A Generative Urban Form Design Framework Based on Deep Convolutional GANs and Landscape Pattern Metrics for Sustainable Renewal in Highly Urbanized Cities
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Dataset Construction
3.2. Image Inpainting Model Based on Deep Convolutional Generative Adversarial Networks
- denotes the divergence between generated and real image distributions,
- represents real image input,
- denotes the generated sample,
- is the expectation operator,
- is the distribution of real data,
- is the Gaussian distribution of noise z,
- is the probability that the discriminator classifies xxx as real,
- is the probability that the discriminator classifies the generated sample as real.
3.3. Urban Morphological Evaluation Using Landscape Pattern Indices
- : area of patch in landscape type (in hectares, );
- : perimeter of patch (in meters);
- : number of adjacencies between raster cells of the same landscape type;
- : number of landscape types (categories);
- : total number of patches;
- : total landscape area (in );
- : total edge length of all patches (in meters).
4. Results
4.1. Model Training Process
4.2. Generation Results of the Model
4.3. Evaluation Using Landscape Pattern Indices
4.4. Morphological Differences in Generated Results
5. Discussion
5.1. Deep Learning and the Extraction of Urban Morphological Characteristics
5.2. Advancing Urban Morphology Research Through Deep Learning
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dijkstra, L.; Florczyk, A.J.; Freire, S.; Kemper, T.; Melchiorri, M.; Pesaresi, M.; Schiavina, M. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. J. Urban Econ. 2021, 125, 103312. [Google Scholar] [CrossRef]
- Zhu, W.J.; Chen, J.J. The spatial analysis of digital economy and urban development: A case study in Hangzhou, China. Cities 2022, 123, 103568. [Google Scholar] [CrossRef]
- He, Q.S.; Yan, M.; Zheng, L.Z.; Wang, B.; Zhou, J. The Effect of Urban Form on Urban Shrinkage—A Study of 293 Chinese Cities Using Geodetector. Land 2023, 12, 799. [Google Scholar] [CrossRef]
- Dai, K.; Shen, S.; Cheng, C.; Ye, S.; Gao, P. Trade-Off Relationship of Arable and Ecological Land in Urban Growth When Altering Urban Form: A Case Study of Shenzhen, China. Sustainability 2020, 12, 10041. [Google Scholar] [CrossRef]
- Stuhlmacher, M.; Georgescu, M.; Turner, B.L.; Hu, Y.; Goldblatt, R.; Gupta, S.; Frazier, A.E.; Kim, Y.; Balling, R.C.; Clinton, N. Are global cities homogenizing? An assessment of urban form and heat island implications. Cities 2022, 126, 103705. [Google Scholar] [CrossRef]
- Yu, P.H.; Yung, E.H.K.; Chan, E.H.W.; Wong, M.S.; Wang, S.Q.; Chen, Y.Y. An integrated approach for examining urban fragmentation in metropolitan areas: Implications for sustainable urban planning. J. Clean. Prod. 2023, 419, 138151. [Google Scholar] [CrossRef]
- He, S.W.; Yu, S.; Li, G.D.; Zhang, J.F. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Sharifi, A. Urban form resilience: A meso-scale analysis. Cities 2019, 33, 238–252. [Google Scholar] [CrossRef]
- Huang, J.X.; Cui, Y.; Chang, H.L.; Obracht-Prondzyńska, H.; Kamrowska-Zaluska, D.; Li, L. A city is not a tree: A multi-city study on street network and urban life. Landsc. Urban Plan. 2022, 226, 104469. [Google Scholar] [CrossRef]
