Evaluation of a Grid-Connected Photovoltaic System at the University of Brasília Based on Brazilian Standard for Performance Monitoring and Analysis
Abstract
:1. Introduction
2. Power Structure Description
3. Material and Methods as Recommended by Brazilian Standard ABNT NBR 16274:2014
3.1. Performance Ratio (PR)
3.2. Theoretical Energy Injected into the Grid (
- i—i-th measured value.
- PN—PV system nominal power.
- G—Total irradiance on the PV plane.
- γ—Temperature Coefficient (%/°C).
- Tc—Cell Temperature.
- c—Irradiance Coefficient (The value of c is derived from the ratio of the module efficiencies at 200 W/m2 to 1000 W/m2, which is provided by the manufacturer. The module efficiency, in relation to irradiance, presents a curve that can be modeled by a logarithmic equation of the form η = 1 + c ln(G/1000), where c fits the equation to the efficiency curve of a given module model. For crystalline silicon modules, this efficiency ratio is often η200/η1000 = 0.95, which corresponds to c = 0.031).
- PNI—Inverter Nominal Power (In the case of systems with multiple subsystems (multiple inverters) PNI is the sum of the nominal power of all inverters).
- k0, k1, and k2—Inverter efficiency coefficients.
- Δt—Integration Period.
- n—Number of measurements.
3.3. Coefficients k0, k1, and k2 for the Inverter Efficiency Curve
3.4. Losses Scenario
- DC loss scenario.
- AC loss scenario.
3.5. Electricity Delivered to the Utility Grid
- Adjusted theoretical DC power.
- Adjusted theoretical AC power.
- PN—PV system rated power.
- GSTC—Irradiance under standard test conditions (1000 W/m2).
- H—Total annual irradiance on the plane of the photovoltaic arrays.
4. Obtained Results
4.1. Solarimetric Data Collection
4.2. Data Collection—Energy Injected into the Grid
4.3. Data Processing
4.4. Application of the Brazilian Standard ABNT NBR 16274:2014 for Performance Analysis
5. Discussion
6. Conclusions
7. Directions for Further Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ANEEL. Resolução Normativa 482; ANEEL: Brasília, Brazil, 2012; pp. 1–13. Available online: https://www.gov.br/aneel/pt-br/assuntos/geracao-distribuida (accessed on 6 October 2024).
- IRENA [International Renewable Energy Agency]. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects. 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_2019.pdf (accessed on 26 September 2024).
- Quinelato, D.D.D.; Batista, E.A.; Santos, R.R.; Allatta, E.; Brito, M.A.G. Projeto de um estimador de perdas por sujidade em módulos fotovoltaicos utilizando modelo preditivo. Rev. Eletrôn. Potência 2021, 26, 84–93. [Google Scholar] [CrossRef]
- Lopes, B.M.; Costa, A.M.; Uturbey, W. Simulation with performance evaluation of photovoltaic production using long term monthly irradiation data. Renew. Energy 2024, 223. [Google Scholar] [CrossRef]
- Felipe, T.A.; Melo, F.C.; Freitas, L.C.G. Design and Development of an Online Smart Monitoring and Diagnosis System for Photovoltaic Distributed Generation. Energies 2021, 14, 8552. [Google Scholar] [CrossRef]
- Karaveli, A.B.; Ozden, T.; Akinoglu, B.G. Determining Photovoltaic Module Performance and Comparisons. In Proceedings of the International Conference on Photovoltaic Science and Technologies (PVCon), Ankara, Turkey, 4–6 July 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Riley, E. Photovoltaic system model validation and performance testing: What project developers and technology providers must do to support energy production estimates. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 3053–3055. [Google Scholar] [CrossRef]
- Rediske, G.; Michels, L.; Siluk, J.C.M.; Rigo, P.D.; Rosa, C.B.; Lima, A.C. A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants. Appl. Energy 2024, 354, 122158. [Google Scholar] [CrossRef]
- Kim, G.G.; Hyun, J.H.; Choi, J.H.; Ahn, S.-H.; Bhang, B.G.; Ahn, H.-K. Quality Analysis of Photovoltaic System Using Descriptive Statistics of Power Performance Index. IEEE Access 2023, 11, 28427–28438. [Google Scholar] [CrossRef]
- ABNT NBR 16274-2014; Grid Connected Photovoltaic Systems. Associação Brasileira de Normas Técnicas: Rio de Janeiro/São Paulo, Brazil, 2014.
