Artificial Intelligence and Technological Innovation: Evidence from China’s Strategic Emerging Industries
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Concept of Artificial Intelligence
2.2. The Impact of Artificial Intelligence Level on Businesses’ Technological Innovation
2.3. Mediating Effects of Financing Constraints and R&D Investment
3. Data and Econometric Methods
3.1. Measurement Model
3.2. Data Sources
3.3. Variable Definition
- Dependent variable: technological innovation
- Explanatory variable: level of artificial intelligence
- Mediating variable
- Control variables
4. Empirical Study
4.1. Descriptive Analysis and Basic Tests
4.2. Benchmark Regression Analysis
4.3. Robustness Tests
4.4. Endogeneity
5. Mechanism Identification
5.1. Mechanisms of Financing Constraints
5.2. Mechanisms for the Role of R&D Inputs
6. Heterogeneity Analysis
6.1. Heterogeneity Analysis Based on Industry
6.2. Heterogeneity Analysis Based on Regions
6.3. Heterogeneity Analysis Based on Ownership
7. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Artificial Intelligence | AI Products | AI Chip | Machine Translation | Machine Learning |
---|---|---|---|---|
Computer Vision | Human-computer Interaction | Deep Learning | Neural Network | Biometric Identification |
Image Recognition | Data Mining | Feature Recognition | Speech Synthesis | Speech Recognition |
Knowledge Graph | Smart Banking | Intelligent Insurance | Human Machine Collaboration | Intelligent Supervision |
Intelligent Education | Intelligent Customer Service | Intelligent Retail | Intelligent Agriculture | Intelligent Investment Advisory |
Augmented Reality | Virtual Reality | Intelligent Healthcare | Smart Speaker | Intelligent Voice |
Smart Government | Unmanned Driving | Intelligent Transportation | Convolutional Neural Network | Voiceprint Recognition |
Feature Extraction | Autonomous Driving | Smart Home | Q&A System | Facial Recognition |
Business Intelligence | Smart Finance | Recurrent Neural Network | Reinforcement Learning | Intelligent Agent |
Intelligent Elderly Care | Big Data Marketing | Big Data Risk Control | Big Data Analysis | Big Data Processing |
Support Vector Machine (SVM) | Long Short-Term Memory (LSTM) | Robot Process Automation | Natural Language Processing | Distributed Computing |
Knowledge Representation | Intelligent Chip | Wearable Products | Big Data Management | Intelligent Sensor |
Pattern Recognition | Edge Computing | Big Data Platform | Intelligent Computing | Intelligent Search |
Internet of Things | Cloud Computing | Enhance Intelligence | Voice Interaction | Intelligent Environmental Protection |
Human Computer Dialogue | Deep Neural Network | Big Data Operation |
References
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Dauth, W.; Findeisen, S.; Suedekum, J.; Woessner, N. The adjustment of labor markets to robots. J. Eur. Econ. Assoc. 2021, 19, 3104–3153. [Google Scholar] [CrossRef]
- Hémous, D.; Olsen, M. The rise of the machines: Automation, horizontal innovation, and income inequality. Am. Econ. J. Macroecon. 2022, 14, 179–223. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Cicerone, G.; Faggian, A.; Montresor, S.; Rentocchini, F. Regional artificial intelligence and the geography of environmental technologies: Does local AI knowledge help regional green-tech specialization? Reg. Stud. 2023, 57, 330–343. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.-L.; Yang, Z. Can artificial intelligence improve green economic growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar] [CrossRef]
- Olan, F.; Suklan, J.; Arakpogun, E.O.; Robson, A. Advancing consumer behavior: The role of artificial intelligence technologies and knowledge sharing. IEEE Trans. Eng. Manag. 2021, 71, 13227–13239. [Google Scholar] [CrossRef]
