Material and Environmental Factors Impacting the Durability of Oak Mooring Piles in Venice, Italy
Abstract
:1. Introduction
- (a)
- The impact of shipworm infestation on oak piles, to determine whether the piles’ durability correlates with higher density and larger pile diameters used in Venice (see Section 3).
- (b)
2. Materials
3. Methodology
4. Results
5. Environmental Factors Affecting the Durability of Oak Mooring Piles
6. Discussion
6.1. Regulations on Mooring Piles in Venice
6.2. Environmental Considerations of Alternative Wood Species and Materials
6.3. Protection Techniques: Advantages and Limitations
7. Conclusions
- -
- Rising water temperature and more frequent heatwaves in summer seasons. Venice’s lagoon has maintained a relatively stable salinity (ca. 30 PSU) since 1960, but rising temperatures (up to 29 °C in summer) and more frequent heatwaves in summer may intensify shipworm activity, reducing the durability of traditionally used oak piles from the recorded average of 5–7 years between 2000 and 2010 to the 18–24 months measured in the last decade. This trend may intensify in future, as air temperatures in Venice have increased by 2 °C over the past two decades, exceeding the 1.5 °C threshold set by the Paris Agreement.
- -
- Dissolved oxygen levels (approximately 100%) continue to provide optimal conditions for shipworm survival.
- -
- The stable and abundant population of warm-water shipworms (T. bartschi), present in the Venice Lagoon since 2013, exhibits greater aggressiveness and contributes to faster pile degradation.
- -
- Storm surge barriers (MOSE barrier in Venice) may alter natural sediment and freshwater input, potentially affecting shipworm behaviour.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guarneri, I.; Sigovini, M.; Keppel, E.; Volpi Ghirardini, A.; Libralato, G.; Tagliapietra, D. Wood degradation in Venice lagoon: Evaluation of different pole types to contrast borers action. In Proceedings of the 7th European Coastal Lagoons Symposium, Murcia, Spain, 1–4 March 2016. [Google Scholar]
- Comune di Venezia. Municipality of Venice: Regulation for Mooring Piles. Available online: https://www.comune.venezia.it/it/content/normativa-circolazione-acquea (accessed on 1 April 2025).
- Pizzinato, F. Le Briccole del Centro Storico di Venezia: Caratteristiche del Legno e Durata in Opera. Master’s Thesis, Universtiy of Padova, Padova Italy, 2007. (In Italian). [Google Scholar]
- Cavaggioni, I.; Lionello, A. Le fondazioni storiche a Venezia. In II Sistema Delle Fondazioni Lignee a Venezia; Biscontin, G., Izzo, F., Rinaldi, E., Eds.; CORILA: Venezia, Italy, 2009; pp. 9–24. (In Italian) [Google Scholar]
- Guarneri, I.; Russo, E.; Sabino, A.; Bergamasco, A.; Sigovini, M. BUILD & DESTROY—How Bioengineers Act on the Environment, Research in the Lagoon of Venice. In Proceedings of the Retreat Cnr-Ismar, Frascati, Italy, 25–27 September 2024. [Google Scholar] [CrossRef]
- CNR-ISMAR. La Degradazione dei Legno ad Opera Delle Teredini in Laguna di Venezia; Durabilità dei materiali ed intensità di attacco degli xilofagi”; Technical report; CNR-ISMAR: Venezia, Italy, 2011. (In Italian) [Google Scholar]
