Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review
Abstract
:1. Introduction
2. Architecture of Smart Electrical Networks Based on Renewable Sources
2.1. Data-Management Layer
2.2. Electrical-Infrastructure Layer
2.3. Automation and Control Layer
2.3.1. Power-System Optimization and Supply–Demand Analytics
2.3.2. Power-System Automation in Electrical Networks
2.4. Consumer-Interaction Layer
2.5. Communication Layer
2.6. Security Layer
3. Advancement of Sustainable Technology in Electrical-Distribution Grids
3.1. Self-Charging Power Unit
3.2. Internet of Things
3.3. Blockchain
3.4. Fault Location, Isolation, and Service Restoration
3.5. Artificial Intelligence and Virtual Power Plants
3.6. Robustness in Electrical-Distribution Networks
4. Integration of Energy Storage and Management Systems into Electrical-Distribution Networks
4.1. Supercapacitors
4.2. Hydrogen-Storage System
4.3. Battery-Supercapacitor Hybrid Storage Systems
4.4. Superconducting Storage
4.5. Microgrid Control Management
5. Carbon-Emission Reduction and Challenges
5.1. Carbon-Emission Reduction
5.2. Challenges
5.2.1. Integration of Intermittent Renewable Energy
5.2.2. Optimization of Smart Grids
5.2.3. Electrification of Non-Electric Sectors
5.2.4. Development of Charging Infrastructure
5.2.5. Adaptation of Policies and Regulations
5.2.6. Resilience to Climate Threats
5.2.7. Community Engagement and Education
6. Discussions and Future Perspectives
6.1. Technological Advancements and Network Architecture
6.2. Sustainable Technological Innovations
6.3. Energy Efficiency and Quality Distribution
6.4. Carbon-Emission-Reduction Challenges and Strategies
6.5. Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muawad, S.A.T.; Wedaa, S.A.M.; Abuelnuor, A.A.A.; Elemam, A.E.; Ali, A.M.; Aldin, A.S.G.; Osman, I.I. Waste-to-Energy Production of Alternative Energy Source Using Landfill Technology. In Proceedings of the International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 21–23 September 2019. [Google Scholar]
- Sa’ed, J.A.; Amer, M.; Bodair, A.; Baransi, A.; Favuzza, S.; Zizzo, G. A Simplified Analytical Approach for Optimal Planning of Distributed Generation in Electrical Distribution Networks. Appl. Sci. 2019, 9, 5446. [Google Scholar] [CrossRef]
- Ali, M.H.; Mehanna, M.; Othman, E. Optimal Planning of RDGs in Electrical Distribution Networks Using Hybrid SAPSO Algorithm. Int. J. Electr. Comput. Eng. 2020, 10, 6153–6163. [Google Scholar] [CrossRef]
- Ali, S.S.; Choi, B.J. State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review. Electronics 2020, 9, 1030. [Google Scholar] [CrossRef]
- Arévalo, P.; Cano, A.; Jurado, F. Determination of the Power Smoothing Effect in a Photovoltaic-Hydrokinetic System by Experimental Analysis and Pattern Search. Energy Sustain. Dev. 2023, 74, 158–172. [Google Scholar] [CrossRef]
- Singh, A.R.; Koteswara Raju, D.; Phani Raghav, L.; Seshu Kumar, R. State-of-the-Art Review on Energy Management and Control of Networked Microgrids. Sustain. Energy Technol. Assess. 2023, 57, 103248. [Google Scholar] [CrossRef]
- Razavi, S.E.; Rahimi, E.; Javadi, M.S.; Nezhad, A.E.; Lotfi, M.; Shafie-khah, M.; Catalão, J.P.S. Impact of Distributed Generation on Protection and Voltage Regulation of Distribution Systems: A Review. Renew. Sustain. Energy Rev. 2019, 105, 157–167. [Google Scholar] [CrossRef]
- Liu, Z.; Sheng, W.; Du, S. Multidimensional Data Model and Analysis Method of Economic Operation in Distribution Network. In Proceedings of the 10th Asia-Pacific Power and Energy Engineering Conference (APPEEC 2018), Kota Kinabalu, Malaysia, 7–10 October 2018. [Google Scholar] [CrossRef]
- Yazdaninejadi, A.; Hamidi, A.; Golshannavaz, S.; Aminifar, F.; Teimourzadeh, S. Impact of Inverter-Based DERs Integration on Protection, Control, Operation, and Planning of Electrical Distribution Grids. Electr. J. 2019, 32, 43–56. [Google Scholar] [CrossRef]
- Ghiani, E.; Serpi, A.; Pilloni, V.; Sias, G.; Simone, M.; Marcialis, G.; Armano, G.; Pegoraro, P.A. A Multidisciplinary Approach for the Development of Smart Distribution Networks. Energies 2018, 11, 2530. [Google Scholar] [CrossRef]
