Real Options Analysis of Constructed Wetlands as Nature-Based Solutions to Wastewater Treatment Under Multiple Uncertainties: A Case Study in the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Real Options Valuation
2.2. Data, Parameter Estimation, and Scenarios
3. Results
3.1. Baseline Scenario
3.2. Opportunity Cost Scenario
3.3. Uncertainty in Public Acceptance Scenario
3.4. Uncertainty in Climate Change Scenario
3.5. Sensitivity Analysis
4. Discussion
4.1. Feasibility of Constructed Wetlands
4.2. Real Options Valuation of Constructed Wetlands
4.3. Limitations and Prospects
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Environment and Natural Resources Department. Wastewater as a Resource; European Investment Bank (EIB): Luxembourg, 2022. [Google Scholar]
- United Nations Environment Programme. Wastewater—Turning Problem to Solution. A UNEP Rapid Response Assessment; UNEP: Nairobi, Kenya, 2023. [Google Scholar]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Agaton, C.B.; Guila, P.M.C. Success Factors and Challenges: Implications of Real Options Valuation of Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment. Resources 2024, 13, 11. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Kurt, Z.; Özdemir, I.; James, R.A.M. Effectiveness of microplastics removal in wastewater treatment plants: A critical analysis of wastewater treatment processes. J. Environ. Chem. Eng. 2022, 10, 107831. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef]
- Aghalari, Z.; Dahms, H.-U.; Sillanpää, M.; Sosa-Hernandez, J.E.; Parra-Saldívar, R. Effectiveness of wastewater treatment systems in removing microbial agents: A systematic review. Glob. Health 2020, 16, 13. [Google Scholar] [CrossRef]
- Agaton, C.B.; Guila, P.M.C. Ecosystem Services Valuation of Constructed Wetland as a Nature-Based Solution to Wastewater Treatment. Earth 2023, 4, 78–92. [Google Scholar] [CrossRef]
- Vymazal, J.; Zhao, Y.; Mander, Ü. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2021, 169, 106318. [Google Scholar] [CrossRef]
- Waly, M.M.; Ahmed, T.; Abunada, Z.; Mickovski, S.B.; Thomson, C. Constructed Wetland for Sustainable and Low-Cost Wastewater Treatment: Review Article. Land 2022, 11, 1388. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Torretta, V. Sustainable Management and Successful Application of Constructed Wetlands: A Critical Review. Sustainability 2018, 10, 3910. [Google Scholar] [CrossRef]
- Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innov. 2021, 21, 101261. [Google Scholar] [CrossRef]
- Lamori, J.G.; Xue, J.; Rachmadi, A.T.; Lopez, G.U.; Kitajima, M.; Gerba, C.P.; Pepper, I.L.; Brooks, J.P.; Sherchan, S. Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Environ. Sci. Pollut. Res. 2019, 26, 10188–10197. [Google Scholar] [CrossRef] [PubMed]
- Hazra, M.; Durso, L.M. Performance Efficiency of Conventional Treatment Plants and Constructed Wetlands towards Reduction of Antibiotic Resistance. Antibiotics 2022, 11, 114. [Google Scholar] [CrossRef]
- Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes 2021, 9, 1917. [Google Scholar] [CrossRef]
- Hadidi, L.A. Constructed Wetlands a Comprehensive Review. Int. J. Res.-GRANTHAALAYAH 2021, 9, 395–417. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2018, 17, 145–155. [Google Scholar] [CrossRef]
- Davis, L. A Handbook of Constructed Wetlands: A Guide to Creating Wetlands for: Agricultural Wastewater, Domestic Wastewater, Coal Mine Drainage, Stormwater. In The Mid-Atlantic Region. Volume 1: General Considerations; USDA-Natural Resources Conservation Service: Washington, DC, USA, 1995. [Google Scholar]