- Cheng, H.; Jia, R.; Li, D.; Li, H. The rise of robots in China. J. Econ. Perspect. 2019, 33, 71–88. [Google Scholar] [CrossRef]
- Ying, Y.; Cui, X.; Jin, S. Artificial intelligence and green total factor productivity: The moderating effect of slack resources. Systems 2023, 11, 356. [Google Scholar] [CrossRef]
- Gao, X.; Feng, H. AI-driven productivity gains: Artificial intelligence and firm productivity. Sustainability 2023, 15, 8934. [Google Scholar] [CrossRef]
- Zhai, S.; Liu, Z. Artificial intelligence technology innovation and firm productivity: Evidence from China. Financ. Res. Lett. 2023, 58, 104437. [Google Scholar] [CrossRef]
- Feng, C.; Ye, X.; Li, J.; Yang, J. How does artificial intelligence affect the transformation of China’s green economic growth? An analysis from internal-structure perspective. J. Environ. Manag. 2024, 351, 119923. [Google Scholar] [CrossRef]
- Yang, S.; Liu, F. Impact of industrial intelligence on green total factor productivity: The indispensability of the environmental system. Ecol. Econ. 2024, 216, 108021. [Google Scholar] [CrossRef]
- Huang, R.; Shen, Z.; Yao, X. How does industrial intelligence affect total-factor energy productivity? Evidence from China’s manufacturing industry. Comput. Ind. Eng. 2024, 188, 109901. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.-L.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technol. Forecast. Soc. Chang. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Han, F.; Mao, X. Artificial intelligence empowers enterprise innovation: Evidence from China’s industrial enterprises. Appl. Econ. 2023, 1–16. [Google Scholar] [CrossRef]
- Ma, H.; Gao, Q.; Li, X.; Zhang, Y. AI development and employment skill structure: A case study of China. Econ. Anal. Policy 2022, 73, 242–254. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: London, UK, 2016. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Goralski, M.A.; Tan, T.K. Artificial intelligence and sustainable development. Int. J. Manag. Educ. 2020, 18, 100330. [Google Scholar] [CrossRef]
- Coccia, M. Artificial intelligence technology in cancer imaging: Clinical challenges for detection of lung and breast cancer. J. Soc. Adm. Sci. 2019, 6, 82–98. [Google Scholar]
- Ivanov, D.; Tang, C.S.; Dolgui, A.; Battini, D.; Das, A. Researchers’ perspectives on Industry 4.0: Multi-disciplinary analysis and opportunities for operations management. Int. J. Prod. Res. 2021, 59, 2055–2078. [Google Scholar] [CrossRef]
- Lee, J.; Davari, H.; Singh, J.; Pandhare, V. Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manuf. Lett. 2018, 18, 20–23. [Google Scholar] [CrossRef]
- Agrawal, A.; Gans, J.; Goldfarb, A. Prediction, judgment, and complexity: A theory of decision-making and artificial intelligence. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 89–110. [Google Scholar]
- Sharma, A.; Podoplelova, E.; Shapovalov, G.; Tselykh, A.; Tselykh, A. Sustainable smart cities: Convergence of artificial intelligence and blockchain. Sustainability 2021, 13, 13076. [Google Scholar] [CrossRef]
- Hu, X.; Tang, T.; Tan, L.; Zhang, H. Fault Detection for Point Machines: A Review, Challenges, and Perspectives. Actuators 2023, 12, 391. [Google Scholar] [CrossRef]
- Tekic, Z.; Cosic, I.; Katalinic, B. Manufacturing and the Rise of Artificial Intelligence: Innovation Challenges. Ann. DAAAM Proc. 2019, 30, 192–196. [Google Scholar]
- Ballestar, M.T.; Camina, E.; Díaz-Chao, Á.; Torrent-Sellens, J. Productivity and employment effects of digital complementarities. J. Innov. Knowl. 2021, 6, 177–190. [Google Scholar] [CrossRef]
- Venables, A.J. Geography and international inequalities: The impact of new technologies. J. Ind. Compet. Trade 2001, 1, 135–159. [Google Scholar] [CrossRef]