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar Photovoltaics Is Ready to Power a Sustainable Future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Alam, M.Z.; Masrafy, S.E. Net Zero Energy Buildings in Bangladesh: An Investigation of Solar Panel Feasibility and Potential. Eur. J. Electr. Eng. Comput. Sci. 2023, 7, 15–19. [Google Scholar] [CrossRef]
- Moumita, S.; Suprava, C.; Niladri, D.; Pradip, K. Role of Solar Power in Sustainable Development of India. Indon. J. Electr. Eng. 2015, 14, 34–41. [Google Scholar] [CrossRef]
- Senthil, R. Recent Innovations in Solar Energy Education and Research towards Sustainable Energy Development. Acta Innov. 2022, 42, 27–49. [Google Scholar] [CrossRef]
- Mokhtari, G.; Anvari-Moghaddam, A.; Zhang, Q. A New Layered Architecture for Future Big Data-Driven Smart Homes. IEEE Access 2019, 7, 19002–19012. [Google Scholar] [CrossRef]
- Ananthavijayan, R.; Shanmugam, P.K.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F.; Fedak, V. Software Architectures for Smart Grid System—A Bibliographical Survey. Energies 2019, 12, 1183. [Google Scholar] [CrossRef]
- Li, C.; Dai, Z.; Liu, X.; Sun, W. Evaluation System: Evaluation of Smart City Shareable Framework and Its Applications in China. Sustainability 2020, 12, 2957. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, R.; Chen, X.; Xie, J.; Liu, X.; Tian, L.; Wang, M.; Wang, L.; Jiang, R.; Chen, X.; et al. Design and Application of Digital Twin Platform Based Smart Weihe River Basin. In Proceedings of the International Conference on Smart Transportation and City Engineering (STCE 2022), Chongqing, China, 16–18 December 2022. [Google Scholar]
- Bashir, M.R.; Gill, A.Q.; Beydoun, G. A Reference Architecture for IoT-Enabled Smart Buildings. SN Comput. Sci. 2022, 3, 493. [Google Scholar] [CrossRef]
- Botero, M.C.B.; Velasco, O.G.D. Data Management Architecture a Need in Smart Grids Domains. In Proceedings of the 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kajang, Malaysia, 29 May–1 June 2018. [Google Scholar]
- Kim, S.M.; Lee, T.; Kim, S.; Park, L.W.; Park, S. Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management System. In Proceedings of the International Conference on Power Science and Engineering (ICPSE) Web Conferences, Dublin, Ireland, 2–4 December 2019. [Google Scholar]
- Ponnusamy, V.K.; Kasinathan, P.; Elavarasan, R.M.; Ramanathan, V.; Anandan, R.K.; Subramaniam, U.; Ghosh, A.; Hossain, E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability 2021, 13, 13322. [Google Scholar] [CrossRef]
- Lázaro, E.C.; Millán, A.R.; Peral, P.R. Analysis of Cogeneration in the Present Energy Framework. Fuel Process. Technol. 2006, 87, 163–168. [Google Scholar] [CrossRef]
- Herrera, D.B.; Julio; Normey-Rico, E.; Galván, E.; Carrasco, J.M. Sistema de Controle Distribuído Para Uma Rede de Turbinas Eólicas Offshore Conectado Por Um Link HVDC Baseado Em Retificador de Diodo. In Proceedings of the Simpósio Brasileiro de Automação Inteligente—SBAI, Virtual, 20 October 2021. [Google Scholar]
- Stüker, E.; Schuster, C.H.; Schuster, J.J.; Santos, D.C.; Medeiros, L.E.; Costa, F.D.; Demarco, G.; Puhales, F.S. Comparação Entre os Dados de Vento Das Reanálises Meteorológicas ERA-Interim e CFSR Com os Dados das Estações Automáticas Do INMET No Rio Grande Do Sul. Ciência Nat. 2016, 38, 284–290. [Google Scholar] [CrossRef]
- Bellini, D.; de Oliveira, E.C.; Lagioia, U.C.T.; da Silva, A.C.B.; Melo, J.L. Energia eólica: Desenvolvimento de geração de energia sustentável. Rev. Ibero-Am. Ciências Ambient. 2017, 8, 205–223. [Google Scholar] [CrossRef]
- Remesal, A.V.; Millan, A.R.; Lazaro, E.C.; Peral, P.R. Pre-Feasibility Study of Hybrid Wind Power-H2 System Connected to Electrical Grid. IEEE Lat. Am. Trans. 2011, 9, 800–807. [Google Scholar] [CrossRef]
- Manis, P.; Bloodworth, A.G. Climate Change and Extreme Wind Effects on Transmission Towers. Struct. Build. 2017, 170, 81–97. [Google Scholar] [CrossRef]
- Cameron, C.; Patsios, C.; Taylor, P.C.; Pourmirza, Z. Using Self-Organizing Architectures to Mitigate the Impacts of Denial-of-Service Attacks on Voltage Control Schemes. IEEE Trans. Smart Grid 2019, 10, 3010–3019. [Google Scholar] [CrossRef]
- Andrén, F.P.; Strasser, T.I.; Resch, J.; Schuiki, B.; Schöndorfer, S.; Panholzer, G.; Brandauer, C. Towards Automated Engineering and Validation of Cyber-Physical Energy Systems. Energy Inform. 2019, 2, 21. [Google Scholar] [CrossRef]
