Advancing Sustainable Marine Exploration: Highly Efficient Photonic Radar for Underwater Navigation Systems under the Impact of Different Salinity Levels
Abstract
1. Introduction
2. System Description
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohsan, S.A.H.; Li, Y.; Sadiq, M.; Liang, J.; Khan, M.A. Recent advances, future trends, applications and challenges of internet of underwater things (IoUT): A comprehensive review. J. Mar. Sci. Eng. 2023, 11, 124. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, D.; Liu, S.; Zhu, X.; Xu, W. Autonomous underwater vehicle navigation: A review. Ocean Eng. 2023, 273, 113861. [Google Scholar] [CrossRef]
- Bae, I.; Hong, J. Survey on the Developments of Unmanned Marine Vehicles: Intelligence and Cooperation. Sensors 2023, 23, 4643. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, P.; Lim, T.H. IoT-based underwater robotics for water quality monitoring in aquaculture: A survey. In Proceedings of the The 11th International Conference on Robot Intelligence Technology and Applications (RiTA 2023), Taicang, China, 31 August 2023. [Google Scholar]
- Conde, M.S. Coordinated Control of Autonomous Underwater Vehicles. 2023. Available online: https://repositorio-aberto.up.pt/bitstream/10216/153622/2/647459.pdf (accessed on 15 November 2023).
- Li, J.; Zhang, G.; Jiang, C.; Zhang, W. A survey of maritime unmanned search system: Theory, applications and future directions. Ocean. Eng. 2023, 285, 115359. [Google Scholar] [CrossRef]
- Wibisono, A.; Piran, M.J.; Song, H.-K.; Lee, B.M. A survey on unmanned underwater vehicles: Challenges, enabling technologies, and future research directions. Sensors 2023, 23, 7321. [Google Scholar] [CrossRef] [PubMed]
- Bobkov, V.; Kudryashov, A.; Inzartsev, A. A Technique to Navigate Autonomous Underwater Vehicles Using a Virtual Coordinate Reference Network during Inspection of Industrial Subsea Structures. Remote. Sens. 2022, 14, 5123. [Google Scholar] [CrossRef]
- Agarwala, N. Using Robotics to Achieve Ocean Sustainability During the Exploration Phase of Deep Seabed Mining. Mar. Technol. Soc. J. 2023, 57, 130–150. [Google Scholar] [CrossRef]
- Browne, K.; Raff, M. The Protection of Underwater Cultural Heritage—Future Challenges. In International Law of Underwater Cultural Heritage: Understanding the Challenges; Springer: Berlin/Heidelberg, Germany, 2023; pp. 591–665. [Google Scholar]
- Yuan, S.; Li, Y.; Bao, F.; Xu, H.; Yang, Y.; Yan, Q.; Zhong, S.; Yin, H.; Xu, J.; Huang, Z.; et al. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects. Sci. Total. Environ. 2023, 858, 159741. [Google Scholar] [CrossRef]
- Felemban, E.; Shaikh, F.K.; Qureshi, U.M.; Sheikh, A.A.; Bin Qaisar, S. underwater sensor network applications: A comprehensive survey. Int. J. Distrib. Sens. Netw. 2015, 11, 896832. [Google Scholar] [CrossRef]
- Watson, S.; Duecker, D.A.; Groves, K. Localisation of Unmanned underwater vehicles (UUVs) in complex and confined environments: A review. Sensors 2020, 20, 6203. [Google Scholar] [CrossRef]
- Bai, X.; Liang, Z.; Zhu, Z.; Schwing, A.; Forsyth, D.; Gruev, V. Polarization-based underwater geolocalization with deep learning. eLight 2023, 3, 15. [Google Scholar] [CrossRef]
- Ali, M.F.; Jayakody, D.N.K.; Li, Y. Recent trends in underwater visible light communication (UVLC) systems. IEEE Access 2022, 10, 22169–22225. [Google Scholar] [CrossRef]
- Jiang, S. On securing underwater acoustic networks: A survey. IEEE Commun. Surv. Tutor. 2018, 21, 729–752. [Google Scholar] [CrossRef]
- Jiang, S. On reliable data transfer in underwater acoustic networks: A survey from networking perspective. IEEE Commun. Surv. Tutor. 2018, 20, 1036–1055. [Google Scholar] [CrossRef]
- Awan, K.M.; Shah, P.A.; Iqbal, K.; Gillani, S.; Ahmad, W.; Nam, Y. Underwater wireless sensor networks: A review of recent issues and challenges. Wirel. Commun. Mob. Comput. 2019, 2019, 6470359. [Google Scholar] [CrossRef]
- Melodia, T.; Kulhandjian, H.; Kuo, L.C.; Demirors, E. Advances in underwater acoustic networking. In Mobile Ad Hoc Networking: Cutting Edge Directions; Wiley: Hoboken, NJ, USA, 2013; pp. 804–852. [Google Scholar]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 2016, 19, 204–238. [Google Scholar] [CrossRef]
