Microbial Additive Isolated from Exotic Semi-Arid Cactus and Cottonseed Byproduct in Sustainable Sorghum Silage Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Treatments, Experimental Design, and Sorghum Silage Production
2.3. Fermentation Losses and Aerobic Stability Assessment
2.4. Fermentation Profile
2.5. Microbial Population Counts
2.6. Chemical Composition
2.7. Statistical Analysis
3. Results
3.1. Fermentation Profile and the Microbial Population Counts
3.2. Fermentative Losses and Aerobic Stability
3.3. Chemical Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | Acid detergent fiber |
CFU | Colony-forming units |
CP | Crude protein |
TC | Total carbohydrates |
DM | Dry matter |
EE | Ether extract |
LAB | Lactic acid bacteria |
NDF ap | Neutral detergent fiber corrected for ash and protein |
NM | Natural matter |
NH3-N | Ammoniacal nitrogen |
NFC | Non-fibrous carbohydrates |
PVC | Polyvinyl chloride |
SS | Sorghum silage |
SSCSC | Sorghum silage + 10% cottonseed cake |
SSCSCWC | Sorghum silage +10% cottonseed cake + Weissella cibaria |
SSWC | Sorghum silage + Weissella cibaria |
References
- Yang, J.; Wang, Y.; Zhang, H.; Su, Y.; Wu, X.; Yan, S.; Yang, S. Impact of socio-economic and environmental factors on livestock production in Kyrgyzstan. Front. Environ. Sci. 2022, 10, 1049187. [Google Scholar] [CrossRef]
- Batista, K.; Campos, F.P. Qualitative production of mixture silage within a sustainable concept. Sustainability 2024, 16, 6398. [Google Scholar] [CrossRef]
- Sahlin, K.R.; Gordon, L.J.; Lindborg, R.; Piipponen, J.; Van Rysselberge, P.; Rouet-Leduc, J.; Röös, E. An exploration of biodiversity limits to grazing ruminant milk and meat production. Nat. Sustain. 2024, 7, 1160–1170. [Google Scholar] [CrossRef]
- Cooke, R.F.; Daigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M. Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. J. Anim. Sci. 2020, 98, skaa014. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.D.G.; Difante, G.D.S.; Ítavo, L.C.V.; Rodrigues, J.G.; Gurgel, A.L.C.; Dias, A.M.; Monteiro, G.D.A. Production potential and quality of Panicum maximum cultivars established in a semi-arid environment. Trop. Anim. Sci. 2022, 45, 308–318. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.C.; Schmidt, P.; Nussio, L.G. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 2019, 74, 188–200. [Google Scholar] [CrossRef]
- Zaeem, M.; Nadeem, M.; Pham, T.H.; Ashiq, W.; Ali, W.; Gillani, S.S.M.; Moise, E.; Elavarthi, S.; Kavanagh, V.; Cheema, M.; et al. Corn-soybean intercropping improved the nutritional quality of forage cultivated on Podzols in boreal climate. Plants 2021, 10, 1015. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; ISBN 0-948617-225. [Google Scholar]
- Kazungu, F.K.; Muindi, E.M.; Mulinge, J.M. Overview of sorghum (Sorghum bicolor. L), its economic importance, ecological requirements and production constraints in Kenya. Int. J. Plant Soil Sci. 2023, 35, 62–71. [Google Scholar] [CrossRef]
- da Fonsêca, G.R.F.; Henrique, J.C.G.; Alcântara, E.B.; Almeida, N.V.S.; Oliveira, A.C.; Medeiros, M.L.S.; Silva, A.L.J.; Souza, E.J.O. Nutritional and Structural Components of Forage Sorghum Subjected to Nitrogen Fertilization and Molybdenum. Grasses 2025, 4, 1. [Google Scholar] [CrossRef]
- Rodrigues, P.H.M.; Pinedo, L.A.; Meyer, P.M.; da Silva, T.H.; Guimarães, I.C.D.S.B. Sorghum silage quality as determined by chemical-nutritional factors. Grass Forage Sci. 2020, 75, 462–473. [Google Scholar] [CrossRef]