- Palaniappan, R.; Molodchyk, O.; Shariati-Sarcheshmeh, M.; Asmah, M.W.; Liu, J.; Schlichtherle, T.; Richter, F.; Kwofie, E.A.; Festner, D.R.; Blanco, G.; et al. Experimental Verification of Smart Grid Control Functions on International Grids Using a Real-Time Simulator. IET Gener. Transm. Distrib. 2022, 16, 2747–2760. [Google Scholar] [CrossRef]
- Fazal, S.; Enamul Haque, M.; Taufiqul Arif, M.; Gargoom, A.; Oo, A.M.T. Grid Integration Impacts and Control Strategies for Renewable Based Microgrid. Sustain. Energy Technol. Assess. 2023, 56, 103069. [Google Scholar] [CrossRef]
- Albarakati, A.J.; Boujoudar, Y.; Azeroual, M.; Eliysaouy, L.; Kotb, H.; Aljarbouh, A.; Khalid Alkahtani, H.; Mostafa, S.M.; Tassaddiq, A.; Pupkov, A. Microgrid Energy Management and Monitoring Systems: A Comprehensive Review. Front. Energy Res. 2022, 10, 1097858. [Google Scholar] [CrossRef]
- Arévalo, P.; Benavides, D.; Tostado-Véliz, M.; Aguado, J.A.; Jurado, F. Smart Monitoring Method for Photovoltaic Systems and Failure Control Based on Power Smoothing Techniques. Renew. Energy 2023, 205, 366–383. [Google Scholar] [CrossRef]
- Pǎtru, I.I.; Carabaş, M.; Bǎrbulescu, M.; Gheorghe, L. Smart Home IoT System. In Proceedings of the Networking in Education and Research: RoEduNet International Conference Edition (RoEduNet), Bucharest, Romania, 7–9 September 2016. [Google Scholar]
- Ríos-Ramírez, L.C.; Pérez-Domínguez, L.; Pérez-Olguin, I.J.C. Tendencias Actuales de La Industria 4.0. Reflex. Contab. UFPS 2019, 2, 8–22. [Google Scholar] [CrossRef]
- Murillo, F.M.; Díaz, D.J. Arquitectura Inteligente CPPS Integrada En El Uso de La Norma IEC-61499, Con Bloque de Funciones Altamente Adaptables En La Industria 4.0. In Proceedings of the KnE Engineering, Panama City, Panama, 11–13 October 2017. [Google Scholar]
- García, M.V.; Irisarri, E.; Pérez, F. Integración Vertical En Plantas Industriales Utilizando OPC UA e IEC-61499. Enfoque UTE 2017, 8, 287–299. [Google Scholar] [CrossRef]
- Callacando, M.; Pavón, W.; Ortíz, L. Multilevel Inverter D-STATCOM for Reducing Total Harmonic Distortion in a Non-Linear Loads Electrical Distribution System. Rev. Técnica Energía 2022, 19, 85–91. [Google Scholar] [CrossRef]
- Mikati, M.; Santos, M.; Armenta, C. Modelado y Simulación de Un Sistema Conjunto de Energía Solar y Eólica Para Analizar Su Dependencia de La Red Eléctrica. Rev. Iberoam. Automática Informática Ind. RIAI 2012, 9, 267–281. [Google Scholar] [CrossRef]
- Cano, A.; Arévalo, P.; Benavides, D.; Jurado, F. Comparative Analysis of HESS (Battery/Supercapacitor) for Power Smoothing of PV/HKT, Simulation and Experimental Analysis. J. Power Sources 2022, 549, 232137. [Google Scholar] [CrossRef]
- Na, J.; Zheng, D.; Kim, J.; Gao, M.; Azhar, A.; Lin, J.; Yamauchi, Y.; Na, J.; Yamauchi, Y.; Zheng, D.; et al. Material Nanoarchitectonics of Functional Polymers and Inorganic Nanomaterials for Smart Supercapacitors. Small 2022, 18, 2102397. [Google Scholar] [CrossRef]
- Benavides, D.; Arévalo, P.; Aguado, J.A.; Jurado, F. Experimental Validation of a Novel Power Smoothing Method for On-Grid Photovoltaic Systems Using Supercapacitors. Int. J. Electr. Power Energy Syst. 2023, 149, 109050. [Google Scholar] [CrossRef]
- Jihen, E.K.; Lotfi, B.; Mohamed Najeh, L. Part of Modelling and Optimal Management of Smart Grids. Int. J. Artif. Intell. Emerg. Technol. 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef]
- Kelly, J.; Knottenbelt, W. The UK-DALE Dataset, Domestic Appliance-Level Electricity Demand and Whole-House Demand from Five UK Homes. Sci. Data 2015, 2, 150007. [Google Scholar] [CrossRef]
- México, M.; Elizabeth, B.; Pisco, C.; Superior, I.; Ciudad, T.; Quevedo -Ecuador, V.; Cesar, P.; Ocapana, C.; Andres, C.; Andino, M.; et al. Diseño de Un Medidor Para La Gestión de Energía Eléctrica Generada Por Un Sistema Fotovoltaico off Grid. Cienc. Lat. Rev. Cient. Multidisc. 2023, 7, 2789–2801. [Google Scholar] [CrossRef]
- Alahakoon, D.; Yu, X. Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey. IEEE Trans. Industr. Inform. 2016, 12, 425–436. [Google Scholar] [CrossRef]
- Mashal, I.; Khashan, O.A.; Hijjawi, M.; Alshinwan, M. The Determinants of Reliable Smart Grid from Experts’ Perspective. Energy Inform. 2023, 6, 10. [Google Scholar] [CrossRef]