- Agaton, C.B.; Guila, P.M.C.; Rodriguez, A.D.H. Economic Analysis of NbS for Wastewater Treatment Under Uncertainties. In Water Treatment in Urban Environments: A Guide for the Implementation and Scaling of Nature-based Solutions; Jegatheesan, V., Velasco, P., Pachova, N., Eds.; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Snyder, B.F. The Inclusion of Ecosystem Service Valuations in Bioenergy Cost Analysis: A Case Study of Constructed Wetlands in the Neotropics. Ecol. Econ. 2019, 156, 196–201. [Google Scholar] [CrossRef]
- Guila, P.M.C.; Agaton, C.B.; Rivera, R.R.B.; Abucay, E.R. Household Willingness to Pay for Constructed Wetlands as Nature-Based Solutions for Wastewater Treatment in Bayawan City, Philippines. J. Hum. Ecol. Sustain. 2024, 2, 5. [Google Scholar] [CrossRef]
- Yang, W.; Chang, J.; Xu, B.; Peng, C.; Ge, Y. Ecosystem service value assessment for constructed wetlands: A case study in Hangzhou, China. Ecol. Econ. 2008, 68, 116–125. [Google Scholar] [CrossRef]
- Varela, H.; García, J.; Alfranca, O. Economic valuation of a created wetland fed with treated wastewater located in a peri-urban park in Catalonia, Spain. Water Sci. Technol. 2011, 63, 891–898. [Google Scholar] [CrossRef]
- García-Herrero, L.; Lavrnić, S.; Guerrieri, V.; Toscano, A.; Milani, M.; Cirelli, G.L.; Vittuari, M. Cost-benefit of green infrastructures for water management: A sustainability assessment of full-scale constructed wetlands in Northern and Southern Italy. Ecol. Eng. 2022, 185, 106797. [Google Scholar] [CrossRef]
- Abdelhay, A.; Abunaser, S.G. Modeling and Economic Analysis of Greywater Treatment in Rural Areas in Jordan Using a Novel Vertical-Flow Constructed Wetland. Environ. Manag. 2020, 67, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Castañer, C.M.; Bellver-Domingo, Á.; Hernández-Sancho, F. Environmental and Economic Approach to Assess a Horizontal Sub-Surface Flow Wetland in Developing Area. Water Resour. Manag. 2020, 34, 3761–3778. [Google Scholar] [CrossRef]
- Cooper, R.J.; Battams, Z.M.; Pearl, S.H.; Hiscock, K.M. Mitigating river sediment enrichment through the construction of roadside wetlands. J. Environ. Manag. 2019, 231, 146–154. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.A.A.N.; Scholz, M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef]
- Ricart, S.; Rico-Amorós, A.M. Constructed Wetlands to Face Water Scarcity and Water Pollution Risks: Learning from Farmers’ Perception in Alicante, Spain. Water 2021, 13, 2431. [Google Scholar] [CrossRef]
- Agaton, C.B. Application of real options in carbon capture and storage literature: Valuation techniques and research hotspots. Sci. Total Environ. 2021, 795, 148683. [Google Scholar] [CrossRef]
- Vogelsang, L.G.; Weikard, H.-P.; van Loon-Steensma, J.M.; Bednar-Friedl, B. Assessing the cost-effectiveness of Nature-based Solutions under climate change uncertainty and learning. Water Resour. Econ. 2023, 43, 100224. [Google Scholar] [CrossRef]
- Agaton, C.B.; Collera, A.A. Now or later? Optimal timing of mangrove rehabilitation under climate change uncertainty. For. Ecol. Manag. 2022, 503, 119739. [Google Scholar] [CrossRef]
- Langit, E.R.A.; Parungao, C.A.S.; Gregorio, E.T.A.; Sabo-o, A.J.M.; Dulay, B.A.Y.; Loren, D.D.; Patria, K.A.M.; Quines, B.A.B.; Dacumos, M.V.F.; Catabay, J.A.C.; et al. Feasibility Study of an Integrated Waste Management Technology System for a Circular Economy in the Philippines. J. Hum. Ecol. Sustain. 2024, 2, 3. [Google Scholar] [CrossRef]
- Devanadera, M.C.E.; Estorba, D.S.; Guerrero, K.M.; Lecciones, A. Social Acceptability Assessment for Nature-based Solution for Wastewater Treatment. In Water Treatment in Urban Environments: A Guide for the Implementation and Scaling of Nature-Based Solutions; Jegatheesan, V., Velasco, P., Pachova, N., Eds.; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Gonzalez-Flo, E.; Romero, X.; García, J. Nature based-solutions for water reuse: 20 years of performance evaluation of a full-scale constructed wetland system. Ecol. Eng. 2023, 188, 106876. [Google Scholar] [CrossRef]