- Behling, A.; Reis, R.H.P.D.; Cabral, L.D.S.; Abreu, J.G.D.; Sousa, D.D.P.; Sousa, F.G.D. Nutritional value of sorghum silage of different purposes. Ciênc. Agrotec. 2017, 41, 288–299. [Google Scholar] [CrossRef]
- Santos, A.P.M.D.; Santos, E.M.; Oliveira, J.S.D.; Ribeiro, O.L.; Perazzo, A.F.; Martins Araújo Pinho, R.; Pereira, G.A. Effects of urea addition on the fermentation of sorghum (Sorghum bicolor) silage. Afr. J. Range Forage Sci. 2018, 35, 55–62. [Google Scholar] [CrossRef]
- Justino, E.S.; Santos, E.M.; Oliveira, J.S.; Araújo, G.G.; Cavalcanti, H.S.; Santana, L.P.; Soares, R.L.; Perazzo, A.F.; Santos, F.N.S.; Zanine, A.M. Cottonseed cake as nutritional additive for sorghum silages. N. Z. J. Agric. Res. 2023, 68, 379–389. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Chang, Z.; Yao, B.; Han, Z.; Wang, T.; Wang, R. Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. Fermentation 2024, 10, 533. [Google Scholar] [CrossRef]
- Zanine, A.M.; de Sene, O.A.; de Jesus Ferreira, D.; Parente, H.N.; de Oliveira Maia Parente, M.; Pinho, R.M.A.; Bandeira, D.M. Fermentative profile, losses and chemical composition of silage soybean genotypes amended with sugarcane levels. Sci. Rep. 2020, 10, 21064. [Google Scholar] [CrossRef]
- De Assis, D.Y.C.; De Carvalho, G.G.P.; Santos, E.M.; De Oliveira, F.A.; Dos Santos Pina, D.; Santos, A.S.; De Almeida Rufino, L.M. Cottonseed cake as a substitute of soybean meal for goat kids. Ital. J. Anim. Sci. 2019, 18, 124–133. [Google Scholar] [CrossRef]
- Dias, E.C.B.; Cândido, M.J.D.; Furtado, R.N.; Pompeu, R.C.F.F.; Silva, L.V.D. Nutritive value of elephant grass silage added with cottonseed cake in diet for sheep. Rev. Ciênc. Agron. 2019, 50, 321–328. [Google Scholar] [CrossRef]
- Arcanjo, A.H.M.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Franco, G.L.; Dias, A.M.; dos Santos Difante, G.; Gurgel, A.L.C. Cottonseed cake as an economically viable alternative fibre source of forage in a high-concentrate diet for finishing beef cattle in feedlots. Trop. Anim. Health. Prod. 2022, 54, 112. [Google Scholar] [CrossRef]
- Santana, L.P.; Santos, E.M.; Oliveira, J.S.; Santos, B.R.; Carvalho, G.G.C.; Cavalcanti, J.V.F.L.; Cruz, G.F.L.; Pereira, D.M.; Cavalcanti, H.S.; Santos, F.N.S.; et al. Microbial inoculant and cottonseed cake as additives for millet silage at different fermentation times. N. Z. J. Agric. Res. 2024, 67, 223–239. [Google Scholar] [CrossRef]
- Pereira, D.M.; de Oliveira, J.S.; Ramos, J.P.D.F.; Cavalcante, I.T.R.; Santos, F.N.D.S.; da Silva, E.D.S.; Perazzo, A.F.; Macêdo, A.J.S.; Tôrres Júnior, P.C.; Santos, E.M. Total mixed ration silage based on cactus pear and cottonseed cake in the feeding of feedlot finished lambs. Trop. Anim. Health Prod. 2025, 57, 50. [Google Scholar] [CrossRef]
- Leite, G.M.; Santos, E.M.; de Oliveira, J.S.; Pereira, D.M.; de Oliveira, C.J.B.; Cavalcanti, J.V.F.L.; Lima, V.M.R.; Lima, J.P.V.M.F.; Gomes, P.G.B.; Edvan, R.L.; et al. Isolation of acetic acid-producing bacterial strains and utilization as microbial inoculants in sorghum silages. Agriculture 2025, 15, 241. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Silva, R.R.; Fusieger, A.; Martins, E.; Freitas, R.; Carvalho, A.F. The Weissella genus in the food industry: A review. Res. Soc. Dev. 2021, 10, e8310514557. [Google Scholar] [CrossRef]