- Ge, T.Y.; Hou, W.J.; Xiao, Y. Study on the regeneration of city centre spatial structure pedestrianisation based on space syntax: Case study on 21 city centres in the UK. Land 2023, 12, 1183. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; He, J.; Jung, T. Measuring residents’ perceptions of city streets to inform better street planning through deep learning and space syntax. ISPRS J. Photogramm. Remote Sens. 2022, 190, 215–230. [Google Scholar] [CrossRef]
- Xia, H.S.; Liu, Z.; Efremochkina, M.; Liu, X.; Lin, C. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Mobaraki, A.; Vehbi, B.O. A conceptual model for assessing the relationship between urban morphology and sustainable urban form. Sustainability 2022, 14, 2884. [Google Scholar] [CrossRef]
- Wang, J.; Fleischmann, M.; Venerandi, A.; Romice, O.; Kuffer, M.; Porta, S. EO + morphometrics: Understanding cities through urban morphology at large scale. Landsc. Urban Plan. 2023, 233, 104691. [Google Scholar] [CrossRef]
- Bin, C.; Yu, W. Application of parametric design in contemporary architecture design. In Proceedings of the International Conference on Optimization Design (ICOD 2010), Wuhan, China, 18–19 March 2010; Wu, X.K., Yu, L., Eds.; ASME Press: New York, NY, USA, 2010; pp. 61–64. [Google Scholar] [CrossRef]
- Tommasi, C.; Achille, C.; Fassi, F. From point cloud to BIM: A modelling challenge in the cultural heritage field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 429–436. [Google Scholar] [CrossRef]
- Asl, M.R.; Bergin, M.; Menter, A.; Yan, W. BIM-based parametric building energy performance multi-objective optimization. In Proceedings of the 32nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe), Delft, The Netherlands, 10–12 September 2014; pp. 455–464. [Google Scholar]
- Canadinc, S.T.; van Leeuwen, D.; Bakker, K. Multi-User and Web-based Parametric Modeling with Multiple Visual Programming Tools. In Proceedings of the 38th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe), Berlin, Germany, 16–18 September 2020. [Google Scholar]
- Chen, X.; Yu, J.; Zhu, Y.; Wu, R.; Tu, W. Short video-driven deep perception for city imagery. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 689–704. [Google Scholar] [CrossRef]
- Li, Q.Y.; Taubenböck, H.; Zhu, X.X. Identification of the potential for roof greening using remote sensing and deep learning. Cities 2025, 159, 105782. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Tan, X.P.; Yuan, X.D. Extraction of Urban Built-Up Area Based on Deep Learning and Multi-Sources Data Fusion—The Application of an Emerging Technology in Urban Planning. Land 2022, 11, 1212. [Google Scholar] [CrossRef]
- Huang, C.Y.; Zhang, G.J.; Yao, J.W.; Wang, X.X.; Calautit, J.K.; Zhao, C.R.; An, N.; Peng, X. Accelerated environmental performance-driven urban design with generative adversarial network. Build. Environ. 2022, 224, 109575. [Google Scholar] [CrossRef]
- Gan, W.; Zhao, Z.C.; Wang, Y.K.; Zou, Y.X.; Zhou, S.Q.; Wu, Z.Q. UDGAN: A new urban design inspiration approach driven by using generative adversarial networks. J. Comput. Des. Eng. 2024, 11, 305–324. [Google Scholar] [CrossRef]
