The Influence of SnO2 and Noble Metals on the Properties of TiO2 for Environmental Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiO2-SnO2 Nanopowders
2.2. Morpho-Structural and Optical Characterization
2.3. Sensor Tests
2.4. Photocatalytic Tests
2.5. In Vitro Cytotoxicity Assays
2.5.1. MTT Assay
2.5.2. Griess Assay
2.5.3. Lactate Dehydrogenase (LDH) Assay
2.5.4. Cell Lysis
2.5.5. Measurement of Glutathione (GSH) Content
2.5.6. Advanced Oxidation Protein Products (AOPPs) Assay
2.5.7. Statistical Analysis
3. Results
3.1. Structural Characterizations
3.1.1. EDS Analysis
3.1.2. XRD Analysis
3.1.3. Raman Analysis
3.2. Morphological and Surface Area Characterization
3.2.1. TEM
3.2.2. BET Analysis
3.2.3. XPS Analysis
3.3. Optical Characterizations
3.3.1. UV/Vis Diffuse Reflectance Spectroscopy
3.3.2. Photoluminescence
4. Applications in the Environmental
4.1. Photocatalyst—Cleaning up Hazardous Substances
4.2. Sensors for Environmental Stages
4.3. Toxicity of Nanoparticles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Cao, M.; Li, R.; Chen, X.; Dong, H.; Liu, X. Explosive Characteristics and Kinetic Mechanism of Methane–Air Mixtures under High-Temperature Conditions. ACS Omega 2023, 8, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-J.; Qi, X.; Xie, F.; Wu, D.; Fan, Z.-Q.; Cui, X.-Q. Methane gas adsorption and detection using the metal-decorated blue phosphorene. Appl. Surf. Sci. 2022, 596, 153511. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Comert, B.; Akin, N.; Donmez, M.; Saglam, S.; Ozcelik, S. Titanium Dioxide Thin Films as Methane Gas Sensors. IEEE Sens. J. 2016, 16, 8890–8896. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Tian, C.; Yuan, W.; Hua, Z.; Fan, S.; Wu, Y.; Tian, X. Selective detection of methane by HZSM-5 zeolite/Pd-SnO2 gas sensors. Sens. Actuators B Chem. 2020, 321, 128567. [Google Scholar] [CrossRef]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef] [PubMed]
- Kinyua, C.K.; Owino, A.O.; Kaur, K.; Das, D.; Karuri, N.W.; Müller, M.; Schönherr, H. Impact of Surface Area on Sensitivity in Autonomously Reporting Sensing Hydrogel Nanomaterials for the Detection of Bacterial Enzymes. Chemosensors 2022, 10, 299. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L. Tandem Structures Semiconductors Based on TiO2_SnO2 and ZnO_SnO2 for Photocatalytic Organic Pollutant Removal. Nanomaterials 2021, 11, 200. [Google Scholar] [CrossRef]
- Piątkowska, A.; Janus, M.; Szymański, K.; Mozia, S. C-,N- and S-Doped TiO2 Photocatalysts: A Review. Catalysts 2021, 11, 144. [Google Scholar] [CrossRef]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium dioxide: From engineering to applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef]
- Rajput, R.B.; Jamble, N.S.; Kale, R.B. A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. J. Environ. Manag. 2022, 307, 114533. [Google Scholar] [CrossRef]
- Zhu, H.; Tan, J.; Qiu, J.; Wang, D.; Zhao, Z.; Lu, Z.; Huang, G.; Liu, X.; Mei, Y. Gold Nanoparticles Decorated Titanium Oxide Nanotubes with Enhanced Antibacterial Activity Driven by Photocatalytic Memory Effect. Coatings 2022, 12, 1351. [Google Scholar] [CrossRef]