- Pereira, G.A.; Santos, E.M.; Araújo, G.G.L.; Oliveira, J.S.; Pinho, R.M.A.; Zanine, A.D.M.; Souza, A.F.N.; Macêdo, A.J.S.; Neto, J.M.C.; Nascimento, T.V.C. Isolation and identification of lactic acid bacteria in fresh plants and in silage from Opuntia and their effects on the fermentation and aerobic stability of silage. J. Agric. Sci. 2020, 157, 684–692. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Pinto, J.C.; Figueiredo, H.C.P.; Schwan, R.F. Effects of an indigenous and a commercial Lactobacillus buchneri strain on quality of sugar cane silage. Grass Forage Sci. 2009, 64, 384–394. [Google Scholar] [CrossRef]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Methodological advances in evaluation of preserved forage quality. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef]
- Taylor, C.C.; Kung, L., Jr. The effect of Lactobacillus buchneri 40788 on the fermentation and aerobic stability of high moisture corn in laboratory silos. J. Dairy Sci. 2002, 85, 1526–1532. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Fenner, H. Method for determining total volatile bases in rumen fluid by steam distillation. J. Dairy Sci. 1965, 48, 249–251. [Google Scholar] [CrossRef]
- Canale, A.; Valente, M.E.; Ciotti, A. Determination of volatile carboxylic acids (C1-C5i) and lactic acid in aqueous acid extracts of silage by high performance liquid chromatography. J. Sci. Food Agric. 1984, 35, 1178–1182. [Google Scholar] [CrossRef]
- González, G.; Rodríguez, A.A. Effect of storage method on fermentation characteristics, aerobic stability, and forage intake of tropical grasses ensiled in round bales. J. Dairy Sci. 2003, 86, 926–933. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; p. 476. [Google Scholar]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P. Predicting energy values of feeds. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Melo, C.D.; Maduro Dias, C.S.; Wallon, S.; Borba, A.E.; Madruga, J.; Borges, P.A.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358. [Google Scholar] [CrossRef]
- de Souza, J.M.S.; Neto, A.B.; da Rosa, M.A.B.; Tardin, F.D.; Galati, R.L.; Chaves, C.S.; Pereira, D.H. Nutritional value and fermentability of sorghum silages grown in the Amazon biome. Grassl. Sci. 2024, 71, 86–94. [Google Scholar] [CrossRef]
- Ramos, B.L.P.; Pires, A.J.V.; Cruz, N.T.; dos Santos, A.P.D.S.; Nascimento, L.M.G.; Santos, H.P.; Amorim, J.M.S. Losses in the silagem process: A brief review. Res. Soc. Dev. 2021, 10, e8910514660. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Revisão de silagem: Fatores que afetam a matéria seca e as perdas de qualidade em silagens. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Kung, L.M., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Vieira, F.A.P.; Borges, I.; Stehling, C.A.V.; Gonçalves, L.C.; Coelho, S.G.; Ferreira, M.I.C.; Rodrigues, J.A.S. Quality of sorghum silages with additives. Arq. Bras. Med. Vet. Zootec. 2004, 56, 764–772. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, Y.; Xin, Y.; Chen, C.; Du, Z.; Li, X.; Zhong, J.; Tahir, M.; Kang, B.; Jiang, D.; et al. Silage quality and output of different maize-soybean strip intercropping patterns. Fermentation 2022, 8, 174. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Ranjit, N.K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 2001, 84, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, T.F.; De Oliveira, I.L.; Casagrande, D.R.; Ferrero, F.; Tabacco, E.; Borreani, G. Feed-out rate used as a tool to manage the aerobic deterioration of corn silages in tropical and temperate climates. J. Dairy Sci. 2021, 104, 10828–10840. [Google Scholar] [CrossRef]
