J. Photogramm. Remote Sens. 2023, 206, 311–334. [Google Scholar] [CrossRef]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Šanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Štich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Arcega-Cabrera, F.; Sickman, J.O.; Fargher, L.; Herrera-Silveira, J.; Lucero, D.; Oceguera-Vargas, I.; Lamas-Cosío, E.; Robledo-Ardila, P.A. Groundwater Quality in the Yucatan Peninsula: Insights from Stable Isotope and Metals Analysis. Groundwater 2021, 59, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, Z.; Chen, L. Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China. Landsc. Urban Plan. 2018, 176, 51–63. [Google Scholar] [CrossRef]
- Schulte-Uebbing, L.F.; Beusen, A.H.W.; Bouwman, A.F.; de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 2022, 610, 507–512. [Google Scholar] [CrossRef]
- Shu, W.; Wang, P.; Zhao, J.; Yu, X.; Xu, Q. Characteristics, Sources and Risk Assessment of Heavy Metals in the Ganjiang River Basin, China. Pol. J. Environ. Stud. 2020, 29, 1849–1868. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Wang, W.; Jim, C.Y.; Zhang, Z.; Tan, M.L.; Liu, C.; Chan, N.W.; Wang, D.; Wang, Z.; et al. Impact of land-use/land-cover and landscape pattern on seasonal in-stream water quality in small watersheds. J. Clean. Prod. 2022, 357, 131907. [Google Scholar] [CrossRef]
- Yao, X.; Zeng, C.; Duan, X.; Wang, Y. Effects of land use patterns on seasonal water quality in Chinese basins at multiple temporal and spatial scales. Ecol. Indic. 2024, 166, 112423. [Google Scholar] [CrossRef]
- Crites, R.; Beggs, R.; Leverenz, H. Perspective on Land Treatment and Wastewater Reuse for Agriculture in the Western United States. Water 2021, 13, 1822. [Google Scholar] [CrossRef]
- Bojanowski, D. Determination of Heavy Metal Sources in an Agricultural Catchment (Poland) Using the Fingerprinting Method. Water 2024, 16, 1209. [Google Scholar] [CrossRef]
- Liu, S.; Pan, G.; Zhang, Y.; Xu, J.; Ma, R.; Shen, Z. Risk assessment of soil heavy metals associated with land use variations in the riparian zones of a typical urban river gradient. Ecotoxicol. Environ. Saf. 2019, 181, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Bi, C.; Jia, J.; Deng, L.; Chen, Z. Impact of intensive land use on heavy metal concentrations and ecological risks in an urbanized river network of Shanghai. Ecol. Indic. 2020, 116, 106501. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Wang, Z.; Gong, J.; Gao, J.; Tang, S.; Ma, S.; Duan, Z. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. Chemosphere 2022, 304, 135340. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khaledi Darvishan, A.; Dinelli, E.; Bahramifar, N.; Alavi, S.J. How does land use configuration influence on sediment heavy metal pollution? Comparison between riparian zone and sub-watersheds. Stoch. Environ. Res. Risk Assess. 2022, 36, 719–734. [Google Scholar] [CrossRef]
- Mao, M.; Wei, L.; Gong, W.; Wu, G.; Liu, T. Impacts of Spatio-Temporal Changes in Anthropogenic Disturbances on Landscape Patterns in the Nandu River Basin, China. Sustainability 2024, 16, 2724. [Google Scholar] [CrossRef]
- Bolan, N.; Kumar, M.; Singh, E.; Kumar, A.; Singh, L.; Kumar, S.; Keerthanan, S.; Hoang, S.A.; El-Naggar, A.; Vithanage, M.; et al. Antimony contamination and its risk management in complex environmental settings: A review. Environ. Int. 2022, 158, 106908. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Gong, J.; Duan, Z. Contamination and source of metals in surface sediments from the Nandu River of Hainan Island, China. Mar. Pollut. Bull. 2022, 182, 114037. [Google Scholar] [CrossRef]
- Ouyang, J.; Chen, G.; Yang, L.; Lu, W.; Zhou, Y. Tectonic Evolution of the Hainan Island, South China: Geochronological and Geochemical Constraints from Late Permian to Early Triassic Basalts. Minerals 2025, 15, 293. [Google Scholar] [CrossRef]
- Zhang, G.-L.; Pan, J.-H.; Huang, C.-M.; Gong, Z.-T. Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Rev. Mex. De Cienc. Geológicas 2007, 24, 261–269. [Google Scholar]
- Cao, C.; Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Li, Q.; Fraedrich, K. Streamflow Response to Climate and Land-Use Changes in a Tropical Island Basin. Sustainability 2023, 15, 13941. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 18th ed.; Zenodo (CERN European Organization for Nuclear Research); APHA: Washington, DC, USA, 1992. [Google Scholar] [CrossRef]
- Effendi, H. River Water Quality Preliminary Rapid Assessment Using Pollution Index. Procedia Environ. Sci. 2016, 33, 562–567. [Google Scholar] [CrossRef]
- Canpolat, Ö.; Varol, M.; Okan, Ö.Ö.; Eriş, K.K.; Çağlar, M. A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environ. Res. 2020, 190, 110012. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- Wang, J.; Zheng, Y.; Li, Y.; Wang, Y. Potential risks, source apportionment, and health risk assessment of dissolved heavy metals in Zhoushan fishing ground, China. Mar. Pollut. Bull. 2023, 189, 114751. [Google Scholar] [CrossRef] [PubMed]
- GB 3838–2002; Environmental Quality Standards for Surface Water in China. State Environmental Protection Administration of China: Beijing, China, 2002.