- Ali, F.; Moin-ud-Din, G.; Iqbal, M.; Nazir, A.; Altaf, I.; Alwadai, N.; Siddiqua, U.H.; Younas, U.; Ali, A.; Kausar, A.; et al. Ag and Zn doped TiO2 nano-catalyst synthesis via a facile green route and their catalytic activity for the remediation of dyes. J. Mater. Res. Technol. 2023, 23, 3626–3637. [Google Scholar] [CrossRef]
- Sohail, I.; Bhatti, I.A.; Ashar, A.; Sarim, F.M.; Mohsin, M.; Naveed, R.; Yasir, M.; Iqbal, M.; Nazir, A. Polyamidoamine (PAMAM) dendrimers synthesis, characterization and adsorptive removal of nickel ions from aqueous solution. J. Mater. Res. Technol. 2020, 9, 498–506. [Google Scholar] [CrossRef]
- Naseer, A.; Ali, A.; Ali, S.; Mahmood, A.; Kusuma, H.S.; Nazir, A.; Yaseen, M.; Khan, M.I.; Ghaffar, A.; Abbas, M.; et al. Biogenic and eco-benign synthesis of platinum nanoparticles (Pt NPs) using plants aqueous extracts and biological derivatives: Environmental, biological and catalytic applications. J. Mater. Res. Technol. 2020, 9, 9093–9107. [Google Scholar] [CrossRef]
- Scarisoreanu, M.; Ilie, A.G.; Goncearenco, E.; Banici, A.M.; Morjan, I.P.; Dutu, E.; Tanasa, E.; For, I.; Stan, M.; Mihailescu, C.N.; et al. Ag, Au and Pt decorated TiO2 biocompatible nanospheres for UV & vis photocatalytic water treatment. Appl. Surf. Sci. 2020, 509, 145217. [Google Scholar]
- Scarisoreanu, M.; Fleaca, C.; Morjan, I.; Niculescu, A.-M.; Luculescu, C.; Dutu, E.; Ilie, A.; Morjan, I.; Gavrila Florescu, L.; Vasile, E.; et al. High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis. Appl. Surf. Sci. 2017, 418, 491–498. [Google Scholar] [CrossRef]
- Ali, F.; Khan, S.B.; Asiri, A.M. Enhanced H2 generation from NaBH4 hydrolysis and methanolysis by cellulose micro-fibrous cottons as metal templated catalyst. Int. J. Hydrogen Energy 2018, 43, 6539–6550. [Google Scholar] [CrossRef]
- Spurr, R.A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Anal. Chem. 1957, 29, 760–762. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Chironi, I.; Karatchevtseva, I.; Triani, G.; Sorrell, C.C. Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide. Adv. Appl. Ceram. 2012, 111, 149–158. [Google Scholar] [CrossRef]
- Takahashi, K.; Kunz, A.; Woiki, D.; Roth, P. Thermal Decomposition of Tin Tetrachloride Based on Cl- and Sn-Concentration Measurements. J. Phys. Chem. A 2000, 104, 5246–5253. [Google Scholar] [CrossRef]
- Scherrer, P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math.-Phys. Kl. 1918, 2, 98–100. [Google Scholar]
- Cho, H.-W.; Liao, K.-L.; Yang, J.-S.; Wu, J.-J. Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film. Appl. Surf. Sci. 2018, 440, 125–132. [Google Scholar] [CrossRef]
- Makal, P.; Das, D. Self-doped TiO2 nanowires in TiO2-B single phase, TiO2-B/anatase and TiO2-anatase/rutile heterojunctions demonstrating individual superiority in photocatalytic activity under visible and UV light. Appl. Surf. Sci. 2018, 455, 1106–1115. [Google Scholar] [CrossRef]
- Islam, S.K.; Lombardi, J.R. Raman enhancement (SERS) of the surface phonon modes of TiO2. Chem. Phys. Lett. 2022, 806, 140040. [Google Scholar] [CrossRef]
- Wehinger, B.; Bosak, A.; Jochym, P. Soft phonon modes in rutile TiO2. Phys. Rev. B 2016, 93, 014303. [Google Scholar] [CrossRef]