- Tagliapietra, D.; Guarneri, I.; Keppel, E.; Sigovini, M. After a century in the Mediterranean, the warm-water shipworm Teredo bartschi invades the Lagoon of Venice (Italy), overwintering a few degrees above zero. Biol. Invasions 2021, 23, 1595–1618. [Google Scholar] [CrossRef]
- Gasparoli, P.; Trovò, F. Venezia Fragile—Processi di Usura del Sistema Urbano e Possibili Mitigazioni; Atralinea Edizioni: Firenze, Italy, 2014; p. 139. ISBN 978-88-98743-18-6. (In Italian) [Google Scholar]
- Urso, T.; Crivellaro, A. Relazione Tecnica Relativa Alle Indagini Sulla Qualità e il Degrado del Legno di Palificazioni per Ormeggi Nella Laguna di Venezia; Technical Report; Dipartimento Territorio e Sistemi Agro Forestali, University of Padova: Padova, Italy, 2008. (In Italian) [Google Scholar]
- Borges, L.M.S.; Merckelbach, L.M.; Sampaio, Í.; Cragg, S.M. Diversity, environmental requirements, and biogeography of bivalve wood borers (Teredinidae) in European coastal waters. Front. Zool. 2014, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, A.M.; Gregory, D.; Shashoua, Y. Selective attack of waterlogged archaeological wood by the shipworm, Teredo navalis and its implications for in situ preservation. J. Archaeol. Sci. 2015, 55, 9–15. [Google Scholar] [CrossRef]
- Cragg, S.M. Timber in the marine environment. Timber Trades J. 1996, 376, 26–28. [Google Scholar]
- Giordano, G. Tecnologia del Legno; Utet: Torino, Italy, 1988; Volume 3, tomo 2. (In Italian) [Google Scholar]
- Schweingruber, F.H. Anatomy of European Woods; Verlag Paul Haupt: Stuttgart, Germany, 1990. [Google Scholar]
- Eaton, R.A.; Hale, M.D.C. Wood: Decay, Pests and Protection; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Palanti, S.; Feci, E.; Anichini, M. Comparison between four tropical wood species for their resistance to marine borers (Teredo spp. and Limnoria spp.) in the Strait of Messina. Int. Biodeterior. Biodegrad. 2015, 104, 472–476. [Google Scholar] [CrossRef]
- Deaconu, I.; Porojan, M.; Timar, M.C.; Bedelean, B.; Campean, M. Comparative research on the structure, chemistry, and physical properties of Turkey oak and sessile oak wood. BioResources 2023, 18, 5724–5749. [Google Scholar] [CrossRef]
- Schneider, P.F.; Freitag, C.M.; Morrell, J.J. Decay resistance of satwater-exposed douglas-fir piles. Wood Fiber Sci. 1997, 29, 370–374. [Google Scholar]
- Hernández, A.B.; Angelini, C. Wood traits and tidal exposure mediate shipworm infestation and biofouling in southeastern U.S. estuaries. Ecol. Eng. 2019, 132, 1–12. [Google Scholar] [CrossRef]
- Bertolini, C.; Royer, E.; Pastres, R. Multiple Evidence for Climate Patterns Influencing Ecosystem Productivity across Spatial Gradients in the Venice Lagoon. J. Mar. Sci. Eng. 2021, 9, 363. [Google Scholar] [CrossRef]
- NEN-EN 13183-1:2002; Moisture Content of a Piece of Sawn Timber—Part 1: Determination by Weighing and Kiln Drying. CEN: Brussels, Belgium, 2002.
- Ross, R.J. Wood Handbook Wood as an Engineering Material; General Technical Report FPL-GTR-282; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021; 543p.