- Akpolat, A.N.; Dursun, E.; Kuzucuoğlu, A.E.; Yang, Y.; Blaabjerg, F.; Baba, A.F. Performance Analysis of a Grid-Connected Rooftop Solar Photovoltaic System. Electronics 2019, 8, 905. [Google Scholar] [CrossRef]
- Dhimish, M. Performance Ratio and Degradation Rate Analysis of 10-Year Field Exposed Residential Photovoltaic Installations in the UK and Ireland. Clean Technol. 2020, 2, 170–183. [Google Scholar] [CrossRef]
- Montes, C.; Dorta-Guerra, R.; González-Díaz, B.; González-Pérez, S.; Ocaña, L.; Llarena, E. Study of the Evolution of the Performance Ratio of Photovoltaic Plants Operating in a Utility-Scale Installation Located at a Subtropical Climate Zone Using Mixed-Effects Linear Modeling. Appl. Sci. 2022, 12, 11306. [Google Scholar] [CrossRef]
- Zdyb, A.; Sobczyński, D. An Assessment of a Photovoltaic System’s Performance Based on the Measurements of Electric Parameters under Changing External Conditions. Energies 2024, 17, 2197. [Google Scholar] [CrossRef]
- Ali, A.; Volatier, M.; Darnon, M. Optimal Sizing and Assessment of Standalone Photovoltaic Systems for Community Health Centers in Mali. Solar 2023, 3, 522–543. [Google Scholar] [CrossRef]
- Mohamed, K.; Shareef, H.; Nizan, I.; Esan, A.B.; Shareef, A. Operational Performance Assessment of Rooftop PV Systems in the Maldives. Energy Rep. 2024, 11, 2592–2607. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A. Performance Assessment of Different Photovoltaic Technologies for Canal-Top and Reservoir Applications in Subtropical Humid Climate. IEEE J. Photovolt. 2019, 9, 722–732. [Google Scholar] [CrossRef]
- Jamil, I.; Lucheng, H.; Habib, S.; Aurangzeb, M.; Ali, A.; Ahmed, E.M. Performance Ratio Analysis Based on Energy Production for Large-Scale Solar Plant. IEEE Access 2022, 10, 5715–5735. [Google Scholar] [CrossRef]
- Lagarde, Q.; Beillard, B.; Mazen, S.; Denis, M.S.; Leylavergne, J. Performance ratio of photovoltaic installations in France: Comparison between inverters and micro-inverters. J. King Saud Univ. Eng. Sci. 2023, 35, 531–538. [Google Scholar] [CrossRef]
- ABNT NBR 10899; Energia Solar Fotovoltaica—Terminologia. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2006.
- ABNT NBR 16149; Sistemas Fotovoltaicos (FV)—Características da Interface de Conexão com a Rede Elétrica de Distribuição. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2013.
- IEC 60364 (all parts); Low-Voltage Electrical Installations. IEC: Geneva, Switzerland, 2005.
- IEC 60364-6; Low-Voltage Electrical Installations—Part 6: Verification. IEC: Geneva, Switzerland, 2006.
- IEC 60364-7-712; Electrical Installations of Buildings—Part 7-712: Requirements for Special Installations or Locations—Solar Photovoltaic (PV) Power Supply Systems. IEC: Geneva, Switzerland, 2002.
- IEC 61010 (all parts); Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use. IEC: Geneva, Switzerland, 2019.
- IEC 61557 (all parts); Electrical Safety in Low Voltage Distribution Systems up to 1000 V a.c. and 1500 V d.c.—Equipment for Testing, Measuring or Monitoring of Protective Measures. IEC: Geneva, Switzerland, 2019.