- Li, J.; Meng, Q.; Wang, C.; Song, C.; Lyu, Y.; Li, J.; Shan, A. The interaction between temperature and citric acid treatment in the anaerobic fermentation of Chinese cabbage waste. J. Clean. Prod. 2023, 383, 135502. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Davies, D.R.A. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Dos Santos, A.C.P.; Santos, E.M.; Carvalho, G.G.; Perazzo, A.F.; Araújo, M.L.; de Oliveira, J.S.; Pereira, D.M. Fermentation profile, microbial populations and aerobic stability of sorghum silages enriched with urea and Lactobacillus buchneri. N. Z. J. Agric. Res. 2023, 66, 128–144. [Google Scholar] [CrossRef]
- Pereira, E.S.; de Almeida Teixeira, I.A.M.; Azevêdo, J.A.G.; Santos, S.A. (Eds.) Exigências Nutricionais de Caprinos e Ovinos—BR-Caprinos & Ovinos; Editora Scienza: São Carlos, Brazil, 2024; p. 270. ISBN 978-65-5668-184-9. [Google Scholar]
- Zhao, M.; Feng, Y.; Shi, Y.; Shen, H.; Hu, H.; Luo, Y.; Fang, J. Yield and quality properties of silage maize and their influencing factors in China. Sci. China Life Sci. 2022, 65, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Kozloski, G.V.; Trevisan, L.M.; Bonnecarrère, L.M.; Härter, C.J.; Fiorentini, G.; Galvani, D.B.; Pires, C.C. Levels of neutral detergent fiber in lambs diets: Intake, digestibility and ruminal fermentation. Braz. J. Vet. Ani. Sci. 2006, 58, 893–900. [Google Scholar] [CrossRef]
- Lourencon, R.V.; Patra, A.K.; Ribeiro, L.P.; Puchala, R.; Wang, W.; Gipson, T.A.; Goetsch, A.L. Effects of the level and source of dietary physically effective fiber on feed intake, nutrient utilization, heat energy, ruminal fermentation, and milk production by Alpine goats. Anim. Nutr. 2024, 17, 312–324. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour. Technol. 2018, 266, 158–165. [Google Scholar] [CrossRef]
Item, % DM |
Additive
(CSC) | Treatments | |||
---|---|---|---|---|---|
SS | SSCSC | SSWC | SSCSCWC | ||
Dry matter, % natural matter (NM) | 89.3 | 32.9 | 40.2 | 33.7 | 41.6 |
Ash | 5.4 | 3.5 | 4.1 | 3.7 | 4.3 |
Organic matter | 94.6 | 96.5 | 95.9 | 96.3 | 95.7 |
Crude protein | 28.0 | 5.7 | 11.3 | 5.2 | 11.4 |
Ether extract | 9.5 | 1.9 | 3.9 | 2.3 | 3.7 |
Neutral detergent fiber ap | 55.1 | 37.5 | 35.2 | 41.7 | 34 |
Acid detergent fiber | 26.5 | 19.7 | 17.5 | 22.8 | 16.6 |
Cellulose | 18.5 | 16.4 | 14.4 | 19.1 | 13.3 |
Hemicellulose | 28.6 | 17.8 | 17.7 | 18.8 | 17.4 |
Lignin | 7.99 | 3.3 | 3.1 | 3.7 | 3.3 |
Non-fibrous carbohydrates | 2.0 | 51.5 | 45.5 | 47.2 | 46.5 |
Total carbohydrates | 57.1 | 88.8 | 80.4 | 88.6 | 80.2 |
pH | - | 5.4 | 5.5 | 4.8 | 5.5 |
Lactic acid bacteria, log10 CFU g−1 NM | - | 2.13 | 0 | 2.62 | 2.25 |
Item, % DM | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
SS | SSCSC | SSWC | SSCSCWC | |||
pH | 4.18 b | 4.51 ab | 4.19 b | 4.83 a | 0.08 | <0.001 |
Ammoniacal nitrogen, % TN | 2.03 c | 5.32 b | 2.62 c | 7.41 a | 0.58 | <0.001 |
Buffer capacity, mEq NaOH 100 g−1 DM | 52.47 b | 61.85 a | 50.74 b | 63.98 a | 1.60 | <0.001 |
Organic acids | ||||||
Acetic, % DM | 1.18 b | 1.27 a | 0.83 c | 1.52 a | 0.07 | <0.001 |
Lactic, % DM | 2.77 a | 2.63 a | 2.08 b | 1.81 b | 0.11 | <0.001 |
Molds and yeasts, log10 CFU g−1 NM | <1 × 10−2 | <1 × 10−2 | <1 × 10−2 | <1 × 10−2 | - | - |