- Bhooshan, S. Parametric design thinking: A case-study of practice-embedded architectural research. Des. Stud. 2017, 52, 115–143. [Google Scholar] [CrossRef]
- Wang, J.; Huang, W.; Bilječki, F. Learning visual features from figure-ground maps for urban morphology discovery. Comput. Environ. Urban Syst. 2024, 109, 102076. [Google Scholar] [CrossRef]
- Chen, W.Y.; Wu, A.N.; Bilječki, F. Classification of urban morphology with deep learning: Application on urban vitality. Comput. Environ. Urban Syst. 2021, 90, 101706. [Google Scholar] [CrossRef]
- Jiang, F.F.; Ma, J.; Webster, C.J.; Li, X.; Gan, V.J.L. Building layout generation using site-embedded GAN model. Autom. Constr. 2023, 151, 104888. [Google Scholar] [CrossRef]
- Quan, S.J. Urban-GAN: An artificial intelligence-aided computation system for plural urban design. Environ. Plan. B-Urban Anal. City Sci. 2022, 49, 2500–2515. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, Y.; Wang, S.Q.; Wang, H.F.; Sheng, T.; Zhang, Y.; Ye, Y. ReCo: A Dataset for Residential Community Layout Planning. In Proceedings of the 31st ACM International Conference on Multimedia—MM 2023, Ottawa, ON, Canada, 29 October–3 November 2023; ACM: New York, NY, USA, 2023; pp. 397–405. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Zhou, B.; Jin, S.; Xie, X.J.; Chen, Z.L.; Hu, S.; He, N. A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method. Comput. Environ. Urban Syst. 2022, 95, 101807. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Presa Reyes, M.; Shyu, M.-L.; Chen, S.-C.; Iyengar, S.S. A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv. (CSUR) 2018, 51, 92. [Google Scholar] [CrossRef]
- Chandak, V.; Saxena, P.; Pattanaik, M.; Kaushal, G. Semantic Image Completion and Enhancement using Deep Learning. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Liu, X.; Zhang, X. Spatiotemporal patterns and the influence mechanism of urban landscape pattern on carbon emission performance: Evidence from Chinese cities. Sustain. Cities Soc. 2024, 118, 105918. [Google Scholar] [CrossRef]
- Wu, J.; Wu, C.Y.; Zhang, Q.; Zhuang, M.H.; Xiao, H.R.; Wu, H.; Ouyang, L.; Liu, Y.; Meng, C.; Song, C.; et al. Spatiotemporal Evolution of Urban Agglomeration and Its Impact on Landscape Patterns in the Pearl River Delta, China. Remote Sens. 2023, 15, 2520. [Google Scholar] [CrossRef]
- Fu, F.; Li, Y.; Zhang, H.; Zhou, Y. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103704. [Google Scholar] [CrossRef]
- Han, D.R.; Wang, Y.; Yang, Y. The roles of surrounding 2D/3D landscapes in park cooling effect: Analysis from extreme hot and normal weather perspectives. Build. Environ. 2023, 231, 109807. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, N.; Liang, S.W.; Pang, Q.; Yabe, T.; Ukkusuri, S.V.; Ma, J. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nat. Mach. Intell. 2022, 4, 246–257. [Google Scholar] [CrossRef]
- Pan, Y.; Jin, M.W.; Zhang, S.R.; Deng, Y. TEC Map Completion Using DCGAN and Poisson Blending. Space Weather—Int. J. Res. Appl. 2019, 18, e2020SW002467. [Google Scholar] [CrossRef]
- Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of Adam and beyond. arXiv 2019, arXiv:1904.09237. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar] [CrossRef]
- Rao, Y.X.; Dai, J.Y.; Dai, D.Y.; He, Q.S.; Wang, H.Y. Effect of compactness of urban growth on regional landscape ecological security. Land 2021, 10, 848. [Google Scholar] [CrossRef]
- Dong, Y.X.; Liu, S.; Pei, X.S.; Wang, Y. Identifying critical landscape patterns for simultaneous provision of multiple ecosystem services—A case study in the central district of Wuhu City, China. Ecol. Indic. 2023, 158, 109111. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.H.; Zhang, X.Y.; Si, Y.F.; Gu, R.X. The Impact of National Economic and Technological Development Zones on Urban Form: A Case Study of the Yangtze River Delta Region. J. Nat. Resour. 2024, 39, 668–681. [Google Scholar] [CrossRef]
- Huang, K.L.; Liu, Y.C.; Dong, M.Q.; Lu, C.C. Integrating AIGC into product design ideation teaching: An empirical study on self-efficacy and learning outcomes. Learn. Instr. 2024, 92, 101929. [Google Scholar] [CrossRef]
- Salat, S. Cities and Forms: Research on Sustainable Urbanization; China Architecture & Building Press: Beijing, China, 2012. [Google Scholar]
Selection Criteria | Countries with 2–4 Cities | |||||
---|---|---|---|---|---|---|
Country | Switzerland | Russia | Vietnam | Japan | Brazil | France |
City | Geneva | Moscow | Hanoi | Osaka | Sao Paulo | Paris |
Selection criteria | Countries with 4–6 cities | |||||
Country | Britain | Germany | Canada | Australia | ||
City | Edinburgh | Manchester | Berlin | Frankfurt | Toronto | Sydney |
Selection criteria | Countries with more than 6 cities | |||||
Country | China | America | ||||
City | Jinan | Nanjing | Shanghai | Seattle | Miami | Chicago |
Measurement Dimension | Measurement Indicators | Variable Code | Meaning | Formula |
---|---|---|---|---|
Scale | Largest patch index | LPI | Measuring the relative advantage of the largest urban patch, reflecting the single centrality of the city | |
Landscape percentage | PLAND | Reflecting the relative scale of urban land use | ||
Shape | Landscape shape index | LSI | Reflecting the degree to which the shape of urban patches deviates from the regular structure | |
Average fractal dimension | MPFD | Reflecting the complexity of urban form and the degree of human interference | ||
Compactness | Degree of aggregation | AI | Measuring the spatial allocation of urban patches and land parcels | |
Similar proximity percentage | PLADJ | Reflecting the trend of adjacent urban areas | ||
Fragmentation | Number of plaques | NP | Changes in the number of construction land patches within the research interval |
Hyperparameter Name | Maximum Learning Rate | Minimum Learning Rate | Weight Decay | ||||
---|---|---|---|---|---|---|---|
Specific numerical values | 0.002 | 0.0001 | 0.0001 | 0.8 | 0.999 | 0.01 |
City | Variable | LPI | PLAND | LSI | MPFD | AI | PLADJ | NP |
---|---|---|---|---|---|---|---|---|
New York | Original form | 6.7418 | 34.5676 | 21.8827 | 1.0965 | 94.8704 | 77.7320 | 753 |
Generate plan | 6.7816 | 34.2289 | 20.9344 | 1.0918 | 95.2533 | 78.8829 | 676 | |
