Geographical Variability of Set-Aside in Poland: Environmental and Anthropogenic Impacts on the Implementation of Complementary EU Instrument
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Set-Aside Tradition in Poland
2.2. Set-Aside as a Complementary Instrument of EU Agricultural Policy
2.3. Environmental and Anthropogenic Factors Influencing Set-Aside Practices
3. Methodological Framework
3.1. Data Collection and Processing
3.2. Methods of Analysis
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovács-Hostyánszki, A.; Soltész, Z.; Szigeti, V.; Somay, L.; Báldi, A. Non-Rotational Set-Aside Fields Improve Reproductive Success of Cavity-Nesting Bees and Wasps at the Landscape Scale, but Have No Effect on Other Wild Bees and Hoverflies in Mid-Summer. Agric. Ecosyst. Environ. 2021, 308, 107255. [Google Scholar] [CrossRef]
- Firbank, L.G.; Smart, S.M.; Crabb, J.; Critchley, C.N.R.; Fowbert, J.W.; Fuller, R.J.; Gladders, P.; Green, D.B.; Henderson, I.; Hill, M.O. Agronomic and Ecological Costs and Benefits of Set-Aside in England. Agric. Ecosyst. Environ. 2003, 95, 73–85. [Google Scholar] [CrossRef]
- Grontkowska, A. An Assessment of the Set-Aside and Fallow Land Scale in Poland. Ann. PAAAE 2021, XXIII, 32–44. [Google Scholar] [CrossRef]
- Jaros, S.; Woch, F. Analiza Przyczyn Odłogowania Gruntów Rolnych w Województwie Świętokrzyskim Na Przykładzie Gminy Kije [Analysis of the Causes of Fallowing Agricultural Land in the Świętokrzyskie Voivodeship on the Example of the Kije Commune]. Stud. I Rap. IUNG—PIB 2010, 24, 25–49. [Google Scholar] [CrossRef]
- Krysiak, S. Odłogi w Krajobrazach Polski Środkowej—Aspekty Przestrzenne, Typologiczne i Ekologiczne [The Fallows in Central Poland Landscapes—Spatial, Typological and Ecological Aspects]. Probl. Ekol. Kraj. 2011, XXXI, 89–96. [Google Scholar]
- European Union. Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 Establishing Rules on Support for Strategic Plans to Be Drawn Up by Member States Under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013; European Union: Maastricht, The Netherlands, 2021. [Google Scholar]
- Nowicki, J.; Marks, M.; Makowski, P. Ugór Jako Element Współczesnego Krajobrazu Rolniczego [Fallow Land as an Element of Contemporary Agricultural Landscape]. Fragm. Agron. 2007, 4, 48–57. [Google Scholar]
- Bański, J. Historia Rozwoju Gospodarki Rolnej Na Ziemiach Polskich [History of Agricultural Development in Poland]. In Człowiek i Rolnictwo; Górka, Z., Zborowski, A., Eds.; Instytut Geografii i Gospodarki Przestrzennej UJ: Kraków, Poland, 2009; pp. 33–45. [Google Scholar]
- Bański, J. Zmiany w Rolniczym Użytkowaniu Ziemi w Europie Środkowo-Wschodniej Po Upadku Gospodarki Socjalistycznej [Changes in Agricultural Land Use in the Central and Eastern Europe Following the Collapse of the Socialist Economy]. Stud. Obsz. Wiej. 2020, 57, 15–34. [Google Scholar] [CrossRef]
- Czarnecki, A.; Seredym, Z.; Barcikowski, A. Zasady Konserwacji i Ochrony Gruntów Rolnych Czasowo Wyłączonych z Produkcji [Principles of Conservation and Protection of Agricultural Land Temporarily Excluded from Production]. Postępy Nauk Rol. 1994, 41, 19–35. [Google Scholar]
- Tomaszewicz, T.; Chudecka, J. Wpływ Odłogowania Na Wybrane Właściwości Gleb Piaszczystych [The Influence of Agriculture Use Abandonment on Chosen Properties of Sandy Soils]. Folia Pomeranae Univ. Technol. Stetinensis. Agric. Aliment. Piscaria Zootech. 2010, 14, 107–112. [Google Scholar]