- Van Mierlo, B. Users Empowered in Smart Grid Development? Assumptions and Up-To-Date Knowledge. Appl. Sci. 2019, 9, 815. [Google Scholar] [CrossRef]
- Hussain, H.M.; Javaid, N.; Iqbal, S.; Ul Hasan, Q.; Aurangzeb, K.; Alhussein, M. An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid. Energies 2018, 11, 190. [Google Scholar] [CrossRef]
- Abdelsalam, H.A.; Eldosouky, A.; ElGebaly, A.E.; Khalaf, M.; Zaki Diab, A.A.; Rangarajan, S.S.; Alghamdi, S.; Albalawi, H. A Cyber-Layer Based on Weighted Average Consensus in Blockchain Environment for Accurate Sharing of Power Systems’ Dynamic States. Int. J. Electr. Power Energy Syst. 2024, 155, 109558. [Google Scholar] [CrossRef]
- Fernández, R.W.; Rodríguez, R.A.; Fernández, R.W.; Rodríguez, R.A. OFDM Óptimo Para La Comunicación Bidireccional En Las Redes Eléctricas Inteligentes. Ingeniare 2018, 26, 43–53. [Google Scholar] [CrossRef]
- Sakhnini, J.; Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Srivastava, G. Security Aspects of Internet of Things Aided Smart Grids: A Bibliometric Survey. Internet Things 2021, 14, 100111. [Google Scholar] [CrossRef]
- Khan, S.; Kifayat, K.; Kashif Bashir, A.; Gurtov, A.; Hassan, M. Intelligent Intrusion Detection System in Smart Grid Using Computational Intelligence and Machine Learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e4062. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, Y.J.A. Graph-Based Cyber Security Analysis of State Estimation in Smart Power Grid. IEEE Commun. Mag. 2017, 55, 176–183. [Google Scholar] [CrossRef]
- Wang, Z.L. Entropy Theory of Distributed Energy for Internet of Things. Nano Energy 2019, 58, 669–672. [Google Scholar] [CrossRef]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Singh, K.; Singh, A. Building Blocks of Peer-to-Peer Energy Trading in a Smart Grid. Energy Proc. 2022, 28, 1–6. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Abujubbeh, M. IoT-Enabled Smart Grid via SM: An Overview. Future Gener. Comput. Syst. 2019, 96, 579–590. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain Technology in the Energy Sector: A Systematic Review of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Khatoon, A.; Verma, P.; Southernwood, J.; Massey, B.; Corcoran, P. Blockchain in Energy Efficiency: Potential Applications and Benefits. Energies 2019, 12, 3317. [Google Scholar] [CrossRef]
- Musleh, A.S.; Yao, G.; Muyeen, S.M. Blockchain Applications in Smart Grid-Review and Frameworks. IEEE Access 2019, 7, 86746–86757. [Google Scholar] [CrossRef]
- Tahir, M.; Ismat, N.; Rizvi, H.H.; Zaffar, A.; Nabeel Mustafa, S.M.; Khan, A.A. Implementation of a Smart Energy Meter Using Blockchain and Internet of Things: A Step toward Energy Conservation. Front. Energy Res. 2022, 10, 1029113. [Google Scholar] [CrossRef]
- Malik, H.; Manzoor, A.; Ylianttila, M.; Liyanage, M. Performance Analysis of Blockchain Based Smart Grids with Ethereum and Hyperledger Implementations. In Proceedings of the International Symposium on Advanced Networks and Telecommunication Systems (ANTS), Goa, India, 16–19 December 2019. [Google Scholar]
- Le, D.P.; Bui, D.M.; Ngo, C.C.; Le, A.M.T. FLISR Approach for Smart Distribution Networks Using E-Terra Software—A Case Study. Energies 2018, 11, 3333. [Google Scholar] [CrossRef]
- Poudel, S.; Sharma, P.; Dubey, A.; Schneider, K.P. Advanced FLISR with Intentional Islanding Operations in an ADMS Environment Using GridAPPS-D. IEEE Access 2020, 8, 113766–113778. [Google Scholar] [CrossRef]
- Leniston, D.; Ryan, D.; Power, C.; Hayes, P.; Davy, S. Implementation of a Software Defined FLISR Solution on an Active Distribution Grid. Open Res. Eur. 2022, 1, 142. [Google Scholar] [CrossRef]
- Ahmad, W.; Hasan, O.; Tahar, S. Formal Reliability and Failure Analysis of Ethernet Based Communication Networks in a Smart Grid Substation. Formal. Asp. Comput. 2020, 32, 71–111. [Google Scholar] [CrossRef]
- Al-Badi, A.H.; Ahshan, R.; Hosseinzadeh, N.; Ghorbani, R.; Hossain, E. Survey of Smart Grid Concepts and Technological Demonstrations Worldwide Emphasizing on the Oman Perspective. Appl. Syst. Innov. 2020, 3, 5. [Google Scholar] [CrossRef]
- Kucȩba, R. Dimensions and Factors That Determine Integration of Small-Scale Sources in the Structures of Virtual Power Plants. Prod. Eng. Arch. 2022, 28, 185–192. [Google Scholar] [CrossRef]