- Meng, F.; Cao, R.; Zhu, X.; Zhang, Y.; Liu, M.; Wang, J.; Chen, J.; Geng, N. A nationwide investigation on the characteristics and health risk of trace elements in surface water across China. Water Res. 2024, 250, 121076. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Do, D.D.; Nguyen, T.X.; Nguyen, V.N.; Phuc Nguyen, D.T.; Nguyen, M.H.; Thi Truong, H.T.; Dong, H.P.; Le, A.H.; Bach, Q.-V. Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam. Environ. Pollut. 2020, 256, 113412. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef]
- Haque, M.A.; Khatun, B.; Jewel, M.A.S.; Ara, J.; Islam Kazal, M.S.; Hasan, J. Assessment of water quality and heavy metal indices in a tropical freshwater river for aquatic life and public health standard. Ecol. Indic. 2024, 169, 112862. [Google Scholar] [CrossRef]
- Kotacho Abiy, A.; Yimer Girma, T.; Solomon, S.; Yohannes Seifu, B. Heavy Metal Contamination in Omo River, Ethiopia: Environmental and Human Health Risks. Environ. Health Insights 2024, 18, 1–3. [Google Scholar] [CrossRef]
- Othman, F.; Chowdhury, M.S.U.; Wan Jaafar, W.Z.; Faresh, E.M.; Shirazi, S. Assessing Risk and Sources of Heavy Metals in a Tropical River Basin: A Case Study of the Selangor River, Malaysia. Pol. J. Environ. Stud. 2018, 27, 1659–1671. [Google Scholar] [CrossRef]
- Shil, S.; Singh, U.K. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol. Indic. 2019, 106, 105455. [Google Scholar] [CrossRef]
- Moulatlet, G.M.; Yacelga, N.; Rico, A.; Mora, A.; Hauser-Davis, R.A.; Cabrera, M.; Capparelli, M.V. A systematic review on metal contamination due to mining activities in the Amazon basin and associated environmental hazards. Chemosphere 2023, 339, 139700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chang, S.; Tu, X.; Wang, E.; Yu, Y.; Liu, J.; Wang, L.; Fu, Q. Heavy metals in centralized drinking water sources of the Yangtze River: A comprehensive study from a basin-wide perspective. J. Hazard. Mater. 2024, 469, 133936. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Hou, Q.; Yang, Z.; Yu, T.; Zhong, C.; Yang, Y.; Fu, Y. Annual input fluxes of heavy metals in agricultural soil of Hainan Island, China. Environ. Sci. Pollut. Res. 2014, 21, 7876–7885. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-B.; Junaid, M.; Deng, J.-Y.; Tang, Q.-P.; Luo, L.; Xie, Z.-Y.; Pei, D.-S. Effects of land-use patterns on seasonal water quality at multiple spatial scales in the Jialing River, Chongqing, China. CATENA 2024, 234, 107646. [Google Scholar] [CrossRef]
- Li, M.; Ding, D.; Xu, Y.; Yang, Q.; Sun, J.; Qu, K.; Cui, Z.; Wei, Y. Implications of seawater characteristics on dissolved heavy metals in near-shore surface waters of the Yellow Sea. Mar. Pollut. Bull. 2025, 211, 117469. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, D.; Xu, Z.; Yuan, S.; Li, Y.; Wang, L. Effect of overlying water pH, dissolved oxygen and temperature on heavy metal release from river sediments under laboratory conditions. Arch. Environ. Prot. 2017, 43, 28–36. [Google Scholar] [CrossRef]
- Fritioff, Å.; Kautsky, L.; Greger, M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ. Pollut. 2005, 133, 265–274. [Google Scholar] [CrossRef]
- Li, H.; Shi, A.; Li, M.; Zhang, X. Effect of pH, Temperature, Dissolved Oxygen, and Flow Rate of Overlying Water on Heavy Metals Release from Storm Sewer Sediments. J. Chem. 2013, 2013, 434012. [Google Scholar] [CrossRef]
- Elder, J.F. Metal Biogeochemistry in Surface-Water Systems; A Review of Principles and Concepts; U.S. G.P.O.: Washington, DC, USA, 1988.