- Rola, J. Ekologiczno-Gospodarcze Skutki Ugorów i Odłogów w Polsce [Fallow Land and Idle Land—Their Ecological and Farming Results in Poland]. Zesz. Probl. Postępów Nauk Rol. 1995, 418, 37–44. [Google Scholar]
- Plewa, J. Polskie Rolnictwo w Drodze Do Unii Europejskiej [Polish Agriculture on the Way to European Union]. Postępy Nauk Rol. 2001, 48, 5–9. [Google Scholar]
- Brady, M. The Impact of CAP Reform on the Environment: Some Regional Results. In Disaggregated Impacts of CAP Reforms; Thomson, K., Ed.; OECD Publishing: Paris, France, 2011; pp. 215–234. [Google Scholar]
- Lakner, S.; Schleyer, C.; Schmidt, J.; Zinngrebe, Y. Agricultural Policy for Biodiversity: Facilitators and Barriers for Transformation. Sustain. Life Land 2021, 18, 339. [Google Scholar]
- Musiał, K.; Szumiec, A. Istota Zielonego Ładu We Wspólnej Polityce Rolnej 2021–2027—Wyzwania Dla Rolnictwa w Aspekcie Ochrony Środowiska i Przyrody [The Green Deal in Common Agricultural Policy 2021–2027—Challenges for Agriculture in Terms of Environmental and Nature Conservation]. Wiadomości Zootech. 2021, LIX, 3–14. [Google Scholar]
- Sotherton, N.W. Land Use Changes and the Decline of Farmland Wildlife: An Appraisal of the Set-Aside Approach. Biol. Conserv. 1998, 83, 259–268. [Google Scholar] [CrossRef]
- Tarjuelo, R.; Margalida, A.; Mougeot, F. Changing the Fallow Paradigm: A Win–Win Strategy for the Post-2020 Common Agricultural Policy to Halt Farmland Bird Declines. J. Appl. Ecol. 2020, 57, 642–649. [Google Scholar] [CrossRef]
- Orłowski, G.; Nowak, L. Problematyka Odłogowania Gruntów w Świetle Wyników Badań Prowadzonych w Krajach Europy Zachodniej i Stanach Zjednoczonych [Set-aside in the Light of Studies Conducted in the Countries of Western Europe and in the United States]. Acta Sci. Polonorum. Agric. 2004, 3, 27–36. [Google Scholar]
- Palmer, C.; Groom, B.; Langton, S.; Sileci, L. Biodiversity-Food Trade-Offs When Agricultural Land Is Spared from Production. Pap. Environ. Econ. Policy 2023, 34. Available online: https://eprints.lse.ac.uk/116614/ (accessed on 6 September 2024).
- Bouma, J.; Varallyay, G.; Batjes, N.H. Principal Land Use Changes Anticipated in Europe. Agric. Ecosyst. Environ. 1998, 67, 103–119. [Google Scholar] [CrossRef]
- Boellstorff, D.; Benito, G. Impacts of Set-Aside Policy on the Risk of Soil Erosion in Central Spain. Agric. Ecosyst. Environ. 2005, 107, 231–243. [Google Scholar] [CrossRef]
- Lambarraa, F.; Stefanou, S.; Serra, T.; Gil, J.M. The Impact of the 1999 CAP Reforms on the Efficiency of the COP Sector in Spain. Agric. Econ. 2009, 40, 355–364. [Google Scholar] [CrossRef]
- Chakir, R.; Thomas, A. Unintended Consequences of Environmental Policies: The Case of Set-aside and Agricultural Intensification. Env. Model Assess 2022, 27, 363–384. [Google Scholar] [CrossRef]
- Mickiewicz, B.; Mickiewicz, A.; Sobala, M. Analiza Przyczyn Zmiany Powierzchni Użytków Rolnych w Okresie Międzyspisowym (2002-2010) [Analysis of Factors behind Change of Arable Land Area in Period between Two Agricultural Censuses (2002-2010)]. Optimum. Stud. Ekon. 2013, 4, 13–24. [Google Scholar] [CrossRef]
- Ministerstwo Rolnictwa i Rozwoju Wsi Zmiana Decyzji Komisji Europejskiej Ws. Ugorowania 4% Gruntów w Roku 2024 [Change of the European Commission’s Decision to Set Aside 4% of Land in 2024]. Available online: https://www.gov.pl/web/rolnictwo/zmiana-decyzji-komisji-europejskiej-ws-ugorowania-4-gruntow-w-roku-2024 (accessed on 16 October 2024).