- IEC 61730-1; Photovoltaic (PV) Module Safety Qualification—Part 1: Requirements for Construction. IEC: Geneva, Switzerland, 2016.
- IEC 61730-2; Photovoltaic (PV) Module Safety Qualification—Part 2: Requirements for Testing. IEC: Geneva, Switzerland, 2023.
- IEC 61724; Photovoltaic System Performance Monitoring—Guidelines for Measurement, Data Exchange and Analysis [S.l.]. International Electrotechnical Commission: Geneva, Switzerland, 2017.
- Khalid, A.M.; Mitra, I.; Warmuth, W.; Schacht, V. Performance ratio—Crucial parameter for grid connected PV plants. Renew. Sustain. Energy Rev. 2016, 65, 1139–1158. [Google Scholar] [CrossRef]
- Lira, A.L.d.O.; Soares, B.d.L.; Santos, S.d.A. Estação solarimétrica de referência—Instalação, operação e manutenção. Rev. Bras. Energ. Sol. 2017, 7, 132–139. [Google Scholar] [CrossRef]
- Silva Costa, S.C.; Alves Cardoso Diniz, A.S.; Camatta, V.; Lee Kazmerski, L. Determinação das taxas de sujidade para módulos fotovoltaicos de filme fino e silício cristalino instalados em diferentes zonas climáticas brasileiras. Rev. Bras. Energ. Sol. 2021, 11, 58–67. [Google Scholar] [CrossRef]
Modules Parameters | |
---|---|
Maximum Rated Power ( | 420 W |
MPPT Voltage ( | 39.5 V |
MPPT Current ( | 10.64 A |
Open Circuit Voltage | 48 V |
Short Circuit Current | 11.26 A |
Module Efficiency | 19.01% |
Operational Temperature | −40 °C to +85 °C |
Inverter 1—CSI-75K-T400 | |
Maximum PV Power | 112.5 kW |
Maximum DC Input Voltage | 1100 Vdc |
DC Start Voltage | 195 Vdc |
MPPT Voltage Range | 180–1000 Vdc |
Maximum Input Current (Imp) per MPPT | 26 A |
Maximum Short-Circuit Current (Isc) per MPPT | 40 A |
Nominal AC Output Power | 75 kW |
Nominal Output Voltage | 220/380 Vac |
Nominal Grid Output Current | 114 A |
Maximum Efficiency | 98.7% |
Inverter 2—CSI-50KTL-GI | |
Maximum PV Power | 58 kW |
Maximum DC Input Voltage | 1100 Vdc |
DC Start Voltage | 200 Vdc |
MPPT Voltage Range | 439–850 Vdc |
Maximum Input Current (Imp) per MPPT | 28.5 A |
Maximum Short-Circuit Current (Isc) per MPPT | 44.5 A |
Nominal AC Output Power | 50 kW |
Nominal Output Voltage | 380/400 Vac |
Nominal Grid Output Current | 76/72.2 A |
Maximum Efficiency | 98.8% |
Parameters | MAR. (2022) | APR. (2022) | MAY. (2022) | JUN. (2022) | JUL. (2022) | AUG. (2022) | SEP. (2022) | OCT. (2022) | NOV. (2022) | DEC. (2022) | JAN. (2023) | FEB. (2023) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
k0 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0022 | 0.0022 | 0.0022 | 0.0022 | 0.0021 | 0.0021 |
k1 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.010 | 0.009 | 0.009 | 0.009 | 0.010 | 0.010 |
k2 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.023 | 0.023 | 0.023 | 0.021 | 0.021 |
(kWh) | 8176 | 7815 | 6896 | 7794 | 8655 | 8576 | 7751 | 6920 | 5653 | 5800 | 7161 | 6370 |
(kWh) | 7450 | 7560 | 6420 | 6990 | 7520 | 7270 | 6610 | 7200 | 5910 | 5540 | 6530 | 6900 |