Variation | 0.0398 (+5‰) | −0.3387 (−10‰) | −0.9483 (−43‰) | −0.0047 (−4‰) | 0.3829 (+4‰) | 1.1509 (+15‰) | −77 (−102‰) | |
Seattle | Original form | 2.3230 | 25.4320 | 21.8241 | 1.0607 | 97.8520 | 83.4251 | 443 |
Generate plan | 2.2513 | 26.3097 | 21.5547 | 1.0713 | 97.4980 | 83.8624 | 420 | |
Variation | −0.0717 (−30‰) | 0.8777 (+35‰) | −0.2694 (−12‰) | 0.0106 (+10‰) | −0.3540 (−4‰) | 0.4373 (+5‰) | −23 (−51‰) | |
Miami | Original form | 1.4928 | 25.7676 | 24.3779 | 1.0746 | 97.1681 | 83.5342 | 453 |
Generate plan | 1.4954 | 25.9046 | 23.6739 | 1.0781 | 97.1092 | 83.9789 | 428 | |
Variation | 0.0026 (+2‰) | 0.1370 (+5‰) | −0.7040 (−29‰) | 0.0035 (+3‰) | −0.0589 (−1‰) | 0.4447 (+5‰) | −25 (−55‰) | |
Shanghai | Original form | 6.2847 | 31.4682 | 25.7726 | 1.1022 | 95.4269 | 82.5947 | 585 |
Generate plan | 6.2691 | 31.7249 | 25.2857 | 1.1013 | 95.6139 | 83.0544 | 548 | |
Variation | −0.0156 (−3‰) | 0.2567 (+8‰) | −0.4869 (−19‰) | −0.0009 (−1‰) | 0.1870 (+2‰) | 0.4597 (+6‰) | −37 (−63‰) | |
Nanjing | Original form | 4.4573 | 25.7605 | 24.2342 | 1.0830 | 97.0710 | 84.9979 | 177 |
Generate plan | 4.4974 | 26.1911 | 24.2019 | 1.0780 | 97.1224 | 85.0188 | 182 | |
Variation | 0.0401 (+9‰) | 0.4306 (+17‰) | −0.0323 (−1‰) | −0.0050 (−5‰) | 0.0514 (+1‰) | 0.0209 (+1‰) | 5 (+28‰) | |
Jinan | Original form | 2.2378 | 38.5599 | 22.1707 | 1.1107 | 95.3822 | 85.7988 | 322 |
Generate plan | 2.2785 | 38.6500 | 21.8410 | 1.1091 | 95.7114 | 87.2049 | 282 | |
Variation | 0.0407 (+18‰) | 0.0901 (+2‰) | −0.3297 (−14‰) | −0.0016 (−1‰) | 0.3292 (+3‰) | 1.4061 (+16‰) | −40 (−124‰) |
City | Variable | LPI | PLAND | LSI | MPFD | AI | PLADJ | NP |
---|---|---|---|---|---|---|---|---|
Toronto | Original form | 5.7890 | 37.3244 | 19.3160 | 1.1139 | 96.2244 | 83.9813 | 194 |
Generate plan | 5.7837 | 37.4000 | 19.3714 | 1.1137 | 96.2128 | 83.9435 | 199 | |
Variation | −0.0053 (−1‰) | 0.0756 (+2‰) | 0.0554 (+3‰) | −0.0002 (−0‰) | −0.0116 (−0‰) | −0.0378 (−1‰) | 5 (+26‰) | |
Edinburgh | Original form | 2.2038 | 25.8202 | 26.9337 | 1.1074 | 93.6396 | 73.4828 | 870 |
Generate plan | 2.2111 | 25.7124 | 26.2671 | 1.1091 | 93.6951 | 74.3451 | 805 | |
Variation | 0.0073 (+3‰) | −0.1078 (−4‰) | −0.6666 (−24‰) | 0.0017 (+2‰) | 0.0555 (+1‰) | 0.8623 (+12‰) | −65 (−75‰) | |
Manchester | Original form | 1.9634 | 22.0945 | 26.7271 | 1.1181 | 91.8084 | 72.5331 | 586 |
Generate plan | 1.8158 | 22.8379 | 26.8288 | 1.1197 | 91.7062 | 72.5871 | 592 | |
Variation | −0.1476 (−8‰) | 0.7434 (+3‰) | 0.1017 (+4‰) | 0.0016 (+1‰) | −0.1022 (−1‰) | 0.0540 (+1‰) | 6 (+10‰) | |
Sydney | Original form | 5.3405 | 41.8112 | 19.8867 | 1.1665 | 94.6327 | 86.3881 | 399 |
Generate plan | 5.3807 | 41.4647 | 19.9673 | 1.1657 | 94.6088 | 86.3278 | 401 | |
Variation | 0.0402 (+8‰) | −0.3465 (−8‰) | 0.0806 (+4‰) | −0.0008 (−1‰) | −0.0239 (+0‰) | −0.0603 (−1‰) | 2 (+5‰) | |
Berlin | Original form | 10.2971 | 36.8602 | 19.5601 | 1.0840 | 95.9093 | 84.9363 | 375 |
Generate plan | 10.3372 | 36.7081 | 19.3718 | 1.0834 | 95.9460 | 84.9983 | 372 | |
Variation | 0.0401 (+4‰) | −0.1521 (−4‰) | −0.1883 (−10‰) | −0.0006 (−1‰) | 0.0367 (+0‰) | 0.0620 (+1‰) | −3 (−8‰) | |
Frankfurt | Original form | 2.0564 | 28.7082 | 18.2317 | 1.1182 | 93.7811 | 89.2962 | 489 |