- Van Buskirk, J.; Willi, Y. Enhancement of Farmland Biodiversity within Set-Aside Land. Conserv. Biol. 2004, 18, 987–994. [Google Scholar] [CrossRef]
- Dimopoulos, T.; Helfenstein, J.; Kreuzer, A.; Mohr, F.; Sentas, S.; Giannelis, R.; Kizos, T. Different Responses to Mega-Trends in Less Favorable Farming Systems. Continuation and Abandonment of Farming Land on the Islands of Lesvos and Lemnos, Greece. Land Use Policy 2023, 124, 106435. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping Farmland Abandonment and Recultivation across Europe Using MODIS NDVI Time Series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial Variation in Determinants of Agricultural Land Abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Bicknell, J.E.; O’Hanley, J.R.; Armsworth, P.R.; Slade, E.M.; Deere, N.J.; Mitchell, S.L.; Hemprich-Bennett, D.; Kemp, V.; Rossiter, S.J.; Lewis, O.T.; et al. Enhancing the Ecological Value of Oil Palm Agriculture through Set-Asides. Nat. Sustain. 2023, 6, 513–525. [Google Scholar] [CrossRef]
- Eskandari-Damaneh, H.; Noroozi, H.; Ghoochani, O.M.; Taheri-Reykandeh, E.; Cotton, M. Evaluating Rural Participation in Wetland Management: A Contingent Valuation Analysis of the Set-Aside Policy in Iran. Sci. Total Environ. 2020, 747, 141127. [Google Scholar] [CrossRef] [PubMed]
- Fullen, M.A.; Booth, C.A. Grass Ley Set-Aside and Soil Organic Matter Dynamics on Sandy Soils in Shropshire, UK. Earth Surf Process. Landf 2006, 31, 570–578. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kozyra, J. Ograniczanie Wpływu Zagrożeń Klimatycznych w Odniesieniu Do Rolnictwa i Obszarów Wiejskich [Reducing the Impact of Climate Hazards on Agriculture and Rural Areas]. Pol. J. Agron. 2011, 7, 68–81. [Google Scholar]
- Musick, J.T.; Pringle, F.B.; Harman, W.L.; Stewart, B.A. Long-Term Irrigation Trends Texas High Plains. Appl. Eng. Agric. 1990, 6, 717–724. [Google Scholar] [CrossRef]
- Zúñiga, F.; Jaime, M.; Salazar, C. Crop Farming Adaptation to Droughts in Small-Scale Dryland Agriculture in Chile. Water Resour. Econ. 2021, 34, 100176. [Google Scholar] [CrossRef]
- Eslamifar, G.; Balali, H.; Fernald, A. Fallowing Strategy and Its Impact on Surface Water and Groundwater Withdrawal, and Agricultural Economics: A System Dynamics Approach in Southern New Mexico. Water 2024, 16, 181. [Google Scholar] [CrossRef]
- Lizarazo, C.I.; Tuulos, A.; Jokela, V.; Mäkelä, P.S.A. Sustainable Mixed Cropping Systems for the Boreal-Nemoral Region. Front. Sustain. Food Syst. 2020, 4, 103. [Google Scholar] [CrossRef]
- Levin, G.; Jepsen, M.R. Abolition of Set-Aside Schemes, Associated Impacts on Habitat Structure and Modelling of Potential Effects of Cross-Farm Regulation. Ecol. Model. 2010, 221, 2728–2737. [Google Scholar] [CrossRef]
- Robinson, G.M.; Lind, M. Set-Aside and Environment: A Case Study in Southern England. Tijd. Voor Econ. Soc. Geog. 1999, 90, 296–311. [Google Scholar] [CrossRef]
- Li, Q.; Amjath-Babu, T.; Zander, P.; Liu, Z.; Müller, K. Sustainability of Smallholder Agriculture in Semi-Arid Areas under Land Set-aside Programs: A Case Study from China’s Loess Plateau. Sustainability 2016, 8, 395. [Google Scholar] [CrossRef]
- Tscharntke, T.; Batáry, P.; Dormann, C.F. Set-Aside Management: How Do Succession, Sowing Patterns and Landscape Context Affect Biodiversity? Agric. Ecosyst. Environ. 2011, 143, 37–44. [Google Scholar] [CrossRef]
- Anteneh, A.; Endalew, B. Determinants of Teff Commercialization among Smallholder Farmers: Beta Regression Approach. Cogent Soc. Sci. 2023, 9, 2209987. [Google Scholar] [CrossRef]
- Brotherton, D.I. Initial Participation in UK Set-Aside and ESA Schemes. Plan. Outlook 1990, 33, 46–61. [Google Scholar] [CrossRef]