- Vieilledent, G.; Fischer, F.J.; Chave, J.; Guibal, D.; Langbour, P.; Gérard, J. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. Am. J. Bot. 2018, 105, 1653–1661. [Google Scholar] [CrossRef]
- Fioravanti, M. La identificazione anatomica del legno di Cerro. In Proceedings of the Prospettive di Valorizzazione Delle Cerrete dell’Italia Centro-Meridionale (Atti Convegno), Potenza, Italy, 3–4 October 1988. (In Italian). [Google Scholar]
- Jakubowski, M.; Dobroczyński, M. Allocation of Wood Density in European Oak (Quercus robur L.) Trees Grown under a Canopy of Scots Pine. Forests 2021, 12, 712. [Google Scholar] [CrossRef]
- Tomczak, K.; Tomczak, A.; Jelonek, T. Measuring Radial Variation in Basic Density of Pendulate Oak: Comparing Increment Core Samples with the IML Power Drill. Forests 2022, 13, 589. [Google Scholar] [CrossRef]
- Giagli, K.; Baar, J.; Fajstavr, M.; Gryc, V.; Vavrčík, H. Tree-ring width and variation of wood density in Fraxinus excelsior L. and Quercus robur L. growing in floodplain forests. BioResources 2018, 13, 804–819. [Google Scholar] [CrossRef]
- Pagella, G.; Mirra, M.; Ravenshorst, G.; Gard, W.; van de Kuilen, J.W. Characterization of the remaining material and mechanical properties of historic wooden foundation piles in Amsterdam. Construction and Building Materials. 2024, 450, 138616. [Google Scholar] [CrossRef]
- Zobel, B.J.; van Buijtenen, J.P. The Effect of Growth Rate on Wood Properties. In Wood Variation; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar] [CrossRef]
- Chauhan, S.; Donnelly, R.; Huang Cl Nakada, R.; Yafang, Y.; Walker, J.C.F. Wood quality: In context. In Primary Wood Processing; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Löf, M.; Brunet, J.; Filyushkina, A.; Lindbladh, M.; Skovsgaard, J.P.; Felton, A. Management of oak forests: Striking a balance between timber production, biodiversity and cultural services. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 59–73. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Pagella, G.; Urso, T.; Mirra, M.; Naldini, S.; van de Kuilen, J.W. Traditional wooden foundation piles in Amsterdam and Venice: Techniques for the assessment of their state of conservation. Wood Mater. Sci. Eng. 2025, 1–16. [Google Scholar] [CrossRef]
- Enzi, S.; Camuffo, D. Documentary sources of the sea surges in Venice from AD 787 to 1867. Nat. Hazards 1995, 12, 225–287. [Google Scholar] [CrossRef]
- Lionello, P.; Nicholls, R.J.; Umgiesser, G.; Zanchettin, D. Venice flooding and sea level: Past evolution, present issues, and future projections (introduction to the special issue). Nat. Hazards Earth Syst. Sci. 2021, 21, 2633–2641. [Google Scholar] [CrossRef]
- Zanchettin, D.; Bruni, S.; Raicich, F.; Lionello, P.; Adloff, F.; Androsov, A.; Antonioli, F.; Artale, V.; Carminati, E.; Ferrarin, C.; et al. Sea-level rise in Venice: Historic and future trends (review article). Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- Beltrán-Flores, E.; Tayar, S.; Blánquez, P.; Sarrà, M. Effect of dissolved oxygen on the degradation activity and consumption capacity of white-rot fungi. J. Water Process Eng. 2023, 55, 104105. [Google Scholar] [CrossRef]
- ARPA Veneto. Monitoraggio della Laguna di Venezia ai Sensi della Direttiva 2000/60/CE Finalizzato alla Definizione dello Stato Ecologico Campagna Primaverile; Rapporti di campagna-laguna di Venezia Report; ARPA Veneto: Padova, Italy, 2024. (In Italian) [Google Scholar]
- Knight KYCousins, T.A.; Parham, D. A comparison of biodegradation caused by Teredinidae (Mollusca:Bivalvia), Limnoriidae (Crustacea:Isopoda), and C. terebans (Crustacea:Amphipoda) across 4 shipwreck sites in the English Channel. J. Archaeol. Sci. Rep. 2019, 23, 854–867. [Google Scholar]
- Zirino, A.; Elwany, H.; Neira, C.; Maicu, F.; Mendoza, G.; Levin, L. Salinity and its variability in the Lagoon of Venice, 2000–2009. Adv. Oceanogr. Limnol. 2014, 5, 41–59. [Google Scholar] [CrossRef]
- Ghezzo, M.; Sarretta, A.; Sigovini, M.; Guerzoni, S.; Tagliapietra, D.; Umgiesser, G. Modeling the inter-annual variability of salinity in the lagoon of Venice in relation to the water framework directive typologies. Ocean. Coast. Manag. 2011, 54, 706–719. [Google Scholar] [CrossRef]
- Ferrarin, C.; Bonaldo, D.; Bergamasco, A.; Ghezzo, M. Sea level and temperature extremes in a regulated Lagoon of Venice. Front. Clim. 2024, 5, 1330388. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement, Paris Climate Change Conference-November 2015. COP 21. Available online: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (accessed on 1 April 2025).