Item, % DM | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
SS | SSCSC | SSWC | SSCSCWC | |||
Gas Losses, % DM | 0.07 | 0.05 | 0.05 | 0.08 | 0.02 | 0.350 |
Effluent losses, kg ton−1 NM | 30.75 a | 4.44 b | 22.92 a | 1.12 b | 3.34 | 0.001 |
Dry matter recovery, % | 89.67 a | 79.37 b | 84.90 a | 78.49 b | 1.31 | 0.001 |
Item, % DM | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
SS | SSCSC | SSWC | SSCSCWC | |||
Average temperature, °C | 24.60 a | 24.35 ab | 24.33 b | 24.4 ab | 0.05 | 0.035 |
Minimum temperature, °C | 23.00 | 23.05 | 23.10 | 23.23 | 0.07 | 0.717 |
Maximum temperature, °C | 27.25 a | 26.75 b | 26.8 ab | 26.93 ab | 0.07 | 0.029 |
Thermal amplitude, °C | 4.25 | 3.70 | 3.70 | 3.70 | 0.09 | 0.061 |
Forage losses, % NM | 5.57 | 4.66 | 5.32 | 5.52 | 0.20 | 0.380 |
Aerobic stability, hours | >120 | >120 | >120 | >120 | - | - |
Item, % DM | Treatments 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
SS | SSCSC | SSWC | SSCSCWC | |||
Dry matter | 30.35 b | 33.81 a | 29.79 b | 33.59 a | 0.49 | <0.001 |
Mineral matter | 3.50 c | 4.06 ab | 3.70 bc | 4.31 a | 0.09 | 0.002 |
Organic matter | 96.50 a | 95.94 bc | 96.30 ab | 95.69 c | 0.09 | 0.002 |
Crude protein | 6.83 b | 11.13 a | 6.50 b | 11.41 a | 0.60 | <0.001 |
Ether extract | 2.55 b | 4.55 a | 2.93 b | 4.31 a | 0.22 | <0.001 |
NDFap 2 | 44.79 ab | 40.38 b | 47.23 a | 39.58 b | 0.99 | 0.003 |
Acid detergent fiber | 27.46 ab | 24.11 bc | 27.71 a | 21.61 c | 0.74 | 0.005 |
Cellulose | 22.94 a | 19.25 b | 23.12 a | 17.73 b | 0.71 | 0.001 |
Hemicellulose | 17.33 | 16.26 | 19.52 | 17.98 | 0.50 | 0.130 |
Lignin | 4.52 | 4.86 | 4.59 | 3.88 | 0.17 | 0.241 |
Non-fibrous carbohydrates | 36.85 | 34.42 | 34.85 | 35.7 | 0.67 | 0.635 |
Total carbohydrates | 87.12 a | 80.25 b | 86.88 a | 79.97 b | 0.89 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, R.B.; Oliveira, G.R.S.; Araújo, M.L.G.M.L.d.; Alba, H.D.R.; Lima, C.L.S.; Pina, D.d.S.; Santos, E.M.; Saldanha, R.B.; Santos, S.A.; Carvalho, G.G.P.d. Microbial Additive Isolated from Exotic Semi-Arid Cactus and Cottonseed Byproduct in Sustainable Sorghum Silage Production. Sustainability 2025, 17, 4595. https://doi.org/10.3390/su17104595
Mendes RB, Oliveira GRS, Araújo MLGMLd, Alba HDR, Lima CLS, Pina DdS, Santos EM, Saldanha RB, Santos SA, Carvalho GGPd. Microbial Additive Isolated from Exotic Semi-Arid Cactus and Cottonseed Byproduct in Sustainable Sorghum Silage Production. Sustainability. 2025; 17(10):4595. https://doi.org/10.3390/su17104595
Chicago/Turabian StyleMendes, Raiane Barbosa, Gabriel Rodrigues Silva Oliveira, Maria Leonor Garcia Melo Lopes de Araújo, Henry Daniel Ruiz Alba, Cláudia Loianny Souza Lima, Douglas dos Santos Pina, Edson Mauro Santos, Rodrigo Brito Saldanha, Stefanie Alvarenga Santos, and Gleidson Giordano Pinto de Carvalho. 2025. "Microbial Additive Isolated from Exotic Semi-Arid Cactus and Cottonseed Byproduct in Sustainable Sorghum Silage Production" Sustainability 17, no. 10: 4595. https://doi.org/10.3390/su17104595
APA StyleMendes, R. B., Oliveira, G. R. S., Araújo, M. L. G. M. L. d., Alba, H. D. R., Lima, C. L. S., Pina, D. d. S., Santos, E. M., Saldanha, R. B., Santos, S. A., & Carvalho, G. G. P. d. (2025). Microbial Additive Isolated from Exotic Semi-Arid Cactus and Cottonseed Byproduct in Sustainable Sorghum Silage Production. Sustainability, 17(10), 4595. https://doi.org/10.3390/su17104595