- O’Leary, D.E. Artificial intelligence and big data. IEEE Intell. Syst. 2013, 28, 96–99. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Ni, L.; Li, T. Application of artificial intelligence in precision marketing. J. Organ. End User Comput. (JOEUC) 2021, 33, 209–219. [Google Scholar] [CrossRef]
- Truong, Y.; Papagiannidis, S. Artificial Intelligence as an Enabler for Innovation: A Review and Future Research Agenda; Elsevier: Amsterdam, The Netherlands, 2022; Volume 183, p. 121852. [Google Scholar]
- Lundvall, B.-A. National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning; London Pinter: London, UK, 1992; Volume 242. [Google Scholar]
- Breschi, S.; Malerba, F. Sectoral Innovation Systems: Technological Regimes, Schumpeterian Dynamics and Spatial Boundaries; Centro Studi sui Processi di Internazionalizzazione, Università commerciale Luigi Bocconi: Milan, Italy, 1996. [Google Scholar]
- Malerba, F. Sectoral systems of innovation and production. Res. Policy 2002, 31, 247–264. [Google Scholar] [CrossRef]
- Chen, C.J. The effects of knowledge attribute, alliance characteristics, and absorptive capacity on knowledge transfer performance. RD Manag. 2004, 34, 311–321. [Google Scholar] [CrossRef]
- Von Hippel, E. The Sources of Innovation; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Chalfin, A.; Danieli, O.; Hillis, A.; Jelveh, Z.; Luca, M.; Ludwig, J.; Mullainathan, S. Productivity and selection of human capital with machine learning. Am. Econ. Rev. 2016, 106, 124–127. [Google Scholar] [CrossRef]
- Bathelt, H.; Kogler, D.F.; Munro, A.K. A knowledge-based typology of university spin-offs in the context of regional economic development. Technovation 2010, 30, 519–532. [Google Scholar] [CrossRef]
- Du, C.; Shu, S. Artificial Intelligence and High-Quality Economic Development: Mechanisms, Outcomes, and Policy Orientation. Soc. Sci. Front 2023, 12, 78–87+281. (In Chinese) [Google Scholar]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Low-skill and high-skill automation. J. Hum. Cap. 2018, 12, 204–232. [Google Scholar] [CrossRef]
- Wang, G.Q. Research on artificial intelligence technology of electrical automation control. Appl. Mech. Mater. 2014, 624, 469–472. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Artificial intelligence, automation, and work. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 197–236. [Google Scholar]
- Kromann, L.; Malchow-Møller, N.; Skaksen, J.R.; Sørensen, A. Automation and productivity—A cross-country, cross-industry comparison. Ind. Corp. Chang. 2020, 29, 265–287. [Google Scholar] [CrossRef]
- Peng, G.; Bhaskar, R. Artificial intelligence and machine learning for job automation: A review and integration. J. Database Manag. (JDM) 2023, 34, 1–12. [Google Scholar] [CrossRef]
- Purdy, M.; Daugherty, P. Why Artificial Intelligence Is the Future of Growth. 2016. Available online: https://dl.icdst.org/pdfs/files2/2aea5d87070f0116f8aaa9f545530e47.pdf (accessed on 8 August 2024).
- Acemoglu, D.; Lelarge, C.; Restrepo, P. Competing with robots: Firm-level evidence from France. In AEA Papers and Proceedings; American Economic Association: Nashville, TN, USA, 2020; pp. 383–388. [Google Scholar]
- Aghion, P.; Jones, B.F.; Jones, C.I. Artificial Intelligence and Economic Growth; National Bureau of Economic Research: Cambridge, MA, USA, 2017; Volume 23928. [Google Scholar]
- Goldfarb, A.; Trefler, D. AI and International Trade; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- Brown, J.R.; Martinsson, G.; Petersen, B.C. Do financing constraints matter for R&D? Eur. Econ. Rev. 2012, 56, 1512–1529. [Google Scholar]
- Yu, C.-H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Frey, C.B.; Osborne, M.A. The future of employment: How susceptible are jobs to computerisation? Technol. Forecast. Soc. Chang. 2017, 114, 254–280. [Google Scholar] [CrossRef]