- Pan, L.; Han, Z.; Shanshan, Z.; Feng, W. An Optimal Allocation Method for Power Distribution Network Partitions Based on Improved Spectral Clustering Algorithm. Eng. Appl. Artif. Intell. 2023, 123, 106497. [Google Scholar] [CrossRef]
- Wang, S.; Dong, Q.; Zhang, J.; Sun, J.; Gu, X.; Chen, C. Robustness Assessment of Power Network with Renewable Energy. Electr. Power Syst. Res. 2023, 217, 109138. [Google Scholar] [CrossRef]
- Mahdavi, M.; Schmitt, K.E.K.; Jurado, F. Robust Distribution Network Reconfiguration in the Presence of Distributed Generation under Uncertainty in Demand and Load Variations. IEEE Trans. Power Deliv. 2023, 38, 3480–3495. [Google Scholar] [CrossRef]
- Wang, S.; Dong, Q. A Multi-Source Power Grid’s Resilience Enhancement Strategy Based on Subnet Division and Power Dispatch. Int. J. Crit. Infrastruct. Prot. 2023, 41, 100602. [Google Scholar] [CrossRef]
- Maya Rodríguez, G.; Morillo-Torres, D.; Willmer Escobar, J. A New Method for the Measurement of Robustness in Reverse Logistics Supply Chains Based on Entropy and Nodal Importance. Comput. Ind. Eng. 2023, 183, 109533. [Google Scholar] [CrossRef]
- Said, S.M.; Abdel-Salam, M.; Nayel, M.; Hashem, M.; Kamel, S.; Jurado, F.; Ebeed, M. Optimal Design and Cost of Superconducting Magnetic Energy Storage for Voltage Sag Mitigation in a Real Distribution Network. J. Energy Storage 2023, 73, 108864. [Google Scholar] [CrossRef]
- Yang, Y.; Han, Y.; Jiang, W.; Zhang, Y.; Xu, Y.; Ahmed, A.M. Application of the Supercapacitor for Energy Storage in China: Role and Strategy. Appl. Sci. 2022, 12, 354. [Google Scholar] [CrossRef]
- Alpízar-Castillo, J.; Ramirez-Elizondo, L.; Bauer, P. Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review. Energies 2023, 16, 379. [Google Scholar] [CrossRef]
- Ding, H.; Huang, Q. Risk Constraint Techno-Economic Assessment of Photovoltaic-Penetrated Distribution Network Considering Hydrogen Vehicles in a Multi-Market Environment. Sustain. Cities Soc. 2023, 95, 104577. [Google Scholar] [CrossRef]
- Mirshafiee, F.; Shahbazi, E.; Safi, M.; Rituraj, R. Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study. Energies 2023, 16, 502. [Google Scholar] [CrossRef]
- Ghirardi, E.; Brumana, G.; Franchini, G.; Perdichizzi, A. H2 Contribution to Power Grid Stability in High Renewable Penetration Scenarios. Int. J. Hydrogen Energy 2023, 48, 11956–11969. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, H.; Wang, X.; Lotfi, H. Optimal Management of Microgrid, Considering Various Renewable and Storage Units of Electrical-Thermal Generations and Demand Response Program. J. Clean. Prod. 2023, 408, 137133. [Google Scholar] [CrossRef]
- Karami, M.; Zadehbagheri, M.; Kiani, M.J.; Nejatian, S. Retailer Energy Management of Electric Energy by Combining Demand Response and Hydrogen Storage Systems, Renewable Sources and Electric Vehicles. Int. J. Hydrogen Energy 2023, 48, 18775–18794. [Google Scholar] [CrossRef]
- Jiménez, A.; Meza Benavides, C.; Garner, R.; Dehouche, Z. Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community. Energies 2023, 16, 7363. [Google Scholar] [CrossRef]
- Ali, S.; Khalil, G.; Bidram, A.A.; Seyyed, C.; Ghorashi, A.; Abadi, K. Effective Utilization of Grid-Forming Cloud Hybrid Energy Storage Systems in Islanded Clustered Dc Nano-Grids for Improving Transient Voltage Quality and Battery Lifetime. IET Gener. Transm. Distrib. 2023, 17, 1836–1856. [Google Scholar] [CrossRef]
- Díaz-González, F.; Chillón-Antón, C.; Llonch-Masachs, M.; Galceran-Arellano, S.; Rull-Duran, J.; Bergas-Jané, J.; Bullich-Massagué, E. A Hybrid Energy Storage Solution Based on Supercapacitors and Batteries for the Grid Integration of Utility Scale Photovoltaic Plants. J. Energy Storage 2022, 51, 104446. [Google Scholar] [CrossRef]
- Mishra, R.; Ralhan, S.; Mohiddin, M.K. A Review on Frequency Stability Enhancement and Effective Energy Storage through Various Optimization Techniques. Mob. Inf. Syst. 2022, 2022, 4170938. [Google Scholar] [CrossRef]
- Budiman, F.N.; Ramli, M.A.M.; Milyani, A.H.; Bouchekara, H.R.E.H.; Rawa, M.; Muktiadji, R.F.; Seedahmed, M.M.A. Stochastic Optimization for the Scheduling of a Grid-Connected Microgrid with a Hybrid Energy Storage System Considering Multiple Uncertainties. Energy Rep. 2022, 8, 7444–7456. [Google Scholar] [CrossRef]
