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Abstract: The exploration of underwater environments for applications like environmental moni-
toring, scientific research, and surveillance has propelled the significance of underwater wireless
navigation. Light waves have emerged as a promising solution, offering the potential to achieve
the required data rates and propagation speeds. However, underwater optical wireless navigation
faces challenges, particularly limited range. This research investigates a novel FMCW (frequency-
modulated continuous wave)-based photonic radar system’s efficacy in detecting underwater vehicles
across diverse salinity levels and distances. Numerical simulation evaluations reveal distinct signal-to-
noise ratios (SNR) and detected power peaks corresponding to varying salinity levels, demonstrating
the system’s sensitivity. At 5 g/L salinity, the detected power peaked at −95 dBm, decreasing to
−105 dBm at 15 g/L. SNR analysis indicates robust detection within a 4 m range, with challenges
emerging at extended ranges and higher salinity. Despite these challenges, the system shows promise
for near-range underwater navigation, contributing to sustainable marine exploration by enhancing
the accuracy and efficiency of underwater monitoring systems. This advancement aligns with the
goals of sustainable development by supporting the protection of marine ecosystems, promoting
scientific understanding of underwater environments, and aiding in the sustainable management of
marine resources.

Keywords: frequency-modulated continuous wave (FMCW); photonic radar; underwater communication;
salinity; sustainable development

1. Introduction

The vastness of the world’s oceans and the increasing demand for underwater ac-
tivities highlight the integral role of navigation beneath the waves [1,2]. Submarines,
autonomous underwater vehicles (AUVs), and remotely operated vehicles (ROVs) are vital
for marine exploration, scientific research, and defense operations [3–5]. The growth of
underseas infrastructure further emphasizes the need for accurate underwater navigation
systems [6–8]. Efficient underwater navigation becomes a strategic imperative as nations
explore and exploit resources in deeper waters [9,10]. In environmental monitoring, un-
derwater vehicles are essential for studying marine ecosystems, tracking climate change
effects, and ensuring the sustainability of underwater resources [1,11,12]. Advancements
in underwater navigation technologies are vital for the successful management of these di-
verse underwater activities. Navigation underwater presents challenges due to the unique
characteristics of water as a medium, including limited visibility and the impracticality of
GPS [2,13,14]. Traditional acoustic navigation systems face signal degradation, interference,
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and detection risks in defense applications [15,16]. Intricate underwater topography, in-
cluding caves and trenches, requires technology capable of providing accurate, real-time
solutions. Underwater acoustic communication has traditionally dominated, but suffers
from high latency and low data rates [17–19]. Underwater radio frequency (RF) communica-
tion faces severe attenuation, leading to a limited transmission distance [20–23]. In contrast,
underwater optical wireless communication (UOWC) presents itself as a natural candidate,
offering higher data rates and shorter latency. UOWC is cost-effective and power-effective,
utilizing low-cost, low-power transceivers like LEDs and photodiodes [24]. Despite these
advantages, the limited transmittance of optical waves and challenges posed by shorter
wavelengths demand focused research on improving UOWC system performance [25,26].
UOWC technology, with its potential for high bandwidth and data rates, is attractive for
marine applications including underwater wireless sensor networks, oil and gas industry
monitoring, underwater drones, and pollution monitoring [15,27]. However, the turbulent
nature of the underwater channel poses challenges, impacting signal performance and
increasing the bit error ratio (BER).

Photonic radar is emerging as a cutting-edge solution for underwater navigation, lever-
aging radar principles with light instead of radio waves [28]. This technology overcomes
the limitations of traditional acoustic systems, offering higher resolution and accuracy,
even in turbid waters. Photonic radar operates in low-light conditions, penetrating wa-
ter more effectively than traditional imaging technologies, which is crucial for avoiding
obstacles and navigating challenging terrains. Photonic radar systems, less susceptible
to interference compared to acoustics, are advantageous in defense applications where
stealth and reliability are paramount [29–31]. As human activities expand into the depths
of oceans, addressing underwater navigation challenges becomes imperative. Photonic
radar’s capacity to provide accurate, real-time navigation information positions it as a
promising solution. Some key works on photonic radar in autonomous systems are listed
as follows.