- Nurkowski, D.; Jasper, A.W.; Akroyd, J.; Kraft, M. Theoretical Study of the Ti–Cl Bond Cleavage Reaction in TiCl4. Z. Phys. Chem. 2017, 231, 1489–1506. [Google Scholar] [CrossRef]
- De Buysser, K.; Van Driessche, I.; Van de Putte, B.; Vanhee, P.; Schaubroeck, J.; Hoste, S. Study of Negative Thermal Expansion and Shift in Phase Transition Temperature in Ti4+- and Sn4+ -Substituted ZrW2O8 Materials. Inorg. Chem. 2008, 47, 736–741. [Google Scholar] [CrossRef]
- Liu, D.; Pan, J.; Tang, J.; Liu, W.; Bai, S.; Luo, R. Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 2019, 124, 36–43. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Satpati, B.; Mohapatra, S. Plasmon-enhanced photoluminescence from SnO2 nanostructures decorated with Au nanoparticles. Appl. Surf. Sci. 2020, 504, 144381. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, B.; Yao, M.; Wang, S.; Zhang, S. The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation. Catal. Commun. 2010, 11, 1003–1007. [Google Scholar] [CrossRef]
- Firet, N.J.; Blommaert, M.A.; Burdyny, T.; Venugopal, A.; Bohra, D.; Longo, A.; Smith, W.A. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction. J. Mater. Chem. A 2019, 7, 2597–2607. [Google Scholar] [CrossRef]
- Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y. Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 2007, 129, 4538–4539. [Google Scholar] [CrossRef] [PubMed]
- Fabregat-Santiago, F.; Mora-Sero, I.; Garcia-Belmonte, G.; Bisquert, J. Cyclic Voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J. Phys. Chem. B 2003, 107, 758. [Google Scholar] [CrossRef]
- Lopez, R.; Gomez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7. [Google Scholar] [CrossRef]
- Pelant, I.; Valenta, J. Luminescence of Excitons, Luminescence Spectroscopy of Semiconductors; Oxford University Press: Oxford, UK, 2012; Volume 7, pp. 161–204. [Google Scholar]
- Mercado, C.C.; Knorr, F.J.; McHale, J.L.; Usmani, S.M.; Ichimura, A.S.; Saraf, L.V. Location of Hole and Electron Traps on Nanocrystalline Anatase TiO2. J. Phys. Chem. C 2012, 116, 10796–10804. [Google Scholar] [CrossRef]
- Ghamsari, M.S.; Gaeeni, M.R.; Han, W.; Park, H.-H. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission. J. Lumin. 2016, 178, 89–93. [Google Scholar] [CrossRef]
- Jing, L.; Xin, B.; Yuan, F.; Xue, L.; Wang, B.I.; Fu, H. Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2 Nanoparticles and Their Relationships. J. Phys. Chem. B 2006, 110, 17860–17865. [Google Scholar] [CrossRef]
- Dirac, P.A.M. On the theory of quantum mechanics. Proc. R. Soc. Lond. A 1926, 112, 661–677. [Google Scholar]
- Zhang, L.; Dai, L.; Li, X.; Yu, W.; Li, S.; Guan, J. 3D structured TiO2 based aerogel photocatalyst for the high-efficiency degradation of toluene gas. New J. Chem. 2022, 46, 2272–2281. [Google Scholar] [CrossRef]
- Kaur, R.; Pal, B. Plasmonic coinage metal–TiO2 hybrid nanocatalysts for highly efficient photocatalytic oxidation under sunlight irradiation. New J. Chem. 2015, 39, 5966–5976. [Google Scholar] [CrossRef]
- Choi, H.; Carboni, M.; Kim, Y.K.; Jung, C.H.; Moon, S.Y.; Koebel, M.M.; Parl, J.Y. Synthesis of High Surface Area TiO2 Aerogel Support with Pt Nanoparticle Catalyst and CO Oxidation Study. Catal. Lett. 2018, 148, 1504–1513. [Google Scholar] [CrossRef]