- Garcıa-Dastugue, S.J.; Lambert, D.M. Internet-enabled coordination in the supply chain. Ind. Mark. Manag. 2003, 32, 251–263. [Google Scholar] [CrossRef]
- Xin, D.; Qiu, Y. Research on The Influence of Artificial Intelligence on Import Expansion. Evidence from the Firm-Level Data in China. World Econ. Stud. 2023, 11, 11–25+135. (In Chinese) [Google Scholar]
- Berchicci, L. Towards an open R&D system: Internal R&D investment, external knowledge acquisition and innovative performance. Res. Policy 2013, 42, 117–127. [Google Scholar]
- Fan, J.; Teo, T. Will China’s R&D investment improve green innovation performance? An empirical study. Environ. Sci. Pollut. Res. 2022, 29, 39331–39344. [Google Scholar]
- Xu, J.; Wang, X.; Liu, F. Government subsidies, R&D investment and innovation performance: Analysis from pharmaceutical sector in China. Technol. Anal. Strateg. Manag. 2021, 33, 535–553. [Google Scholar]
- Cohen, W.M.; Levinthal, D.A. Innovation and learning: The two faces of R & D. Econ. J. 1989, 99, 569–596. [Google Scholar]
- Frank, M.R.; Autor, D.; Bessen, J.E.; Brynjolfsson, E.; Cebrian, M.; Deming, D.J.; Feldman, M.; Groh, M.; Lobo, J.; Moro, E. Toward understanding the impact of artificial intelligence on labor. Proc. Natl. Acad. Sci. USA 2019, 116, 6531–6539. [Google Scholar] [CrossRef]
- Cockburn, I.M.; Henderson, R.; Stern, S. The Impact of Artificial Intelligence on Innovation; National Bureau of Economic Research: Cambridge, MA, USA, 2018; Volume 24449. [Google Scholar]
- Wu, J.; Xia, Q.; Li, Z. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, K.; Guo, L.; Feng, X. How Does Artificial Intelligence Improve Firm Productivity? Based on The Perspective of Labor Skill Structure Adjustment. J. Manag. World 2024, 40, 101–116+133+117–122. (In Chinese) [Google Scholar]
- Chen, W.; Srinivasan, S. Going digital: Implications for firm value and performance. Rev. Account. Stud. 2024, 29, 1619–1665. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119. [Google Scholar]
- Li, K.; Mai, F.; Shen, R.; Yan, X. Measuring corporate culture using machine learning. Rev. Financ. Stud. 2021, 34, 3265–3315. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, W. How the Rise of Robots Has Affected China’s Labor Market: Evidence from China’s Listed Manufacturing Firms. Econ. Res. J. 2020, 55, 159–175. (In Chinese) [Google Scholar]
- Hadlock, C.J.; Pierce, J.R. New evidence on measuring financial constraints: Moving beyond the KZ index. Rev. Financ. Stud. 2010, 23, 1909–1940. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, C. Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China. Energy Policy 2023, 177, 113527. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmad, M.; Murshed, M.; Shah, M.I.; Mahmood, H.; Abbas, S. How do green energy technology investments, technological innovation, and trade globalization enhance green energy supply and stimulate environmental sustainability in the G7 countries? Gondwana Res. 2022, 112, 105–115. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, X. How Do Artificial Intelligence Technologies Affect the Quality of Innovation and Entrepreneurship? Seek. Truth 2022, 49, 85–95. (In Chinese) [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Zhang, S. Internet development and productivity growth in manufacturing industry: Internal mechanism and China experiences. China Ind. Econ. 2019, 8, 5–23. [Google Scholar]
- Acharya, V.V.; Baghai, R.P.; Subramanian, K.V. Wrongful discharge laws and innovation. Rev. Financ. Stud. 2014, 27, 301–346. [Google Scholar] [CrossRef]
Variable Type | Variable Symbols and Names | Variable Definition |
---|---|---|
Dependent variable | Innov_au, technological innovation | See text for details |
Explanatory variable | AI, level of artificial intelligence | See text for details |
Mediating variable | RD, R&D investment | R&D investment/operating income |