The technology explored in 2021 by the authors of [32], photonic radar, is gaining
traction as a next-gen radar, surpassing conventional limitations. This study presents the
design and implementation of an X-band photonic radar for real-time, high-resolution
imaging and low radar cross-section (RCS) target detection. Utilizing photonic frequency
quadrupling and advanced signal processing, the radar successfully detected a low-RCS
drone at a distance of 2.7 km in field experiments, demonstrating its potential for enhanced
surveillance. In another ground-breaking study [33], researchers proposed a cost-effective
Photonic Radar for future transportation, integrating Frequency Modulated Continuous
Wave technology. Utilizing Wavelength and Polarization Division Multiplexing, the system
demonstrated the efficient detection of multiple targets through numerical simulations. Its
effectiveness in detection, ranging, and resolution was validated over 100 m with vary-
ing bandwidths. Another study [34] delves into the principles of frequency-modulated
continuous wave photonic radar, emphasizing its benefits. Mathematical analysis and
numerical simulations of the direct detection and coherent detection schemes reveal trade-
offs, in which direct detection offers simplicity but compromises sensitivity, while coherent
detection excels in target range and velocity estimation at the expense of increased com-
plexity. Authors in [35] proposed a coherent detection-based linear frequency modulated
continuous wave (LFMCW) photonic radar for autonomous vehicles, emphasizing obstacle
detection in challenging conditions. Utilizing polarization division multiplexing (PDM), the
system successfully detects multiple targets in zero visibility with atmospheric turbulence.
Results showcase effective detection under varying traffic speeds, with a reported range
resolution of 15 cm at 1 GHz and 6.75 cm at 4 GHz over a distance of 100 m. The author
in [36] addresses the surge in global road accidents by proposing high-speed photonic
radar with a cost-effective wavelength division multiplexing (WDM) scheme for multi-
ple target detection under adverse weather conditions. Numerical simulations showcase
the radar’s performance in received power, signal-to-noise ratio (SNR), and at a range
resolution of 7 cm at an 80 m distance. Comparative analysis with traditional microwave
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radar validates the proposed photonic radar’s effectiveness. Addressing the challenge of
real-time detection and tracking of multiple targets in urban environments for autonomous
vehicles (AVs), this study [37] presents a photonic radar system using direct detection
and frequency-modulated continuous wave (FMCW) with three transmission channels.
Employing wavelength division multiplexing (WDM) for multiplexing, the system demon-
strates the successful detection of multiple stationary targets in adverse weather conditions,
with electronic equalization mitigating atmospheric attenuation, resulting in a 54% increase
in received power. Another study [38] explores the demand for photonic radar systems in
radar applications, emphasizing real-time high-resolution target detection. The frequency-
modulated continuous-wave photonic radar system with coherent detection is theoretically
investigated, considering atmospheric weather attenuations and solar background noise.
Simulations under various atmospheric conditions reveal practical limitations, highlighting
the potential of photonic radar for applications such as autonomous vehicle radar systems
and navigation.

This paper explores the application of photonic radar properties in underwater naviga-
tion. As far as the authors are aware, photonic radar has not been employed in underwater
navigation to date. Photonic radar systems in underwater environments face challenges
due to varying salinity levels. Salinity affects signal attenuation, leading to reduced range
and sensitivity. Changes in the refractive index due to salinity variations can cause signal
distortion and scattering, impacting detection accuracy. Accurate system calibration is
essential to compensate for these effects. Environmental factors such as temperature and
turbidity, along with biological organisms, can further interfere with system performance.
High salinity levels limit the penetration depth of optical signals, restricting the operational
range. Overcoming these challenges requires advancements in photonics, signal processing,
and underwater sensing technologies. The system was tested under different salinity levels
in the underwater environment, and the study investigates the efficacy of the proposed
photonic radar-based navigation. By delving into technological advancements, the paper
aims to elucidate photonic radar’s potential to revolutionize underwater navigation across
areas including marine exploration, defense operations, and environmental monitoring.