- Jones, A.; Fasterding, F.; Plankl, R. Farm Household Adjustments to the European Community’s Set-Aside Policy: Evidence from Rheinland-Pfalz (Germany). J. Rural Stud. 1993, 9, 65–80. [Google Scholar] [CrossRef]
- Kryszak, Ł.; Guth, M.; Czyżewski, B. Determinants of Farm Profitability in the EU Regions. Does Farm Size Matter? Agric. Econ. (Zemědělská Ekon.) 2021, 67, 90–100. [Google Scholar] [CrossRef]
- Rämö, J.; Tupek, B.; Lehtonen, H.; Mäkipää, R. Towards Climate Targets with Cropland Afforestation—Effect of Subsidies on Profitability. Land Use Policy 2023, 124, 106433. [Google Scholar] [CrossRef]
- Shield, I.F.; Godwin, R.J.; Smith, D.L.O. The Costs of Alternative Methods of Managing ‘Set-Aside’ Land within the European Community. Soil Tillage Res. 1996, 37, 273–287. [Google Scholar] [CrossRef]
- Vavra, P.; Colman, D. The Analysis of UK Crop Allocation at the Farm Level: Implications for Supply Response Analysis. Agric. Syst. 2003, 76, 697–713. [Google Scholar] [CrossRef]
- Krasowicz, S.; Oleszek, W.; Horabik, J.; Dębicki, R.; Jankowiak, J.; Stuczyński, T.; Jadczyszyn, J. Racjonalne Gospodarowanie Środowiskiem Glebowym Polski [Rational Management of Poland’s Soil Environment]. Pol. J. Agron. 2011, 7, 43–58. [Google Scholar]
- Keese, J.R. International NGOs and Land Use Change in a Southern Highland Region of Ecuador. Hum. Ecol. 1998, 26, 451–468. [Google Scholar] [CrossRef]
- Chief Inspectorate of Environmental Protection. Maps of Precipitation Distributions; Chief Inspectorate of Environmental Protection: Warsaw, Poland, 2022. Available online: https://powietrze.gios.gov.pl/depoz/en/maps-of-ph-and-precipitation-distributions/ (accessed on 5 October 2024).
- Head Office of Geodesy and Cartography. Digital Elevation Model (DEM). Head Office of Geodesy and Cartography: Warsaw, Poland, 2024. Available online: https://www.geoportal.gov.pl/en/data/digital-elevation-model-dem/ (accessed on 5 October 2024).
- Statistics Poland. Local Data Bank. Statistics Poland: Warsaw, Poland, 2024. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 5 October 2024).
- Sykula, M. Mapa Gleb Polski—Systematyka Gleb Polski 2019 [Soil Map of Poland—Systematics of Polish Soils 2019]. 2021. Available online: https://services9.arcgis.com/rlAQMM2L2x6lEOFT/arcgis/rest/services/MGP_SGP_2019_210622_WFL1/FeatureServer (accessed on 6 October 2024).
- Tomczyk, A.M.; Bednorz, E. Atlas Klimatu Polski (1991–2020) [Climate Atlas of Poland (1991–2020)]; Bogucki Wydawnictwo Naukowe: Poznań, Polska, 2022; ISBN 83-7986-415-8. [Google Scholar]
- Tomczyk, A.M.; Szyga-Pluta, K. Okres Wegetacyjny w Polsce w Latach 1971-2010 [Growing Season in Poland in 1971–2010]. Przegląd Geogr. 2016, 88, 75–86. [Google Scholar] [CrossRef]
- Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb [Polish Soil Science Society, Commission of the Origins of Soil Classification and Cartography]. Systematyka Gleb Polski 2019 [Systematics of Polish Soils 2019]; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu; Polskie Towarzystwo Gleboznawcze. Komisja Genezy, Klasyfikacji i Kartografii Gleb; Instytut Nauk o Glebie i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland; Warszawa, Poland, 2019; ISBN 978-83-7717-321-3. [Google Scholar]
- Smreczak, B.; Łachacz, A. Typy Gleb Wyróżniane w Klasyfikacji Bonitacyjnej i Ich Odpowiedniki w 6. Wydaniu Systematyki Gleb Polski [Soil Types Specified in the Bonitation Classification and Their Analogues in the Sixth Edition of the Polish Soil Classification]. Soil Sci. Annu. 2019, 70, 115–136. [Google Scholar] [CrossRef]
- Head Office of Geodesy and Cartography. Topographic Objects Database (BDOT10K); Head Office of Geodesy and Cartography: Warsaw, Poland, 2024. Available online: https://www.geoportal.gov.pl/en/data/topographic-objects-database-bdot10k/ (accessed on 5 October 2024).