- Al-Zhrani, S.; Bedaiwi, N.M.; El-Ramli, I.F.; Barasheed, A.Z.; Abduldaiem, A.; Al-Hadeethi, Y.; Umar, A. Underwater optical communications: A brief overview and recent developments. Eng. Sci. 2021, 16, 146–186. [Google Scholar] [CrossRef]
- Ganesh, P.S.S.P.; Venkataraman, H. RF-based wireless communication for shallow water networks: Survey and analysis. Wirel. Pers. Commun. 2021, 120, 3415–3441. [Google Scholar] [CrossRef]
- Murugan, K.H.S.; Sharma, A.; Malhotra, J. Performance analysis of 80 Gbps Ro-FSO system by incorporating hybrid WDM-MDM scheme. Opt. Quantum Electron. 2020, 52, 505. [Google Scholar] [CrossRef]
- Fang, C.; Li, S.; Wang, Y.; Wang, K. High-Speed Underwater Optical Wireless Communication with Advanced Signal Processing Methods Survey. Photonics 2023, 10, 811. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Mazinani, A.; Sadiq, H.B.; Amjad, H. A survey of optical wireless technologies: Practical considerations, impairments, security issues and future research directions. Opt. Quantum Electron. 2022, 54, 187. [Google Scholar] [CrossRef]
- Gkoura, L.K.; Roumelas, G.; Nistazakis, H.E.; Sandalidis, H.G.; Vavoulas, A.; Tsigopoulos, A.D.; Tombras, G.S.; Tombras, G.S. Underwater optical wireless communication systems: A Concise Review. In Turbulence Modelling Approaches–Current State, Development Prospects, Applications; Volkov, K., Ed.; IntechOpen: London, UK, 2007. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Mazinani, A.; Othman, N.Q.H.; Amjad, H. Towards the internet of underwater things: A comprehensive survey. Earth Sci. Inform. 2022, 15, 735–764. [Google Scholar] [CrossRef]
- Zhang, Y.; Carballo, A.; Yang, H.; Takeda, K. Perception and sensing for autonomous vehicles under adverse weather conditions: A survey. ISPRS J. Photogramm. Remote. Sens. 2023, 196, 146–177. [Google Scholar] [CrossRef]
- Sharma, A.; Malhotra, J. Performance enhancement of photonic radar sensor for detecting multiple targets by incorporating mode division multiplexing. Opt. Quantum Electron. 2022, 54, 410. [Google Scholar] [CrossRef]
- Sharma, A.; Malhotra, J. Evaluating the effects of material reflectivity and atmospheric attenuation on photonic radar performance in free space optical channels. J. Opt. Commun. 2023. [Google Scholar] [CrossRef]
- Sharma, A.; Malhota, J. Performance Investigation of Photonic Radar for Autonomous Vehicles’ Application Under Various Degrading Conditions. In Signals, Machines and Automation, Proceedings of the SIGMA 2022, Delhi, India, 5–6 August 2022; Lecture Notes in Electrical Engineering; Springer: Singapore, 2023; pp. 505–512. [Google Scholar]
- Bae, Y.; Shin, J.; Lee, S.-G.; Kim, H. Field Experiment of Photonic Radar for Low-RCS Target Detection and High-Resolution Image Acquisition. IEEE Access 2021, 9, 63559–63566. [Google Scholar] [CrossRef]
- Sharma, A.; Chaudhary, S.; Malhotra, J.; Parnianifard, A.; Kumar, S.; Wuttisittikulkij, L. Impact of Bandwidth on Range Resolution of Multiple Targets Using Photonic Radar. IEEE Access 2022, 10, 47618–47627. [Google Scholar] [CrossRef]
- Sharma, A.; Malhotra, J. Simulative investigation of FMCW based optical photonic radar and its different configurations. Opt. Quantum Electron. 2022, 54, 233. [Google Scholar] [CrossRef]
- Sharma, A.; Chaudhary, S.; Malhotra, J.; Parnianifard, A.; Wuttisittikulkij, L. Measurement of target range and doppler shift by incorporating PDM-enabled FMCW-based photonic radar. Optik 2022, 262, 169191. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, A.; Khichar, S.; Tang, X.; Wei, X.; Wuttisittikulkij, L. High Resolution-Based Coherent Photonic Radar Sensor for Multiple Target Detections. J. Sens. Actuator Netw. 2022, 11, 49. [Google Scholar] [CrossRef]