- Tognin, D.; D’Alpaos, A.; Marani, M.; Carniello, L. Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice Lagoon. Nat. Geosci. 2021, 14, 906–911. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Panchal, H.; Shanmugan, S.; Muthuramalingam, T.; El-Kassas, A.M.; Ramesh, B. Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. Clean. Eng. Technol. 2022, 8, 100450. [Google Scholar] [CrossRef]
- Woodn Greenwood. Available online: https://woodngreenwood.com/en/wpc-laboratory/ (accessed on 19 March 2024).
- Treu, A.; Zimmer, K.; Brischke, C.; Larnøy, E.; Ross, L.; Aloui, F.; Cragg, S.; Flæte, P.O.; Humar, M.; Westin, M.; et al. Durability and Protection of Timber Structures in Marine Environments in Europe: An Overview. Bioresources 2019, 14, 10161–10184. [Google Scholar] [CrossRef]
- FSC-STD-40-004 V3-1 EN; Chain of Custody Certification. Forest Stewardship Council (FSC): Bonn, Germany, 2021.
- Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L. Occurrence and distribution of microplastic particles in the sediments of the lagoon of Venice, Italy: Preliminary results. In Proceedings of the ECSA 50 Today’s Science for Tomorrow’s Management, Mestre, Italy, 3–6 June 2012. [Google Scholar]
- Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations. Estuar. Coast. Shelf Sci. 2013, 130, 54–61. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 1526. [Google Scholar] [CrossRef]
- European Patent Office. Immersed Wood Protection Method and System. Patent from Castagna Sandro DK2408601 (T3), 7 March 2010. [Google Scholar]
Code | Docking Site | Time in Service (Months) | Dhead (mm) | Dtip (mm) |
---|---|---|---|---|
1 | Punta Sabbioni Motonave | 18 | 440 | 435 |
2 | Punta Sabbioni Motonave | 18 | 375 | 345 |
3 | Lido S.M.E. | 37 | 340 | 325 |
4 | Caroman | 23 | 335 | 285 |
5 | Redentore | 34 | 480 | 385 |
6 | San Giorgio | 25 | 355 | 330 |
6a | 420 | 375 | ||
7 | Cimitero Mura | 25 | 310 | 275 |
8 | Salute | 20 | 355 | 210 |
9a | San Marco Vallaresso | 132 | 330 | 310 |
9b | 335 | 280 | ||
10 | Sacca Fisola Valle Traghetto | 127 | 430 | 385 |
11 | San Servolo | 29 | 350 | 330 |
12 | Fusina | 38 | 380 | 350 |
13a | Fusina | 38 | 380 | 365 |
13b | 385 | 375 | ||
14 | Giardini destro | 22 | 315 | 290 |
15 | Santa Maria difesa rampa | 140 | 330 | 310 |
16 | Santa Maria difesa rampa | 140 | 385 | 355 |
17 | Cantiere S. Elena | 134 | 265 | 240 |
18 | Giardini Partigiana | 57 | 545 | 475 |
19 | Bricola 77 segnalazione canale | 84 | 380 | 340 |
Group | Code | Time in Service (Months) | Dhead (mm) | Dtip (mm) | Species | ρ12 (g/cm3) | BD (g/cm3) | ARW (mm/Year) | Age (Years) | RBD (%) |