- Wang, H.; Xu, J.; Gomez, M.A.; Shi, Z.; Jia, Y. A study on the effects of anion, cation, organic compounds, and pH on the release behaviors of As and Sb from sediments. Environ. Sci. Pollut. Res. 2021, 28, 45199–45211. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J. Landscape patterns regulate non-point source nutrient pollution in an agricultural watershed. Sci. Total Environ. 2019, 669, 377–388. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, S.; Yang, L.; Ren, Y.; Xia, J. Spatiotemporal Characteristics of the Water Quality and Its Multiscale Relationship with Land Use in the Yangtze River Basin. Remote Sens. 2021, 13, 3309. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Sheng, M.; Lv, X.; Ren, Z.; Xiao, R. Different “nongrain” activities affect the accumulation of heavy metals and their source-oriented health risks on cultivated lands. Environ. Res. 2024, 251, 118642. [Google Scholar] [CrossRef] [PubMed]
- Tokatlı, C.; Varol, M. Variations, health risks, pollution status and possible sources of dissolved toxic metal(loid)s in stagnant water bodies located in an intensive agricultural region of Turkey. Environ. Res. 2021, 201, 111571. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Arsenic and trace metals in a large reservoir: Seasonal and spatial variations, source identification and risk assessment for both residential and recreational users. Chemosphere 2019, 228, 1–8. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
Season | Region | Cd | Pb | Cr | Cu | Zn | As | Hg | Sb | ΣHMs | |
---|---|---|---|---|---|---|---|---|---|---|---|
Wet season | Basin (n = 17) | Min | b.d.l. | b.d.l. | b.d.l. | 0.95 | 1.11 | 0.42 | b.d.l. | b.d.l. | 3.84 |
Mean | b.d.l. | 1.43 | 12.84 | 3.18 | 12.11 | 0.99 | 0.02 | 0.46 | 31.03 | ||
Max | b.d.l. | 3.46 | 28.53 | 6.17 | 28.53 | 1.92 | 0.07 | 0.89 | 51.45 | ||
Estuary (n = 7) | Min | b.d.l. | b.d.l. | 2.92 | 15.07 | b.d.l. | 7.85 | b.d.l. | b.d.l. | 25.84 | |
Mean | b.d.l. | b.d.l. | 6.14 | 24.73 | 16.71 | 23.38 | b.d.l. | b.d.l. | 70.96 | ||
Max | b.d.l. | b.d.l. | 12.27 | 36.93 | 76.39 | 49.94 | b.d.l. | b.d.l. | 133.55 | ||
Nearshore (n = 13) | Min | b.d.l. | 0.11 | 0.84 | 0.37 | b.d.l. | 0.27 | b.d.l. | 0.40 | 3.07 | |
Mean | b.d.l. | 0.28 | 1.64 | 0.61 | 4.36 | 0.45 | 0.10 | 0.63 | 8.07 | ||
Max | b.d.l. | 0.58 | 2.30 | 1.49 | 16.20 | 0.60 | 0.39 | 1.64 | 19.41 | ||
Total (n = 37) | Mean | b.d.l. | 0.76 | 7.64 | 6.36 | 10.26 | 5.04 | 0.04 | 0.43 | 30.52 | |
SD | - | 0.98 | 8.38 | 9.31 | 10.76 | 8.85 | 0.09 | 0.33 | 30.23 | ||
Dry season | Basin (n = 17) | Min | b.d.l. | 0.55 | 1.30 | 0.74 | 8.52 | 0.27 | b.d.l. | 0.05 | 11.80 |
Mean | <0.01 | 2.70 | 3.46 | 2.28 | 22.16 | 0.78 | 0.03 | 0.14 | 31.56 | ||
Max | b.d.l. | 10.47 | 11.17 | 5.23 | 58.10 | 2.18 | 0.07 | 0.34 | 87.35 | ||
Estuary (n = 7) | Min | b.d.l. | b.d.l. | 0.49 | 1.49 | 12.50 | 0.28 | b.d.l. | 0.28 | 15.56 | |
Mean | b.d.l. | 0.28 | 0.99 | 2.14 | 19.00 | 0.47 | 0.05 | 0.32 | 23.26 | ||
Max | b.d.l. | 0.55 | 1.77 | 3.49 | 26.27 | 0.73 | 0.07 | 0.37 | 29.74 | ||