- Piñeiro-Chousa, J.; López-Cabarcos, M.Á.; Romero-Castro, N.; Vázquez-Rodríguez, P. Sustainable tourism entrepreneurship in protected areas. A real options assessment of alternative management options. Entrep. Reg. Dev. 2021, 33, 249–272. [Google Scholar] [CrossRef]
- Song, F.; Zhao, J.; Swinton, S.M. Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility. Am. J. Agric. Econ. 2014, 96, 1239. [Google Scholar] [CrossRef]
- Abadie, L.M. Sea level damage risk with probabilistic weighting of IPCC scenarios: An application to major coastal cities. J. Clean. Prod. 2018, 175, 582–598. [Google Scholar] [CrossRef]
- Gersonius, B.; Ashley, R.; Pathirana, A.; Zevenbergen, C. Climate change uncertainty: Building flexibility into water and flood risk infrastructure. Clim. Change 2012, 116, 411–423. [Google Scholar] [CrossRef]
- Agaton, C.B.; Guno, C.S. Renewable energy in sustainable agricultural production: Real options approach to solar irrigation investment under uncertainty. Renew. Energy Sustain. Dev. 2024, 10, 77–91. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef]
- Merton, R.C. Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141. [Google Scholar] [CrossRef]
- Graham, H.; de Bell, S.; Hanley, N.; Jarvis, S.; White, P.C.L. Willingness to pay for policies to reduce future deaths from climate change: Evidence from a British survey. Public Health 2019, 174, 110–117. [Google Scholar] [CrossRef]
- Veronesi, M.; Chawla, F.; Maurer, M.; Lienert, J. Climate change and the willingness to pay to reduce ecological and health risks from wastewater flooding in urban centers and the environment. Ecol. Econ. 2014, 98, 1–10. [Google Scholar] [CrossRef]
- Fernández-González, R.; Pérez-Pérez, M.I.; Pérez-Vas, R. Real options for a small company in a context of market concentration: A case study of investment in a turbot farming plant in Spain. Mar. Policy 2021, 134, 104828. [Google Scholar] [CrossRef]
- Gilson Dranka, G.; Cunha, J.; Donizetti de Lima, J.; Ferreira, P. Economic evaluation methodologies for renewable energy projects. AIMS Energy 2020, 8, 339–364. [Google Scholar] [CrossRef]
- Batac, K.I.T.; Collera, A.A.; Villanueva, R.O.; Agaton, C.B. Decision support for investments in sustainable energy sources under uncertainties. Int. J. Renew. Energy Dev. 2022, 11, 801–814. [Google Scholar] [CrossRef]
- Harikae, S.; Dyer, J.S.; Wang, T. Valuing Real Options in the Volatile Real World. Prod. Oper. Manag. 2021, 30, 171–189. [Google Scholar] [CrossRef]
- Lipkow, U.; von Münch, E. Constructed wetland for a peri-urban housing area Bayawan City, Philippines—Case study of sustainable sanitation projects. Sustain. Sanit. Alliance 2010, 12. [Google Scholar]
- Ćetković, J.; Knežević, M.; Lakić, S.; Žarković, M.; Vujadinović, R.; Živković, A.; Cvijović, J. Financial and Economic Investment Evaluation of Wastewater Treatment Plant. Water 2022, 14, 122. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Cost–benefit analysis of water-reuse projects for environmental purposes: A case study for Spanish wastewater treatment plants. J. Environ. Manag. 2011, 92, 3091–3097. [Google Scholar] [CrossRef]
- Blaset Kastro, A.N.; Kulakov, N.Y. Risk-adjusted discount rates and the present value of risky nonconventional projects. Eng. Econ. 2020, 66, 71–88. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information (NCEI). U.S. Billion-Dollar Weather and Climate Disasters (2024); NOAA National Centers for Environmental Information: Asheville, NC, USA, 2024. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future Global Climate: Scenario-based Projections and Near-term Information. In Climate Change 2021—The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 553–672. [Google Scholar]