2. System Description

Figure 1 shows the schematic diagram of the proposed photonic radar, which rep-
resents a cutting-edge fusion of optical and radio frequency (RF) technologies, tailored
specifically for the detection of underwater vehicles. This advanced system leverages
precision and the speed of light to provide unparalleled detection capabilities in a ma-
rine environment.
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At its core, a pseudo random signal is modulated by a sawtooth generator and a
frequency modulator to create the necessary signal waveform. The RF spectrum of this
signal is shown in Figure 2.
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At this stage, the RF signal is split into two parts. One part is directed towards the
Mach–Zander modulator (MZM), while the other is used as a local oscillator for the mixing
process in the receiver. The photonic radar utilizes a continuous-wave (CW) laser as its light
source for carrying the RF signal. This laser signal from the CW source is routed through
MZM. A lithium niobate (LiNbO3) modulator is used as the MZM, as it is a component
known for its high electro-optic coefficient, which facilitates the effective modulation of the
light. This output-modulated signal is focused towards the target using a telescope. The
optical spectrum of the generated signal is shown in Figure 3.
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The transmitted pulse travels through the aquatic environment, encountering various
degrees of salinity which affect its propagation. The establishment of an underwater
wireless optical connection can encounter substantial hurdles. A primary obstacle is
the pronounced influence of the water’s optical properties and the turbulence-related
disturbances on the optical signal [39]. The propagation of optical signals in aquatic
environments is greatly affected by two key factors: absorption and scattering. These
factors are quantified by the absorption and scattering coefficients, symbolized as a(λ) and
b(λ), respectively, where λ represents the signal’s wavelength. The cumulative impact of
these coefficients on the optical signal is encapsulated by the beam extinction coefficient,
symbolized as c(λ). This coefficient, c(λ), effectively measures the total attenuation that the
optical signal undergoes in water, accounting for both absorption and scattering effects, as
depicted in the equation below [40]:

c(λ) = a(λ) + b(λ), (1)

The absorption coefficient, denoted as a(λ), quantifies the extent to which light is
absorbed in water, a process that varies with the properties of the water and the wavelength
of the signal. On the other hand, the scattering coefficient, represented by b(λ), reflects the
degree of light scattering caused by waterborne particles, particularly when the size of these
particles is on par with the wavelength of the light. The beam extinction coefficient, ex-
pressed as c(λ), integrates the effects of both absorption and scattering coefficients, thereby
offering a holistic view of the total attenuation that optical signals encounter in underwater
environments. The overall absorption, a(λ), in underwater optical communication systems
is subject to a variety of influences, as detailed in the equation below [41]:

a(λ) = Cwaw(λ) + Cphyaphy(λ) + Cgag(λ) + Cnan(λ), (2)

Here, aw represents the absorption attributed to pure water itself, aphy denotes the
absorption caused by phytoplankton, ag refers to absorption by dissolved organic matter,
and an signifies absorption due to non-algal suspended particles. Each component plays a
role in the total weakening of optical signals in marine environments. The coefficients Cw,
Cphy, Cg, and Cn, respectively, stand for the absorption coefficients related to pure water,
phytoplankton, dissolved organic matter, and non-algal suspended particles. The scattering
of light in water is primarily dependent on the size of the particles present. For particles
smaller than the optical wave’s wavelength, the process is known as Rayleigh scattering. In
contrast, Mie scattering occurs when particle sizes exceed the wavelength of the light used.
Different oceanic regions have suspended particles of varying sizes. In the context of pure
ocean water, which primarily contains salts and ions, these are generally comparable in size
to the wavelength of the light used. Therefore, Rayleigh scattering is the most applicable
description of scattering in such situations [42]. The formula for calculating the Rayleigh
scattering coefficient in pure ocean water can be expressed as follows [40]:

bw(λ) = 0.005826
(

400
λ

)4.322
, (3)

The formula given determines the Rayleigh scattering coefficient, which is calculated
based on the wavelength measured in nanometers. Although scattering greatly influences
shorter wavelengths, absorption is predominantly responsible for the overall weakening of
signals in pure ocean water. In coastal ocean waters, where there is a higher concentration of
particulate and organic materials, scattering becomes the main cause of signal attenuation
for optical waves. This scattering effect in ocean waters is considerably affected by the
mix of organic and inorganic particles present. Furthermore, the optical properties of
seawater are also influenced by factors like salinity, pressure, and temperature, which
alter its refractive index. This change in refractive index creates an optical boundary that
modifies the original trajectory of the optical wave. In these conditions, Mie scattering is
the more accurate model to describe the scattering behavior. The coefficients for scattering,
for both smaller and larger particles in seawater, are represented by distinct formulas,
capturing the nuances of these different scattering mechanisms [40]:
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bl(λ) = 1.51302
(

400
λ

)1.17
, (4)

bs(λ) = 0.341074
(

400
λ

)0.3
, (5)