Loss Adjustment | Yes | No | Yes | Yes | Yes | Yes | Yes | No | No | No | Yes | No |
ER,year(ajust) (kWh) | 7419 | - | 6426 | 6803 | 7426 | 7291 | 6545 | - | - | - | 6041 | - |
Irradiance (kW/m2) | 171.61 | 182.80 | 153.25 | 173.27 | 196.52 | 192.77 | 175.82 | 158.35 | 144.20 | 137.19 | 165.00 | 170.00 |
0.87 | 0.81 | 0.84 | 0.81 | 0.77 | 0.75 | 0.75 | 0.91 | 0.82 | 0.81 | 0.79 | 0.81 | |
PRtheo | 0.95 | 0.89 | 0.9 | 0.9 | 0.88 | 0.89 | 0.88 | 0.87 | 0.78 | 0.85 | 0.87 | 0.75 |
PRadjust | 0.86 | - | 0.84 | 0.79 | 0.76 | 0.76 | 0.74 | - | - | - | 0.73 | - |
k0 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0022 | 0.0022 | 0.0022 | 0.0022 | 0.0021 | 0.0021 |
k1 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.010 | 0.009 | 0.009 | 0.009 | 0.010 | 0.010 |
k2 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.023 | 0.023 | 0.023 | 0.021 | 0.021 |
(kWh) | 12,264 | 11,722 | 10,344 | 11,691 | 12,925 | 12,864 | 11,628 | 11,094 | 9456 | 9428 | 11,929 | 9065 |
(kWh) | 10,870 | 11,050 | 9340 | 10,200 | 10,930 | 10,540 | 4910 | - | 6470 | 6080 | 7150 | 8800 |
Loss Adjustment | Yes | Yes | Yes | Yes | Yes | Yes | - | - | Yes | Yes | Yes | No |
ER,year(adjut) (kWh) | 10,901 | 10,943 | 9210 | 9629 | 10,517 | 11,059 | - | - | 6089 | 6325 | 7316 | - |
Irradiance (kW/m2) | 171.61 | 182.80 | 153.25 | 173.27 | 196.52 | 192.77 | 175.82 | 158.35 | 144.20 | 137.19 | 165.00 | 170.00 |
0.84 | 0.81 | 0.81 | 0.78 | 0.74 | 0.73 | 0.37 | - | 0.60 | 0.59 | 0.58 | 0.69 | |
PRtheo | 0.95 | 0.89 | 0.9 | 0.9 | 0.88 | 0.89 | 0.88 | 0.93 | 0.87 | 0.92 | 0.96 | 0.71 |
PRadjust | 0.85 | 0.8 | 0.8 | 0.74 | 0.71 | 0.76 | - | - | 0.56 | 0.61 | 0.59 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, P.; Reis, A.; Velasco, L.N.; Francisco, T.M.; Resende, Ê.C.; Freitas, L.C.G. Evaluation of a Grid-Connected Photovoltaic System at the University of Brasília Based on Brazilian Standard for Performance Monitoring and Analysis. Sustainability 2024, 16, 11212. https://doi.org/10.3390/su162411212
Fernandes P, Reis A, Velasco LN, Francisco TM, Resende ÊC, Freitas LCG. Evaluation of a Grid-Connected Photovoltaic System at the University of Brasília Based on Brazilian Standard for Performance Monitoring and Analysis. Sustainability. 2024; 16(24):11212. https://doi.org/10.3390/su162411212
Chicago/Turabian StyleFernandes, Paulo, Alex Reis, Loana N. Velasco, Tânia M. Francisco, Ênio C. Resende, and Luiz C. G. Freitas. 2024. "Evaluation of a Grid-Connected Photovoltaic System at the University of Brasília Based on Brazilian Standard for Performance Monitoring and Analysis" Sustainability 16, no. 24: 11212. https://doi.org/10.3390/su162411212
APA StyleFernandes, P., Reis, A., Velasco, L. N., Francisco, T. M., Resende, Ê. C., & Freitas, L. C. G. (2024). Evaluation of a Grid-Connected Photovoltaic System at the University of Brasília Based on Brazilian Standard for Performance Monitoring and Analysis. Sustainability, 16(24), 11212. https://doi.org/10.3390/su162411212