- Lin, F.-J. Solving Multicollinearity in the Process of Fitting Regression Model Using the Nested Estimate Procedure. Qual Quant 2008, 42, 417–426. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Package “Dplyr”: A Grammar of Data Manipulation. 2023, Version 1.1.4. [CrossRef]
- Fox, J.; Weisberg, S.; Price, B. Package “Car”: Companion to Applied Regression. 2024. Version 3.1-3. Available online: https://r-forge.r-project.org/projects/car/ (accessed on 10 October 2024).
- Kursa, M.B.; Rudnicki, W.R. Package “Boruta”: Wrapper Algorithm for All Relevant Feature Selection. 2022, Version 8.0.0. [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Soft. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Pontius, R.G.; Zhang, Z. Geographically Weighted Regression to Measure Spatial Variations in Correlations between Water Pollution versus Land Use in a Coastal Watershed. Ocean Coast. Manag. 2015, 103, 14–24. [Google Scholar] [CrossRef]
- Leśniewska-Napierała, K.; Nalej, M.; Napierała, T. The Impact of EU Grants Absorption on Land Cover Changes—The Case of Poland. Remote Sens. 2019, 11, 2359. [Google Scholar] [CrossRef]
- Nalej, M.; Lewandowicz, E. An Analysis of Recreational and Leisure Areas in Polish Counties with the Use of Geographically Weighted Regression. Sustainability 2023, 16, 380. [Google Scholar] [CrossRef]
- Czernek, K. Determinants of Cooperation in a Tourist Region. Ann. Tour. Res. 2013, 40, 83–104. [Google Scholar] [CrossRef]
- Czernek, K.; Czakon, W. Trust-Building Processes in Tourist Coopetition: The Case of a Polish Region. Tour. Manag. 2016, 52, 380–394. [Google Scholar] [CrossRef]
The Nature of the Factor Influencing Set-Aside Practices | Factor Influencing Set-Aside Practices (Abbreviation) | Measure to Be Used for Poland | Hypothesized Impact |
---|---|---|---|
Environmental | Slope of the terrain | Average slope of the terrain in the municipality [%] | Positive [31,41] |
Water surface | Water surface rate in the total area of land in the municipality [%] | Positive [22,35] or negative [36,37] | |
Low-quality soils | Share of low-quality soils (initial soils, podzolic soils, rankers, regosols, rusty soils) * in the total area of arable land in the municipality [%] | Positive [4,10,19,33,34] | |
Precipitation | Average amount of precipitation in the municipality [mm/1 m2] | Positive [22,34,35] or negative [34,36] | |
Growing season | Length of the growing season [days] | Negative [38] | |
Environmentalprotection | Share of protected areas in the total area of municipality [%] | Positive [32] | |
Anthropogenic | Farm size | Average farm size in the municipality [ha] | Positive [18] or negative [46,50] |
Social capital | The number of NGOs operating in the municipality [number per 1000 inhabitants] | Positive [20,39] | |
Consumption of mineral fertilizers | Average consumption of mineral fertilizers [kg per ha] | Negative [17,42,51] |
Correlation | Slope of the Terrain | Water Surface | Low-Quality Soils | Precipitation | Growing Season | Environmental Protection | Farm Size | Social Capital | Consumption of Mineral Fertilizers |
---|---|---|---|---|---|---|---|---|---|
Slope of the terrain | 1.00 | −0.08 | −0.08 | 0.63 | −0.15 | 0.29 | −0.18 | 0.02 | −0.39 |
Water surface | −0.08 | 1.00 | 0.01 | −0.15 | 0.01 | 0.17 | 0.07 | 0.17 | −0.08 |