- Bherwani, H.; Nair, M.; Kapley, A.; Kumar, R. Valuation of Ecosystem Services and Environmental Damages: An Imperative Tool for Decision Making and Sustainability. Eur. J. Sustain. Dev. Res. 2020, 4, em0133. [Google Scholar] [CrossRef]
- Asare, P.; Atun, F.; Pfeffer, K. Nature-Based Solutions (NBS) in spatial planning for urban flood mitigation: The perspective of flood management experts in Accra. Land Use Policy 2023, 133, 106865. [Google Scholar] [CrossRef]
- Coppens, T.; Van Acker, M.; Machiels, T.; Compernolle, T. A real options framework for adaptive urban design. J. Urban Des. 2021, 26, 681–698. [Google Scholar] [CrossRef]
Parameter | Description | Unit | Value |
---|---|---|---|
Investment Cost | USD | 180,000 | |
Annual Benefits | USD/yr | 31,600 | |
Annual Operations and Maintenance Cost | USD/yr | 4000 | |
Valuation Period | years | 20 | |
Discount Rate | % | 10 | |
Number of Iterations for the Monte Carlo Simulations | times | 10,000 | |
Percentage Drift of Benefits (WTP) | % | 0.28 | |
Percentage Volatility of Benefits (WTP) | % | 0.20 | |
Percentage Drift of Costs | % | 0.17 | |
Percentage Volatility of Cost | % | 1.08 | |
Decision (waiting) period | years | 10 | |
Risk-free interest rate | % | 10 | |
The opportunity cost of waiting | % | 0–50 | |
Percentage Co-volatility (Covariance) of Benefits and Costs | % | 0.81 | |
Volatility of Real Options for CWs | % | 2.91 |
Value | Decision | |
---|---|---|
NPV (USD) | 88,968 | Invest |
ROV (USD) | 208,865 | Postpone |
NPV (USD) | ROV (USD) | Decision | |
---|---|---|---|
0 | 88,968 | 207,295 | Postpone |
5% | 88,968 | 97,992 | Postpone |
5.559% * | 88,968 | 88,968 | Invest |
10% | 88,968 | 38,399 | Invest |
20% | 88,968 | 1746 | Invest |
30% | 88,968 | 0.14 | Invest |
40% | 88,968 | 0 | Invest |
NPV (USD) | ROV (USD) | Decision | |
---|---|---|---|
0 | 53,164 | 167,108 | postpone |
0.05% | 58,094 | 172,033 | postpone |
0.10% | 62,280 | 176,216 | postpone |
0.20% | 88,968 | 202,853 | postpone |
0.50% | 93,593 | 207,519 | postpone |
1.00% | 110,708 | 224,693 | postpone |
Climate Scenario | NPV (USD) | ROV (USD) | Decision | |
---|---|---|---|---|
No uncertainty | 0 | 93,507 | 207,295 | postpone |
RCP 1.5 | 0.17 | 86,114 | 200,153 | postpone |
RCP 4.5 | 0.52 | 71,882 | 188,077 | postpone |
RCP 8.5 | 0.99 | 52,478 | 173,650 | postpone |
Variable | Elasticity | |
---|---|---|
NPV | ROV | |
Investment Cost | −2.0232 | −0.2403 |
OM Cost | −0.4381 | −0.1803 |
Shadow Prices | 1.1100 | 0.4576 |
Willingness to pay | 2.3513 | 0.9706 |
Decision Period | 0 | 0.2813 |
Volatility of Real Options | 0 | 0.0525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agaton, C.B. Real Options Analysis of Constructed Wetlands as Nature-Based Solutions to Wastewater Treatment Under Multiple Uncertainties: A Case Study in the Philippines. Sustainability 2024, 16, 9797. https://doi.org/10.3390/su16229797
Agaton CB. Real Options Analysis of Constructed Wetlands as Nature-Based Solutions to Wastewater Treatment Under Multiple Uncertainties: A Case Study in the Philippines. Sustainability. 2024; 16(22):9797. https://doi.org/10.3390/su16229797
Chicago/Turabian StyleAgaton, Casper Boongaling. 2024. "Real Options Analysis of Constructed Wetlands as Nature-Based Solutions to Wastewater Treatment Under Multiple Uncertainties: A Case Study in the Philippines" Sustainability 16, no. 22: 9797. https://doi.org/10.3390/su16229797
APA StyleAgaton, C. B. (2024). Real Options Analysis of Constructed Wetlands as Nature-Based Solutions to Wastewater Treatment Under Multiple Uncertainties: A Case Study in the Philippines. Sustainability, 16(22), 9797. https://doi.org/10.3390/su16229797