- Schubert, C.; Hassen, W.F.; Poisl, B.; Seitz, S.; Schubert, J.; Usabiaga, E.O.; Gaudo, P.M.; Pettinger, K.H. Hybrid Energy Storage Systems Based on Redox-Flow Batteries: Recent Developments, Challenges, and Future Perspectives. Batteries 2023, 9, 211. [Google Scholar] [CrossRef]
- Gaio, E.; Ferro, A.; Lampasi, A.; Maistrello, A.; Dan, M.; Falvo, M.C.; Gasparini, F.; Lunardon, F.; Magnanimo, A.; Manganelli, M.; et al. Status and Challenges for the Concept Design Development of the EU DEMO Plant Electrical System. Fusion. Eng. Des. 2022, 177, 113052. [Google Scholar] [CrossRef]
- Kraemer, H.; Bauer, A.; Frank, M.; Van Hasselt, P.; Kummeth, P.; Wohlfart, M.; Schacherer, C.; Arndt, T.; Janetschek, T. ASSiST-A Superconducting Fault Current Limiter in a Public Electric Power Grid. IEEE Trans. Power Deliv. 2022, 37, 612–618. [Google Scholar] [CrossRef]
- Moyzykh, M.; Gorbunova, D.; Ustyuzhanin, P.; Sotnikov, D.; Baburin, K.; Maklakov, A.; Magommedov, E.; Shumkov, A.; Telnova, A.; Shcherbakov, V.; et al. First Russian 220 KV Superconducting Fault Current Limiter (SFCL) for Application in City Grid. IEEE Trans. Appl. Supercond. 2021, 31, 3066324. [Google Scholar] [CrossRef]
- Salama, H.S.; Said, S.M.; Aly, M.; Vokony, I.; Hartmann, B. Studying Impacts of Electric Vehicle Functionalities in Wind Energy-Powered Utility Grids with Energy Storage Device. IEEE Access 2021, 9, 45754–45769. [Google Scholar] [CrossRef]
- Souza, M.E.T.; Freitas, L.C.G. Grid-Connected and Seamless Transition Modes for Microgrids: An Overview of Control Methods, Operation Elements, and General Requirements. IEEE Access 2022, 10, 97802–97834. [Google Scholar] [CrossRef]
- Shafiullah, M.; Refat, A.M.; Haque, M.E.; Chowdhury, D.M.H.; Hossain, M.S.; Alharbi, A.G.; Alam, M.S.; Ali, A.; Hossain, S. Review of Recent Developments in Microgrid Energy Management Strategies. Sustainability 2022, 14, 14794. [Google Scholar] [CrossRef]
- Nawaz, A.; Zhou, M.; Wu, J.; Long, C. A Comprehensive Review on Energy Management, Demand Response, and Coordination Schemes Utilization in Multi-Microgrids Network. Appl. Energy 2022, 323, 119596. [Google Scholar] [CrossRef]
- Kumari, N.; Sharma, A.; Tran, B.; Chilamkurti, N.; Alahakoon, D. A Comprehensive Review of Digital Twin Technology for Grid-Connected Microgrid Systems: State of the Art, Potential and Challenges Faced. Energies 2023, 16, 5525. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Ismail, A.A.; AlShabi, M.; Bansal, R.C.; Elnady, A.; Hamid, A.K. Control and Estimation Techniques Applied to Smart Microgrids: A Review. Renew. Sustain. Energy Rev. 2023, 179, 113251. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Baleanu, D. Recent Developments of Energy Management Strategies in Microgrids: An Updated and Comprehensive Review and Classification. Energy Convers. Manag. 2023, 297, 117723. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M.; Jantzen, J.; Kristensen, M.; Ben Othman, S. Energy Scheduling of a Smart Microgrid with Shared Photovoltaic Panels and Storage: The Case of the Ballen Marina in Samsø. Energy 2020, 198, 117188. [Google Scholar] [CrossRef]
- Ministerio Para la Transición Ecológica y el Reto Demográfico—Agencia Internacional de la Energía (AIE). Available online: https://energia.gob.es/REI/relaciones-energeticas-internacionales/organismos-internacionales/Paginas/agencia-internacional-energia.aspx (accessed on 11 December 2023).
- UNEP—UN Environment Programme. Available online: https://www.unep.org/es (accessed on 11 December 2023).
- Agencia Internacional de Energías Renovables (IRENA)|OIEA. Available online: https://www.iaea.org/es/el-oiea/agencia-internacional-de-energias-renovables-irena (accessed on 11 December 2023).
- Estadísticas y Datos de Mercado Sobre el Comercio Electrónico (e-Commerce). Available online: http://bit.ly/48cE0sd (accessed on 11 December 2023).
- Mansouri, N.; Lashab, A.; Guerrero, J.M.; Cherif, A. Photovoltaic Power Plants in Electrical Distribution Networks: A Review on Their Impact and Solutions. IET Renew. Power Gener. 2020, 14, 2114–2125. [Google Scholar] [CrossRef]
- Homepage|Hydrogen Council. Available online: https://hydrogencouncil.com/en/ (accessed on 11 December 2023).