Low-quality soils | −0.08 | 0.01 | 1.00 | −0.05 | 0.03 | 0.13 | −0.04 | −0.08 | −0.18 |
Precipitation | 0.63 | −0.15 | −0.05 | 1.00 | −0.04 | 0.09 | −0.39 | −0.12 | −0.23 |
Growing season | −0.15 | 0.01 | 0.03 | −0.04 | 1.00 | −0.13 | 0.14 | 0.00 | 0.22 |
Environmental protection | 0.29 | 0.17 | 0.13 | 0.09 | −0.13 | 1.00 | −0.08 | 0.11 | −0.38 |
Farm size | −0.18 | 0.07 | −0.04 | −0.39 | 0.14 | −0.08 | 1.00 | 0.18 | 0.30 |
Social capital | 0.02 | 0.17 | −0.08 | −0.12 | 0.00 | 0.11 | 0.18 | 1.00 | 0.00 |
Consumption of mineral fertilizers | −0.39 | −0.08 | −0.18 | −0.23 | 0.22 | −0.38 | 0.30 | 0.00 | 1.00 |
VIF | 2.14 | 1.10 | 1.10 | 2.01 | 1.18 | 1.32 | 1.42 | 1.10 | 1.48 |
Z-Scores | Mean | Median | Minimum | Maximum | Decision on Variable Importance: Confirmed, Tentative, or Rejected |
---|---|---|---|---|---|
Growing season | 52.43 | 52.60 | 50.05 | 54.67 | Confirmed |
Farm size | 47.04 | 46.82 | 44.84 | 48.97 | Confirmed |
Precipitation | 36.93 | 36.94 | 35.75 | 38.46 | Confirmed |
Environmental protection | 32.59 | 32.17 | 30.65 | 34.87 | Confirmed |
Consumption of mineral fertilizers | 32.04 | 32.08 | 29.76 | 34.63 | Confirmed |
Slope of the terrain | 28.18 | 28.36 | 26.60 | 29.82 | Confirmed |
Low-quality soils | 13.68 | 13.81 | 12.44 | 14.74 | Confirmed |
Water surface | 10.93 | 10.83 | 9.99 | 11.75 | Confirmed |
Social capital | 10.37 | 10.23 | 8.32 | 11.93 | Confirmed |
Spatial Autocorrelation | Global Moran’s I Statistic | Expected Value of Moran’s I Statistic (Random Spatial Distribution) | p-Value | Decision on Variable Use in GWR Model: Global, or Local |
---|---|---|---|---|
Growing season | 0.783055 | −0.000404 | →0 | Local |
Farm size | 0.497340 | −0.000404 | →0 | Local |
Precipitation | 1.092082 | −0.000404 | →0 | Local |
Environmental protection | 0.407986 | −0.000404 | →0 | Local |
Consumption of mineral fertilizers | 0.615944 | −0.000404 | →0 | Local |
Slope of the terrain | 0.947803 | −0.000404 | →0 | Local |
Low-quality soils | 0.408669 | −0.000404 | →0 | Local |
Water surface | 0.299658 | −0.000404 | →0 | Local |
Social capital | 0.240592 | −0.000404 | →0 | Local |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leśniewska-Napierała, K.; Napierała, T.; Nalej, M. Geographical Variability of Set-Aside in Poland: Environmental and Anthropogenic Impacts on the Implementation of Complementary EU Instrument. Sustainability 2024, 16, 11276. https://doi.org/10.3390/su162411276
Leśniewska-Napierała K, Napierała T, Nalej M. Geographical Variability of Set-Aside in Poland: Environmental and Anthropogenic Impacts on the Implementation of Complementary EU Instrument. Sustainability. 2024; 16(24):11276. https://doi.org/10.3390/su162411276
Chicago/Turabian StyleLeśniewska-Napierała, Katarzyna, Tomasz Napierała, and Marta Nalej. 2024. "Geographical Variability of Set-Aside in Poland: Environmental and Anthropogenic Impacts on the Implementation of Complementary EU Instrument" Sustainability 16, no. 24: 11276. https://doi.org/10.3390/su162411276
APA StyleLeśniewska-Napierała, K., Napierała, T., & Nalej, M. (2024). Geographical Variability of Set-Aside in Poland: Environmental and Anthropogenic Impacts on the Implementation of Complementary EU Instrument. Sustainability, 16(24), 11276. https://doi.org/10.3390/su162411276