Generate plan | 2.0416 | 28.9160 | 18.3449 | 1.1181 | 93.7566 | 89.2010 | 499 | |
Variation | −0.0148 (−7‰) | 0.2078 (+7‰) | 0.1132 (+6‰) | −0.0001 (−0‰) | −0.0245 (−0‰) | −0.0952 (−1‰) | 10 (+20‰) |
City | Variable | LPI | PLAND | LSI | MPFD | AI | PLADJ | NP |
---|---|---|---|---|---|---|---|---|
Geneva | Original form | 7.0582 | 32.9803 | 22.2026 | 1.1053 | 95.1773 | 82.5646 | 638 |
Generate plan | 7.0081 | 33.1804 | 21.7003 | 1.1070 | 95.2252 | 83.0807 | 611 | |
Variation | −0.0501 (−7‰) | 0.2001 (+6‰) | −0.5023 (−23‰) | 0.0017 (+2‰) | 0.0479 (+1‰) | 0.5161 (+6‰) | −27 (−42‰) | |
Moscow | Original form | 4.3415 | 34.7372 | 17.7690 | 1.1232 | 95.4427 | 88.1501 | 190 |
Generate plan | 4.2177 | 35.8162 | 18.2523 | 1.1220 | 95.4363 | 87.8502 | 210 | |
Variation | −0.1238 (−29‰) | 1.0790 (+31‰) | 0.4833 (+27‰) | −0.0012 (−1‰) | −0.0064 (−0‰) | −0.2999 (−3‰) | 20 (+105‰) | |
Hanoi | Original form | 1.4322 | 35.4024 | 25.9670 | 1.0864 | 96.5479 | 82.1770 | 1159 |
Generate plan | 1.3765 | 36.6185 | 25.2993 | 1.0865 | 96.7079 | 82.9828 | 1115 | |
Variation | −0.0557 (−39‰) | 1.2161 (+34‰) | −0.6677 (−26‰) | 0.0001 (+0‰) | 0.1600 (+2‰) | 0.8058 (+10‰) | −44 (−38‰) | |
Sao Paulo | Original form | 3.5301 | 53.2946 | 27.4388 | 1.1409 | 93.9635 | 82.7432 | 951 |
Generate plan | 3.5811 | 50.2441 | 27.5360 | 1.1404 | 93.9919 | 82.5968 | 947 | |
Variation | 0.0510 (+14‰) | −3.0505 (−57‰) | 0.0972 (+4‰) | −0.0005 (−0‰) | 0.0284 (+0‰) | −0.1464 (−2‰) | −4 (−4‰) | |
Osaka | Original form | 2.8695 | 44.1984 | 24.2419 | 1.0602 | 95.4713 | 86.2800 | 783 |
Generate plan | 2.7396 | 43.8532 | 24.0994 | 1.0675 | 95.2576 | 86.3757 | 820 | |
Variation | −0.1299 (−5‰) | −0.3452 (−8‰) | −0.1425 (−6‰) | 0.0073 (+7‰) | −0.2137 (−2‰) | 0.0957 (+1‰) | 37 (+47‰) | |
Paris | Original form | 1.8728 | 58.7793 | 22.0523 | 1.1160 | 91.9029 | 85.1776 | 1390 |
Generate plan | 1.9224 | 57.2039 | 21.4357 | 1.1180 | 92.0639 | 85.6018 | 1324 | |
Variation | 0.0496 (+27‰) | −1.5754 (−27‰) | −0.6166 (−28‰) | 0.0020 (+2‰) | 0.1610 (+2‰) | 0.4242 (+5‰) | −66 (−48‰) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Jiang, H.; Wang, H. A Generative Urban Form Design Framework Based on Deep Convolutional GANs and Landscape Pattern Metrics for Sustainable Renewal in Highly Urbanized Cities. Sustainability 2025, 17, 4548. https://doi.org/10.3390/su17104548
Xu S, Jiang H, Wang H. A Generative Urban Form Design Framework Based on Deep Convolutional GANs and Landscape Pattern Metrics for Sustainable Renewal in Highly Urbanized Cities. Sustainability. 2025; 17(10):4548. https://doi.org/10.3390/su17104548
Chicago/Turabian StyleXu, Shencheng, Haitao Jiang, and Hanyang Wang. 2025. "A Generative Urban Form Design Framework Based on Deep Convolutional GANs and Landscape Pattern Metrics for Sustainable Renewal in Highly Urbanized Cities" Sustainability 17, no. 10: 4548. https://doi.org/10.3390/su17104548
APA StyleXu, S., Jiang, H., & Wang, H. (2025). A Generative Urban Form Design Framework Based on Deep Convolutional GANs and Landscape Pattern Metrics for Sustainable Renewal in Highly Urbanized Cities. Sustainability, 17(10), 4548. https://doi.org/10.3390/su17104548