- Sharma, A.; Malhotra, J.; Khichar, S.; Parnianifard, A.; Chaudhary, S. Highly efficient frequency modulated continuous wave based photonic radar by incorporating electronic equalization scheme. Opt. Quantum Electron. 2023, 55, 797. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, A.; Reddy, G.S.T. Performance analysis of the coherent FMCW photonic radar system under the influence of solar noise. Front. Phys. 2023, 11, 1215160. [Google Scholar] [CrossRef]
- Bosu, R.; Prince, S. Perturbation methods to track wireless optical wave propagation in a random medium. J. Opt. Soc. Am. A 2016, 33, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Jerlov, N.G. Marine Optics; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Hulburt, E.O. Optics of distilled and natural water. J. Opt. Soc. Am. 1945, 35, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, O.; Farwell, N.; Shchepakina, E. Light scintillation in oceanic turbulence. Waves Random Complex Media 2012, 22, 260–266. [Google Scholar] [CrossRef]
- Jamali, M.V.; Nabavi, P.; Salehi, J.A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection. IEEE Trans. Veh. Technol. 2018, 67, 8223–8237. [Google Scholar] [CrossRef]
- Borowski, B. Characterization of a very shallow water acoustic communication channel. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009. [Google Scholar]
- Boyd, C.E. Water Quality: An Introduction; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Elghandour, A.H.; Ren, C.D. Modeling and comparative study of various detection techniques for FMCW LIDAR using optisystem. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications, Beijing, China, 25 June 2013; p. 890529. [Google Scholar]
- Keiser, G. Optical Communications Essentials; McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Elghandour, A.; Dianren, C. Study on detection techniques of distance and velocity by chirped LIDAR. In Proceedings of the 2012 International Conference on Optoelectronics and Microelectronics, Changchun, China, 23–25 August 2012; pp. 354–358. [Google Scholar]
- Chaudhary, S.; Wuttisittikulkij, L.; Saadi, M.; Sharma, A.; Al Otaibi, S.; Nebhen, J.; Rodriguez, D.Z.; Kumar, S.; Sharma, V.; Phanomchoeng, G.; et al. Coherent detection-based photonic radar for autonomous vehicles under diverse weather conditions. PLoS ONE 2021, 16, e0259438. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: New York, NY, USA, 2012; Volume 222. [Google Scholar]
Component | Parameter | Value |
---|---|---|
Continuous | Wavelength | 1550 nm |
Wave | Linewidth | 100 KHz |
Laser | Power | 100 µW |
Dual Port | Extinction ratio | 30 dB |
Mech–Zhender | Switching bias voltage | 4 v |
Modulator | Switching RF voltage | 4 v |
(DP-MZM) | Bias voltage | 0 v |
Simulation | Sweep time | 10 µs |
Window | No. of samples | 8192 |
Photo detector (PIN) | Responsivity | 1 A/W |
Dark current | 1 nA | |
Thermal and shot noise BW | 410 MHz | |
Absolute temp | 290 k | |
Load resistance | 50 Ω | |
Under Water Chanel Parameters | Atmospheric loss factor | 0.5 |
Target reflectivity | 0.1 | |
Optical transmission loss | 0.1 | |
Receiver aperture diameter | 10 cm | |
Salt concentration in clear water | 0.5 g/L | |
Alkaline concentration in clear water | 8 | |
Parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawoodi, A.; Bilge, H.Ş. Advancing Sustainable Marine Exploration: Highly Efficient Photonic Radar for Underwater Navigation Systems under the Impact of Different Salinity Levels. Sustainability 2024, 16, 2851. https://doi.org/10.3390/su16072851
Aldawoodi A, Bilge HŞ. Advancing Sustainable Marine Exploration: Highly Efficient Photonic Radar for Underwater Navigation Systems under the Impact of Different Salinity Levels. Sustainability. 2024; 16(7):2851. https://doi.org/10.3390/su16072851
Chicago/Turabian StyleAldawoodi, Aras, and Hasan Şakir Bilge. 2024. "Advancing Sustainable Marine Exploration: Highly Efficient Photonic Radar for Underwater Navigation Systems under the Impact of Different Salinity Levels" Sustainability 16, no. 7: 2851. https://doi.org/10.3390/su16072851
APA StyleAldawoodi, A., & Bilge, H. Ş. (2024). Advancing Sustainable Marine Exploration: Highly Efficient Photonic Radar for Underwater Navigation Systems under the Impact of Different Salinity Levels. Sustainability, 16(7), 2851. https://doi.org/10.3390/su16072851