In this context, the term bl refers to the scattering coefficient for larger particles, while
bs indicates the scattering coefficient for smaller ones. Beyond absorption and scattering,
the factor of turbulence is critical in affecting underwater optical wireless communication
(UWOC). The underwater medium is subject to variations in temperature, density, and
salinity, all of which lead to refractive index fluctuations in the underwater channel. These
fluctuations, in turn, result in intensity variations of the received signal, a phenomenon
known as turbulence [43,44]. Additionally, the presence of air bubbles in the water can
cause random changes in the refractive index, further impacting UWOC performance.
Understanding and analyzing the impact of turbulence is essential for improving UWOC
systems. Salinity, defined by the amount of dissolved salts in water, is typically measured
in parts per thousand (ppt) or as kilograms of salt per 1000 kg of water. Another unit used
is the practical salinity unit (psu), nearly synonymous with ppt [45]. Ocean water salinity
generally varies, ranging from 31 to 37 ppt. In polar regions, it often falls below 30 ppt,
while in the Antarctic areas, it is around 34 ppt. Salinity can be determined through two
primary methods. The first involves measuring the electrical conductivity (EC), given in
micro-siemens per centimeter. The second assesses the total dissolved salts, quantifying
the actual salt particles in the solution. Seawater’s salt content typically includes chlorides,
sulphates, and various carbonates like sodium, potassium, calcium, and magnesium. The
average ocean water salinity is about 35 ppt [46], meaning that there are 35 g of dissolved
substances in every 1000 g of seawater. In centimeter-gram-second (CGS) units, where
water density is considered 1, this equates to roughly 35 g per liter (g/L).

Upon hitting the target, a portion of the light, determined by the target’s reflec-
tivity, is reflected back towards the source as an echo. This reflected echo is then cap-
tured by the receiver’s aperture, which is carefully sized to optimize signal collection
while minimizing noise. The returned signal, which exhibits a Doppler shift denoted as
fd = 2v

λ and experiences a delay represented by τ = 2R
c , is captured by the telescope. This

signal originates from a target in motion, positioned at a range distance R and moving at a
velocity v. The intensity of this reflected signal, referred to as Eref, is quantified as outlined
in the equation below [47]:

Ere f (t) =
√

Pr

[
1 +

β

2
cos (2π fc (t − τ) +

πB
Tm

(t − τ)2
]
·e(j(ωo−ωd)t+θo(t)), (6)

The receiver is equipped with an avalanche photodiode (APD), a highly sensitive
component that converts the incoming optical signal into an electrical one, which is subse-
quently amplified for better detection. In a direct detection scheme, the receiver is relatively
straightforward, functioning on the principle of square law detection without the need
for optical mixing at the receiving end. The echoed signal is captured using a photodi-
ode, which has a specific responsivity denoted by ℜ. The resultant output photocurrent,
symbolized as iph(t), is described by the formula presented in the equation below [48]:

iph(t) = R·Pr (1 +
β

2
cos (2π fc (t − τ) +

πB
Tm

(t − τ)2)
2
, (7)

The baseband signal, derived from the filtered photocurrent signal, is defined as per
the formulation in the equation below [49]:

iph(t) = Idc + isig(t) ≈ R·Pr (1 +
β

2
cos (2π fc (t − τ) +

πB
Tm

(t − τ)2)
2
, (8)

In this equation, idc represents the direct current (dc) component of the photocurrent,
while isig refers to the alternating current (ac) component of the filtered signal.
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The electrical signal is subsequently combined with the signal from the local oscillator.
This process down-converts the signal’s frequency to a more manageable level. Following
this, the resulting beat signal, which passes through a low pass filter, is expressed in the
equation below [47]:

Sb(t) = AcRPrβcos (2π fcτ − πB
Tm

τ2 + 2π frt), (9)

In this equation, fr represents the range frequency, which is computed using the
formula provided in the equation below [50]:

fr =
2 × R × B
Tm × C

, (10)

where B is system bandwidth. Figure 4 represents the signal after mixing at the receiver.
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Once filtered through a low-pass filter to eliminate high-frequency components that
are not needed, the signal undergoes analysis to discern essential details about the target’s
presence and attributes. The performance of an FMCW-based photonic radar system
utilizing a direct detection scheme is evaluated by calculating the signal-to-noise ratio
(SNR) at the photodetector’s output. Various types of noise are typically present in the
detected signal, such as thermal noise, dark current noise, relative intensity noise (RIN),
shot noise, and surface current noise [51]. In our SNR calculations, we focus on including
both shot noise and thermal current noise, as detailed in the equation below [50]:

SNRdir =
β2R2P2

r /2
2qRPrBrx + 4kbTrBrx/RL

, (11)

In this context, Brx denotes the bandwidth of the receiver, and q represents the elemen-
tary electrical charge, approximately equal to 1.6 × 10−19 C (Coulombs). The Boltzmann
constant, kb, has a value of approximately 1.38 × 10−23 J/K (Joules per Kelvin). Tr refers to
the noise temperature of the receiver, and RL signifies the load resistance.