- IEA—International Energy Agency. Available online: https://www.iea.org/ (accessed on 11 December 2023).
- REN21—Building the Sustainable Energy Future with Renewable Energy. Available online: https://www.ren21.net/ (accessed on 11 December 2023).
- Global Infrastructure Hub—A G20 INITIATIVE. Available online: https://www.gihub.org/ (accessed on 11 December 2023).
- Erol-Kantarci, M.; Mouftah, H.T. Wireless Multimedia Sensor and Actor Networks for the next Generation Power Grid. Ad Hoc Netw. 2011, 9, 542–551. [Google Scholar] [CrossRef]
- Traupmann, A.; Kienberger, T. Test Grids for the Integration of RES—A Contribution for the European Context. Energies 2020, 13, 5431. [Google Scholar] [CrossRef]
- Sohail, I.; Hussain, B.; Abubakar, M.; Sajjad, I.A.; Nadeem, M.F.; Sarwar, M. SC Currents Minimization in Distributed Generation Embedded Distribution Networks with Optimal Application of FCLs. CSEE J. Power Energy Syst. 2022, 8, 1388–1397. [Google Scholar] [CrossRef]
- Dorji, S.; Stonier, A.A.; Peter, G.; Kuppusamy, R.; Teekaraman, Y. An Extensive Critique on Smart Grid Technologies: Recent Advancements, Key Challenges, and Future Directions. Technologies 2023, 11, 81. [Google Scholar] [CrossRef]
- Habib, S.; Alyahya, S.; Islam, M.; Alnajim, A.M.; Alabdulatif, A.; Alabdulatif, A. Design and Implementation: An IoT-Framework-Based Automated Wastewater Irrigation System. Electronics 2022, 12, 28. [Google Scholar] [CrossRef]
- Sakai, R.T.; Almeida, C.F.M.; Rosa, L.H.L.; Kagan, N.; Pereira, D.d.S.; Medeiros, T.S.; Kagan, H.; da Cruz, M.R.; Júnior, J.A.A.; Gemignani, M.M.F.; et al. Architecture Deployment for Application of Advanced Distribution Automation Functionalities in Smart Grids. J. Control Autom. Electr. Syst. 2022, 33, 219–228. [Google Scholar] [CrossRef]
- Biard, G.; Nour, G.A. Industry 4.0 Contribution to Asset Management in the Electrical Industry. Sustainability 2021, 13, 10369. [Google Scholar] [CrossRef]
- Schuelke-Leech, B.A.; Barry, B.; Muratori, M.; Yurkovich, B.J. Big Data Issues and Opportunities for Electric Utilities. Renew. Sustain. Energy Rev. 2015, 52, 937–947. [Google Scholar] [CrossRef]
- Kyriakou, D.G.; Kanellos, F.D. Sustainable Operation of Active Distribution Networks. Appl. Sci. 2023, 13, 3115. [Google Scholar] [CrossRef]
- Xu, S.; Tian, X.; Wang, C.; Qin, Y.; Lin, X.; Zhu, J.; Sun, X.; Huang, T. A Novel Coordinated Control Strategy for Parallel Hybrid Electric Vehicles during Clutch Slipping Process. Appl. Sci. 2022, 12, 8317. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Z.; Li, W.; Wang, Y.; Li, Y.; Sauer, D.U. Battery Thermal-and Health-Constrained Energy Management for Hybrid Electric Bus Based on Soft Actor-Critic DRL Algorithm. IEEE Trans. Ind. Inform. 2021, 17, 3751–3761. [Google Scholar] [CrossRef]
- Rastgou, A. Distribution Network Expansion Planning: An Updated Review of Current Methods and New Challenges. Renew. Sustain. Energy Rev. 2024, 189, 114062. [Google Scholar] [CrossRef]
- Goren, G.; Dindar, B.; Gul, O. Artificial Neural Network Based Cost Estimation of Power Losses in Electricity Distribution System. In Proceedings of the 2022 IEEE 4th Global Power, Energy and Communication Conference, GPECOM 2022, Nevsehir, Turkey, 14–17 June 2022; pp. 455–460. [Google Scholar] [CrossRef]
- Chegudi, R.R.; Ramadoss, B.; Alla, R.R. Simultaneous Allocation of Renewable Energy Sources and Custom Power Quality Devices in Electrical Distribution Networks Using Artificial Rabbits Optimization. Clean. Energy 2023, 7, 795–807. [Google Scholar] [CrossRef]
- Ahmed, A.-S.; Matas, J.; Monteiro, V.; Afonso, J.L. The Future of Electrical Power Grids: A Direction Rooted in Power Electronics. Energies 2023, 16, 4929. [Google Scholar] [CrossRef]
- Delavechia, R.P.; Ferraz, B.P.; Weiand, R.S.; Silveira, L.; Ramos, M.J.S.; dos Santos, L.L.C.; Bernardon, D.P.; Garcia, R.A.F. Electricity Supply Regulations in South America: A Review of Regulatory Aspects. Energies 2023, 16, 915. [Google Scholar] [CrossRef]
- Lei, T.; Min, Z.; Gao, Q.; Song, L.; Zhang, X.; Zhang, X. The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends. Energies 2022, 15, 4109. [Google Scholar] [CrossRef]
- Chamandoust, H. Optimal Hybrid Participation of Customers in a Smart Micro-Grid Based on Day-Ahead Electrical Market. Artif. Intell. Rev. 2022, 55, 5891–5915. [Google Scholar] [CrossRef]
- Clift, D.H.; Hasan, K.N.; Rosengarten, G. Peer-to-Peer Energy Trading for Demand Response of Residential Smart Electric Storage Water Heaters. Appl. Energy 2024, 353, 122182. [Google Scholar] [CrossRef]