Nearshore (n = 13) | Min | b.d.l. | 0.27 | 0.84 | b.d.l. | 0.29 | 0.41 | b.d.l. | 0.24 | 4.35 | |
Mean | b.d.l. | 0.97 | 2.36 | 0.55 | 2.48 | 0.73 | 0.01 | 0.38 | 7.49 | ||
Max | b.d.l. | 1.98 | 4.55 | 1.49 | 12.90 | 1.23 | 0.09 | 0.47 | 16.25 | ||
Total (n = 37) | Mean | <0.01 | 1.64 | 2.61 | 1.65 | 14.65 | 0.71 | 0.03 | 0.26 | 21.53 | |
SD | - | 2.08 | 2.06 | 1.28 | 12.02 | 0.38 | 0.03 | 0.13 | 15.99 |
Criteria | Range Index | Degree | Wet Season | Dry Season |
---|---|---|---|---|
Pi | ≤1 | No pollution | Hg (26 sites), other metals (37 sites) | Hg (25 sites), other metals (37 sites) |
1~2 | Low pollution | Hg (N1, N3, S2, S4, S9, S10) | Hg (N6, N7, N8, N11, N12, N16, N17, E3, E5, E6, S1, S2) | |
2~3 | Moderate pollution | Hg (S1, S5) | 0 | |
≥3 | Heavy pollution | Hg (S3, S6, S7) | 0 | |
NIPI | ≤1 | No pollution | 29 sites | 36 sites |
1~5 | Low pollution | N3, S1, S3, S4, S5, S6, S9 | S2 | |
5~10 | Moderate pollution | S7 | 0 | |
>10 | Heavy pollution | 0 | 0 | |
HQ, HI | <1 | No adverse effect | 37 sites | 37 sites |
>1 | Adverse effects | 0 | 0 | |
CR | <1 × 10−6 | Nonexistent or low carcinogenic risk | Pb (27 sites), Cr (14 sites), As (12 sites) | Pb (29 sites), Cr (16 sites), As (20 sites) |
1 × 10−6 ~ 1 × 10−4 | Possible carcinogenic risk | Pb (10 sites), Cr (11 sites), As (24 sites) | Pb (8 sites), Cr (14 sites), As (12 sites) | |
>1 × 10−4 | Carcinogenic risk | Cr (N1, N3, N4, N6, N8-N10, N13–N17), As (N1) | Cr (N1–N4, N6, N12, N13), As (N1–N4, N12) | |
TCR | <1 × 10−6 | Low carcinogenic risk | Pb (34 sites), Cr (17 sites), As (12 sites) | Pb (31 sites), Cr (20 sites), As (20 sites) |
1 × 10−6 ~ 1 × 10−4 | Possible carcinogenic risk | Pb (3 sites), Cr (8 sites), As (25 sites) | Pb (6 sites), Cr (12 sites), As (15 sites) | |
>1 × 10−4 | Carcinogenic risk | Cr (N1, N3, N4, N6, N8–N10, N13–N17) | Cr (N1–N4, N12), As (N2, N3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhang, W.; Li, P.; Ma, Y.; Liang, L.; Wu, W.; Li, J.; Zhu, X. Effects of Land-Use Patterns on Heavy Metal Pollution and Health Risk in the Surface Water of the Nandu River, China. Sustainability 2025, 17, 4622. https://doi.org/10.3390/su17104622
Chen C, Zhang W, Li P, Ma Y, Liang L, Wu W, Li J, Zhu X. Effects of Land-Use Patterns on Heavy Metal Pollution and Health Risk in the Surface Water of the Nandu River, China. Sustainability. 2025; 17(10):4622. https://doi.org/10.3390/su17104622
Chicago/Turabian StyleChen, Changchao, Wen Zhang, Ping Li, Yuanhao Ma, Longru Liang, Wanman Wu, Jianlei Li, and Xiaoshan Zhu. 2025. "Effects of Land-Use Patterns on Heavy Metal Pollution and Health Risk in the Surface Water of the Nandu River, China" Sustainability 17, no. 10: 4622. https://doi.org/10.3390/su17104622
APA StyleChen, C., Zhang, W., Li, P., Ma, Y., Liang, L., Wu, W., Li, J., & Zhu, X. (2025). Effects of Land-Use Patterns on Heavy Metal Pollution and Health Risk in the Surface Water of the Nandu River, China. Sustainability, 17(10), 4622. https://doi.org/10.3390/su17104622