This system’s performance was rigorously evaluated in MATLAB and OptiSystem
under varying salinity levels, which simulated real-world marine conditions. The MATLAB-
based Underwater Wireless Optical Communication (UWOC) model accounts for atmo-
spheric loss, target reflectivity, optical transmission loss, and the physical parameters of the
receiver. It incorporates a sophisticated algorithm to account for the attenuation caused
by salt and alkaline concentration in the water. The algorithm adjusts the received signal
power based on these parameters, ensuring that the system’s sensitivity adapts to the envi-
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ronment, providing reliable target detection even in challenging conditions. Parameters of
different components considered in proposed photonic radar are given in Table 1.

Table 1. Underwater photonic radar modeling parameters.

Component Parameter Value

Continuous Wavelength 1550 nm
Wave Linewidth 100 KHz
Laser Power 100 µW

Dual Port Extinction ratio 30 dB
Mech–Zhender Switching bias voltage 4 v

Modulator Switching RF voltage 4 v
(DP-MZM) Bias voltage 0 v

Simulation Sweep time 10 µs
Window No. of samples 8192

Photo detector
(PIN)

Responsivity 1 A/W
Dark current 1 nA

Thermal and shot noise BW 410 MHz
Absolute temp 290 k
Load resistance 50 Ω

Under Water Chanel
Parameters

Atmospheric loss factor 0.5
Target reflectivity 0.1

Optical transmission loss 0.1
Receiver aperture diameter 10 cm

Salt concentration in clear water 0.5 g/L
Alkaline concentration in clear water 8

Parameters

3. Results and Discussion

In this section, we discuss the simulation results obtained from the proposed photonic
radar-based underwater optical navigation system. To test the proposed system, we first
considered clear ocean conditions with a salinity level chosen to be 0.2 g/L. The system is
tested for an underwater range of 10 m and the system bandwidth is kept at 1 GHz. As
shown in Figure 5, the graph presents the performance of the photonic radar system as a
function of frequency, with the detected power in decibels-milliwatts (dBm) plotted along
the Y-axis and the frequency along the X-axis, spanning a range from 5 to 9 MHz.

The radar system’s response to an object in a medium with a salinity of 0.2 g/L is
indicated by the red data points, whereas the green data points denote the noise floor
of the system. A prominent peak is observed in the red curve at 6.67 MHz, where the
detected power reaches a local maximum, standing out significantly from the surrounding
noise level. This also matches with the theoretical value of the range frequency calculated
using Equation (10). This peak corresponds to the resonant frequency at which the ob-
ject’s reflected signal is most powerfully received, and it represents the radar’s ability to
identify the presence of an underwater object within the specified salinity conditions. The
peak’s sharpness suggests a system with a narrowband response at the resonant frequency,
indicative of a high-quality factor which is desirable for distinguishing the signal from
the background noise. The noise floor, represented by the green curve, remains relatively
constant across the frequency spectrum, with minor fluctuations that do not exhibit any
systematic frequency dependence. The consistent separation between the signal and noise
curves across the frequency range, particularly at the resonant peak, indicates a good
signal-to-noise ratio (SNR) which is critical for reliable identification. The graph elucidates
the impact of environmental conditions, such as water salinity, on the photonic radar’s
performance. The attenuation due to salinity is quantified by the difference in power levels
between the signal peak and the noise floor. The results suggest that the system maintains
functional capabilities despite the attenuation effects introduced by the underwater envi-
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ronment’s salinity. For testing the proposed system under varying attenuation levels, we
have tested different levels of salinity, as shown in Figure 6.
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The displayed graph illustrates the capabilities of the photonic radar system under
varying levels of salinity, showcasing the system’s response across a frequency range of
4 to 9 MHz. The detected power, expressed in dBm, is plotted on the Y-axis, while the
frequency is represented on the X-axis. Two distinct curves indicate the power at salinity
levels of 5 g/L and 15 g/L, depicted by red and black markers, respectively. Additionally,
the noise floor is represented by green markers. At both salinity levels, the system exhibits a
pronounced peak in power at around 7 MHz, indicative of the resonant frequency. Notably,
the peak corresponding to a salinity of 5 g/L (red curve) is higher than the one for 15 g/L
(black curve), suggesting that increased salinity levels result in greater signal attenuation,
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as expected due to the increased absorption and scattering effects in saltier waters. The
peak power at 5 g/L salinity is closer to −95 dBm, while at 15 g/L, the peak drops to
approximately −105 dBm. This 10 dB difference can be significant, implying that the
radar’s sensitivity and effectiveness are inversely proportional to the salinity of the water.
These results underscore the importance of accounting for environmental conditions when
calibrating and deploying photonic radar systems for underwater applications. The noise
floor remains consistent across the frequency spectrum for both salinity levels and is
distinguishable from the signal peaks, which is crucial for the radar’s ability to discern
between true object echoes and background noise.