- Keskin, I.; Soykan, G. Distribution Grid Electrical Performance and Emission Analysis of Combined Cooling, Heating and Power (CCHP)-Photovoltaic (PV)-Based Data Center and Residential Customers. J. Clean. Prod. 2023, 414, 137448. [Google Scholar] [CrossRef]
- Alzahrani, A.; Petri, I.; Rezgui, Y.; Ghoroghi, A. Developing Smart Energy Communities around Fishery Ports: Toward Zero-Carbon Fishery Ports. Energies 2020, 13, 2779. [Google Scholar] [CrossRef]
- Mololoth, V.K.; Saguna, S.; Åhlund, C. Blockchain and Machine Learning for Future Smart Grids: A Review. Energies 2023, 16, 528. [Google Scholar] [CrossRef]
- Rai, R.; Dhal, K.G.; Das, A.; Ray, S. An Inclusive Survey on Marine Predators Algorithm: Variants and Applications. Arch. Comput. Methods Eng. 2023, 30, 3133–3172. [Google Scholar] [CrossRef]
Aspect | Alta Wind Energy Center, USA | Sheringham Shoal, UK |
---|---|---|
Location capacity type | California, USA 1548 MW onshore | North Sea, off Norfolk, UK 317 MW offshore |
Number of turbines Operator | Over 600 turbines (multiple phases) NRG Energy | 88 turbines equinor (formerly Statoil) |
Inauguration Grid Connection | Phases between 2010 and 2015 | 2012 |
Connects to California’s grid | Connects to the UK’s national grid | |
Environmental-impact studies | Conducted | Conducted |
Technology | Land-based turbines | Offshore wind turbines |
Significance | One of the largest onshore wind farms | Significant contribution to UK’s offshore wind capacity |
Economic viability Studies | No specific information available | No specific information available |
Infrastructure | Transmission infrastructure for grid connection | Submarine connections and transformation stations |
Technology | Description | Benefits |
---|---|---|
Advanced Metering Infrastructure (AMI) | Utilizes smart meters for real-time-consumption monitoring | - Remote reading - Early detection of problems - Implementation of dynamic tariffs |
Supervisory Control and Data Acquisition (SCADA) | Monitor and control equipment in real time | - Improves visibility and control - Facilitates real-time decision making |
Substation Automation | Uses automated systems and devices | - Improved network reliability - Reduced response time to failures - More efficient operations |
Smart Grids | Integrates technology to optimize network | - Improved energy efficiency - Integration of renewable sources - Improved demand response |
Energy-Storage Systems with Automatic Control | Uses batteries to store and release power | - Improved grid stability - Efficient management of intermittent renewable energy |
Predictive Analytics and Maintenance | Uses algorithms to anticipate failures and proactive maintenance | - Reduced downtime - Prolongation of equipment service life |
Advanced Protection Systems | Use advanced protection devices | - Improved safety and reliability - Fast and accurate fault detection and isolation |
IoT Integration | Connects devices and sensors on the network | - Advanced monitoring and control - Decision making based on real-time information |
Technology | Description | Benefits |
---|---|---|
Itron | Leading in technology and services for energy management. | Advanced meters, communication, and data management. |
Landis + Gyr | Global provider of solutions for intelligent energy management. | Advanced meters, communication systems, and analytics. |
Schneider Electric | Offers comprehensive solutions for energy efficiency. | Smart meters, energy-management systems. |
Siemens | Global-technology-solutions provider. | Smart meters, energy-management platforms. |
Kamstrup | Specialized in intelligent metering solutions. | Smart meters for electricity, water, and heating. |
Elster (Honeywell) | Provides advanced metering solutions. | Smart meters and communication systems. |
Sensus (Xylem) | Offers advanced metering solutions. | Smart meters and communication systems. |
Holley Technology | Specializes in smart metering solutions. | Smart meters and energy-management systems. |
Kromschroeder (IDEX) | Provides intelligent metering solutions. | Smart meters, including gas meters. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallegos, J.; Arévalo, P.; Montaleza, C.; Jurado, F. Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review. Sustainability 2024, 16, 698. https://doi.org/10.3390/su16020698
Gallegos J, Arévalo P, Montaleza C, Jurado F. Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review. Sustainability. 2024; 16(2):698. https://doi.org/10.3390/su16020698
Chicago/Turabian StyleGallegos, Jimmy, Paul Arévalo, Christian Montaleza, and Francisco Jurado. 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review" Sustainability 16, no. 2: 698. https://doi.org/10.3390/su16020698