---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 18 | 440 | 435 | Oak (Quercus Robur) | 0.65 | 0.54 | 1.76 | 124 | 76 |
2 | 18 | 375 | 345 | Oak (Quercus Robur) | 0.68 | 0.56 | 1.15 | 157 | 80 | |
8 | 20 | 355 | 210 | Oak (Quercus Robur) | 0.74 | 0.61 | 1.75 | 81 | 87 | |
14 | 22 | 315 | 290 | Oak (Quercus Robur) | 0.65 | 0.54 | 2.22 | 68 | 76 | |
4 | 23 | 335 | 285 | Oak (Quercus Robur) | 0.69 | 0.57 | 2.70 | 57 | 81 | |
6 | 25 | 355 | 330 | Oak (Quercus Robur) | 0.68 | 0.56 | 1.59 | 108 | 79 | |
6a | 25 | 420 | 375 | Oak (Quercus Robur) | 0.69 | 0.57 | - | - | 82 | |
7 | 25 | 310 | 275 | Oak (Quercus Robur) | 0.71 | 0.59 | 1.19 | 123 | 83 | |
11 | 29 | 350 | 330 | Oak (Quercus Robur) | 0.67 | 0.56 | 1.93 | 88 | 79 | |
B | 5 | 34 | 480 | 385 | Oak (Quercus Robur) | 0.72 | 0.60 | 2.69 | 80 | 85 |
3 | 37 | 340 | 325 | Oak (Quercus Robur) | 0.78 | 0.65 | 1.81 | 92 | 92 | |
12 | 38 | 380 | 350 | Oak (Quercus Robur) | - | - | - | - | - | |
13a | 38 | 380 | 365 | Oak (Quercus Robur) | 0.70 | 0.58 | 1.70 | 110 | 82 | |
13b | 38 | 385 | 375 | Oak (Quercus Robur) | 0.68 | 0.57 | - | - | 80 | |
18 | 57 | 545 | 475 | Turkey Oak (Quercus Cerris) | 0.73 | 0.61 | 2.11 | 121 | 86 | |
19 | 84 | 380 | 340 | Oak (Quercus Robur) | 0.81 | 0.67 | 2.06 | 87 | 95 | |
C | 10 | 127 | 430 | 385 | Oak (Quercus Robur) | 0.68 | 0.57 | 1.30 | 157 | 80 |
9a | 132 | 330 | 310 | Oak (Quercus Robur) | 0.73 | 0.60 | 1.15 | 139 | 85 | |
9b | 132 | 335 | 280 | Oak (Quercus Robur) | 0.71 | 0.59 | 2.09 | 74 | 83 | |
17 | 134 | 265 | 240 | Oak (Quercus Robur) | 0.78 | 0.64 | 1.09 | 116 | 92 | |
15 | 140 | 330 | 310 | Turkey Oak (Quercus Cerris) | 0.66 | 0.55 | 1.64 | 98 | 78 | |
16 | 140 | 385 | 355 | Oak (Quercus Robur) | 0.67 | 0.55 | 1.69 | 109 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagella, G.; Urso, T. Material and Environmental Factors Impacting the Durability of Oak Mooring Piles in Venice, Italy. Sustainability 2025, 17, 4327. https://doi.org/10.3390/su17104327
Pagella G, Urso T. Material and Environmental Factors Impacting the Durability of Oak Mooring Piles in Venice, Italy. Sustainability. 2025; 17(10):4327. https://doi.org/10.3390/su17104327
Chicago/Turabian StylePagella, Giorgio, and Tiziana Urso. 2025. "Material and Environmental Factors Impacting the Durability of Oak Mooring Piles in Venice, Italy" Sustainability 17, no. 10: 4327. https://doi.org/10.3390/su17104327
APA StylePagella, G., & Urso, T. (2025). Material and Environmental Factors Impacting the Durability of Oak Mooring Piles in Venice, Italy. Sustainability, 17(10), 4327. https://doi.org/10.3390/su17104327