SA, financing constraints | See text for details | |
Control variables | Size, firm size | Natural logarithm of total assets for the year |
Soe, state-owned enterprise | Enterprises under state control are valued at 1, else at 0. | |
Lev, debt to asset ratio | Total liabilities at year-end/total assets at year-end | |
Roa, return on assets | Net profit/average balance of total assets | |
Agr, total assets growth rate | Growth in total assets/total assets at the beginning of the year | |
Duality, Duality of COB and CEO | It is 1 if the two places are combined, and 0 otherwise. | |
Top1, concentration of equity | Number of shares held by the largest shareholder/total number of shares |
Variable | N | Mean | Std | Min | Q50 | Max |
---|---|---|---|---|---|---|
Innov_au | 10,331 | 3.590 | 1.665 | 0.000 | 3.784 | 7.641 |
AI | 10,331 | 0.718 | 1.030 | 0.000 | 0.000 | 4.205 |
RD | 10,331 | 4.724 | 3.672 | 0.000 | 4.028 | 20.880 |
SA | 10,331 | −3.848 | 0.219 | −4.396 | −3.849 | −3.238 |
Size | 10,331 | 22.209 | 1.124 | 19.976 | 22.081 | 25.750 |
Lev | 10,331 | 0.419 | 0.187 | 0.062 | 0.415 | 0.884 |
Roa | 10,331 | 0.041 | 0.057 | −0.236 | 0.038 | 0.228 |
Agr | 10,331 | 0.148 | 0.240 | −0.318 | 0.093 | 1.874 |
Top1 | 10,331 | 32.257 | 13.055 | 8.421 | 30.135 | 68.753 |
Variable | VIF | 1/VIF |
---|---|---|
Lev | 1.62 | 0.615953 |
Size | 1.47 | 0.679027 |
Roa | 1.45 | 0.687713 |
Soe | 1.26 | 0.791901 |
Agr | 1.16 | 0.863042 |
Duality | 1.09 | 0.919429 |
Top1 | 1.07 | 0.935227 |
AI | 1.05 | 0.954202 |
Mean VIF | 1.27 |
(1) | (2) | (3) | |
---|---|---|---|
Innov_au | Innov_au | Innov_au | |
AI | 0.396 *** | 0.403 *** | 0.101 *** |
(26.604) | (26.690) | (6.621) | |
Size | 0.793 *** | ||
(43.116) | |||
Soe | 0.121 ** | ||
(2.097) | |||
Lev | 0.007 | ||
(1.104) | |||
Roa | 0.032 | ||
(0.578) | |||
Agr | 0.000 | ||
(0.102) | |||
Duality | 0.036 | ||
(1.241) | |||
Top1 | −0.008 *** | ||
(−5.390) | |||
Constant | 3.336 *** | 3.331 *** | −13.858 *** |
(167.813) | (226.061) | (−33.228) | |
Year FE | No | Yes | Yes |
Individual FE | No | Yes | Yes |
N | 10,331 | 10,331 | 10,331 |
R2 | 0.064 | 0.072 | 0.244 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Innov_au | Innov_au | Innov_ap | Innov_ap | Innov_au | Innov_au | |
Robot | 0.242 *** | 0.066 *** | ||||
(9.724) | (2.964) | |||||
AI | 0.352 *** | 0.095 *** | 0.435 *** | 0.139 *** | ||
(21.735) | (5.586) | (21.764) | (6.928) | |||
Size | 0.834 *** | 0.707 *** | 0.831 *** | |||
(48.628) | (34.450) | (33.550) | ||||
Soe | 0.126 ** | −0.094 | 0.022 | |||
(2.178) | (−1.463) | (0.262) | ||||
Lev | 0.008 | 0.013 * | −0.259 ** | |||
(1.316) | (1.805) | (−2.449) | ||||
Roa | 0.034 | 0.096 | −0.046 | |||
(0.604) | (1.549) | (−0.336) | ||||
Agr | −0.000 | 0.003 | −0.003 | |||
(−0.030) | (1.430) | (−1.105) | ||||
Duality | 0.038 | 0.054 * | 0.034 | |||
(1.289) | (1.664) | (0.888) | ||||
Top1 | −0.009 *** | −0.004 ** | −0.008 *** | |||
(−6.149) | (−2.344) | (−4.286) | ||||
Constant | 3.468 *** | −14.697 *** | 3.665 *** | −11.724 *** | 3.528 *** | −14.606 *** |
(174.724) | (−37.227) | (231.448) | (−25.196) | (199.307) | (−26.094) | |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Individual FE | Yes | Yes | Yes | Yes | Yes | Yes |
N | 10,331 | 10,331 | 10,331 | 10,331 | 5929 | 5929 |
R2 | 0.010 | 0.241 | 0.049 | 0.165 | 0.081 | 0.253 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Heckman | ||||
AI | Innov_au | Phase I | Phase II | |
LAI | 0.574 *** | 0.105 *** | ||
(63.031) | (6.481) | |||
AI | 0.220 *** | |||
(14.43) | ||||
IMR | −0.302 *** | |||
(−9.67) | ||||
Ave_AI | 1.291 *** | |||
(46.77) | ||||
Controls | Yes | Yes | Yes | |
Constant | 0.393 *** | −13.694 *** | 0.247 *** | −13.885 *** |
(46.319) | (−26.813) | (26.694) | (−28.144) | |
Year FE | Yes | Yes | Yes | |
Individual FE | Yes | Yes | Yes | |