- Deriase, S.F.; El-Salamony, R.A.; Amdeha, E.; Al-Sabagh, A.M. Statistical optimization of photocatalytic degradation process of methylene blue dye by SnO–TiO2–AC composite using response surface methodology. Environ. Prog. Sustain. Energy 2021, 40, e13639. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, M.; Wu, J.; Ma, Y.; Ma, Z. In situ synthesis of TiO2/SnOx-Au ternary heterostructures effectively promoting visible light photocatalysis. Dalton Trans. 2015, 44, 11901–11910. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Sun, S.; Swart, H.C.; Gupta, R.K. Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Appl. Mater. Today 2018, 11, 82–135. [Google Scholar] [CrossRef]
- Ramos, D.; Almeida, L. Overview of Standards Related to the Occupational Risk and Safety of Nanotechnologies. Standards 2022, 2, 83–89. [Google Scholar] [CrossRef]
Samples | P25 | T | TS | TS_Au | TS_Ag | ||
---|---|---|---|---|---|---|---|
EDS Results | Chemical composition [at.%] | NM | 0 | 0 | 0 | 0.2 | 0.7 |
Sn | 0 | 0 | 7.1 | 6.0 | 5.8 | ||
Ti | 34.1 | 37.5 | 27.3 | 24.9 | 23.0 | ||
O | 65.9 | 62.3 | 63.3 | 61.7 | 69.6 | ||
Chemical composition Impurities [at.%] | C | 0 | 0.2 | 2.1 | 0 | 0.2 | |
Cl | 0 | 0 | 0.2 | 2.9 | 0.1 | ||
Na | 0 | 0 | 0 | 3.8 | 0.6 | ||
K | 0 | 0 | 0 | 0.5 | 0 | ||
Total | 0 | 0.2 | 2.3 | 7.2 | 0.9 | ||
XRD Results | Phase proportion [%] | A | 89.7 | 62.8 | 37.0 | 34.6 | 36.9 |
R | 10.3 | 37.2 | 63.0 | 65.4 | 63.1 | ||
Crystallite size [nm] | A | 23.9 | 23.4 | 17.0 | 21.4 | 22.1 | |
R | 37.3 | 27.3 | 14.2 | 13.0 | 24.3 | ||
Optical Results | Band gap energy [eV] | ΔEg | 3.2 | 3.05 | 3.04 | 3.06 | 2.73 |
Fermi level | EF-EV | - | 2.28 | 2.30 | 1.80 | 2.02 | |
Photodegradation Results | Rate constant [10−3 min−1] | UV | 6.52 | 7.00 | 11.47 | 37.85 | 43.95 |
Vis | 0.25 | 0.29 | 0.28 | 9.11 | 18.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goncearenco, E.; Morjan, I.P.; Fleaca, C.; Dutu, E.; Criveanu, A.; Viespe, C.; Galca, A.C.; Maraloiu, A.V.; Stan, M.S.; Fort, C.I.; et al. The Influence of SnO2 and Noble Metals on the Properties of TiO2 for Environmental Sustainability. Sustainability 2024, 16, 2904. https://doi.org/10.3390/su16072904
Goncearenco E, Morjan IP, Fleaca C, Dutu E, Criveanu A, Viespe C, Galca AC, Maraloiu AV, Stan MS, Fort CI, et al. The Influence of SnO2 and Noble Metals on the Properties of TiO2 for Environmental Sustainability. Sustainability. 2024; 16(7):2904. https://doi.org/10.3390/su16072904
Chicago/Turabian StyleGoncearenco, Evghenii, Iuliana P. Morjan, Claudiu Fleaca, Elena Dutu, Anca Criveanu, Cristian Viespe, Aurelian Catalin Galca, Adrian Valentin Maraloiu, Miruna S. Stan, Carmen Ioana Fort, and et al. 2024. "The Influence of SnO2 and Noble Metals on the Properties of TiO2 for Environmental Sustainability" Sustainability 16, no. 7: 2904. https://doi.org/10.3390/su16072904
APA StyleGoncearenco, E., Morjan, I. P., Fleaca, C., Dutu, E., Criveanu, A., Viespe, C., Galca, A. C., Maraloiu, A. V., Stan, M. S., Fort, C. I., & Scarisoreanu, M. (2024). The Influence of SnO2 and Noble Metals on the Properties of TiO2 for Environmental Sustainability. Sustainability, 16(7), 2904. https://doi.org/10.3390/su16072904