The graph in Figure 7 demonstrates the relationship between signal-to-noise ratio
(SNR) and target range for the photonic radar system, with measurements taken at four
different salinity levels (0.2, 5, 10, and 15 g/L). The SNR is measured in decibels (dB) and
plotted on the Y-axis, while the target range in meters is presented on the X-axis, spanning
from 4 to 12 m. The four curves, each representing a different salinity level, show a clear
trend: the SNR decreases as the range increases. This is expected due to the propagation
loss that naturally occurs as the distance between the radar system and the target becomes
greater. Additionally, each increase in salinity level showed a corresponding decrease in
SNR, indicative of the attenuating effect of salt in the water, which absorbs and scatters
the photonic signal. The curve for the lowest salinity level of 0.2 g/L (red) starts with the
highest SNR, indicating that under nearly fresh water conditions, the system performs
optimally. As salinity increases to 5 g/L (black), 10 g/L (blue), and 15 g/L (yellow), the
SNR for a given range decreases, demonstrating the compounding effect of range and
salinity on signal identification. At the shortest range of 4 m, all salinity levels maintained
an SNR above 10 dB, suggesting robust capabilities close to the radar. However, as the
range extended to 12 m, the SNR for the highest salinity level fell below 0 dB, indicating
that the signal is no longer distinguishable from the noise. This threshold, where the SNR
dips below 0 dB, is reached at progressively shorter ranges as salinity increases, with the
0.2 g/L curve maintaining an SNR above this threshold for all displayed ranges.
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The enhanced discussion links observed results with practical implications for un-
derwater vehicle detection and navigation, focusing on the photonic radar system’s ap-
plications and limitations in high-salinity waters. The system shows promise for marine
exploration, environmental monitoring, and defense in low-salinity conditions, but faces
challenges in extended-range operations as salinity levels increase. Environmental con-
siderations, such as signal attenuation due to salinity, are crucial for deployment. While
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the system demonstrates sensitivity and selectivity in low- to moderate-salinity waters,
further development is needed for high-salinity scenarios. The findings have implications
for various naval and marine applications, with the system’s adaptability to environmental
conditions being key for effective monitoring, navigation, and defense.

4. Conclusions

In conclusion, this research has successfully demonstrated the capabilities of a novel
photonic radar system for underwater vehicle detection across various salinity levels and
distances. The system’s performance, evaluated through experiments, provides insights
into the impact of environmental factors on underwater radar detection. The analysis
revealed that the system could distinguish between the signal and noise floor across the
tested frequency range. At a salinity level of 5 g/L, the detected power peaked at around
−95 dBm, while at 15 g/L, it dropped to approximately −105 dBm, indicating significant
salinity impact on signal attenuation. The noise floor remained below −130 dBm across all
frequencies, ensuring a robust detection threshold. The SNR evaluation against target range
showed a decreasing trend with increasing range and salinity. The system demonstrated
strong detection capabilities within short ranges, maintaining an SNR above 10 dB for
ranges up to 4 m, even at the highest tested salinity of 15 g/L. However, at longer ranges,
the SNR dropped below 0 dB, highlighting challenges posed by higher salt concentrations
and distances. These findings suggest that the photonic radar system is highly sensitive
and selective under various saline conditions, but performance degradation at extended
ranges and higher salinity levels indicate a need for improved signal processing and system
optimization. The system shows promise for near-range applications in low- to moderate-
salinity waters and potential for the early detection of underwater threats. For extended
ranges, especially in high-salinity scenarios, further development is needed. This study
lays the groundwork for future enhancements in photonic radar technology, aiming to
overcome environmental attenuation effects and provide reliable, long-range detection
capabilities in diverse underwater environments.
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