N | 9016 | 9016 | 9016 | 9016 |
R2 | 0.335 | 0.209 | 0.335 | 0.235 |
Variable | (1) | (2) |
---|---|---|
Phase I | Phase II | |
AI | Innov_au | |
Tele ×Ave_AI | 1.48 × 10−6 *** | |
(16.832) | ||
AI | 0.251 *** | |
(3.205) | ||
Controls | Yes | Yes |
Constant | −1.058 *** | −13.051 *** |
(−4.476) | (−39.767) | |
Year FE | Yes | Yes |
Individual FE | Yes | Yes |
N | 8789 | 8789 |
R2 | 0.083 | 0.323 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Innov_au | SA | Innov_au | Innov_au | RD | Innov_au | |
AI | 0.101 *** | −0.033 *** | 0.050 *** | 0.101 *** | 0.259 *** | 0.095 *** |
(6.634) | (−20.414) | (3.249) | (6.634) | (4.683) | (6.261) | |
SA | −1.542 *** | |||||
(−15.977) | ||||||
RD | 0.023 *** | |||||
(7.938) | ||||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −13.850 *** | −1.190 *** | −15.686 *** | −13.850 *** | 2.674 | −13.911 *** |
(−30.678) | (−24.729) | (−34.104) | (−30.678) | (1.629) | (−30.911) | |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Individual FE | Yes | Yes | Yes | Yes | Yes | Yes |
N | 10,331 | 10,331 | 10,331 | 10,331 | 10,331 | 10,331 |
R2 | 0.244 | 0.541 | 0.264 | 0.244 | 0.026 | 0.249 |
Sobel | −0.003 *** | 0.057 *** | ||||
(−3.340) | (15.030) |
Mediating Variables | Direct/Indirect | Coefficient | Standard Error | Z-Value | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|---|
RD | Indirect effects | 0.057 | 0.001 | 6.18 | 0.000 | [0.039,0.075] |
Direct effects | 0.240 | 0.016 | 15.14 | 0.000 | [0.209,0.271] | |
SA | Indirect effects | −0.003 | 0.001 | −3.22 | 0.001 | [−0.005,−0.001] |
Direct effects | 0.300 | 0.013 | 22.50 | 0.000 | [0.274,0.326] |
Variable Names | (1) C1 | (2) C2 | (3) C3 | (4) C4 | (5) C5 | (6) C6 | (7) C7 |
---|---|---|---|---|---|---|---|
AI | 0.058 | 0.173 *** | 0.138 *** | 0.078 * | 0.042 | 0.018 | 0.093 |
(1.94) | (5.15) | (3.28) | (2.40) | (1.04) | (0.24) | (1.39) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −15.084 *** | −14.027 *** | −14.328 *** | −12.526 *** | −12.201 *** | −16.194 *** | −18.618 *** |
(−11.69) | (−13.84) | (−12.54) | (−11.37) | (−11.74) | (−7.33) | (−11.39) | |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Individual FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 1500 | 1569 | 1956 | 1584 | 2560 | 384 | 778 |
R2 | 0.349 | 0.423 | 0.300 | 0.448 | 0.156 | 0.228 | 0.149 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Eastern Region | Central Region | Western Region | State-Owned Enterprise | Private Enterprise | |
AI | 0.081 *** | 0.102 ** | 0.131 ** | 0.136 *** | 0.081 *** |
(4.710) | (2.539) | (2.544) | (4.795) | (4.450) | |
Controls | Yes | Yes | Yes | Yes | Yes |
Constant | −13.669 *** | −18.265 *** | −11.098 *** | −19.814 *** | −12.043 *** |
(−25.313) | (−16.347) | (−7.573) | (−23.787) | (−21.616) | |
Year FE | Yes | Yes | Yes | Yes | Yes |
Individual FE | Yes | Yes | Yes | Yes | Yes |
N | 7188 | 1887 | 1256 | 3082 | 7249 |
R2 | 0.251 | 0.272 | 0.168 | 0.312 | 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wang, H.; Wang, J. Artificial Intelligence and Technological Innovation: Evidence from China’s Strategic Emerging Industries. Sustainability 2024, 16, 7226. https://doi.org/10.3390/su16167226
Li D, Wang H, Wang J. Artificial Intelligence and Technological Innovation: Evidence from China’s Strategic Emerging Industries. Sustainability. 2024; 16(16):7226. https://doi.org/10.3390/su16167226
Chicago/Turabian StyleLi, Daojun, Haiqin Wang, and Juan Wang. 2024. "Artificial Intelligence and Technological Innovation: Evidence from China’s Strategic Emerging Industries" Sustainability 16, no. 16: 7226. https://doi.org/10.3390/su16167226
APA StyleLi, D., Wang, H., & Wang, J. (2024). Artificial Intelligence and Technological Innovation: Evidence from China’s Strategic Emerging Industries. Sustainability, 16(16), 7226. https://doi.org/10.3390/su16167226