Mechanism and In Situ Prevention of Oxidation in Coal Gangue Piles: A Review Aiming to Reduce Acid Pollution
Abstract
1. Introduction
2. Oxidation Mechanism of Coal Gangue
2.1. Pyrite Oxidation
2.2. Microbial Action
2.3. Low-Temperature Oxidation of Coal
2.4. Free Radical Action
3. In Situ Prevention of Oxidation
3.1. Mixed Co-Disposal
3.2. Coverage Barrier
3.3. Passivation Coating
3.4. Bactericides
3.5. Coal Oxidation Inhibitors
3.6. Microorganisms
3.7. Plants
4. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Z.; Cao, Y.D.; Dong, H.J.; Zhang, J.S.; Sun, C.B. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. Int. J. Miner. Process. 2016, 146, 23–28. [Google Scholar] [CrossRef]
- Peng, B.X.; Li, X.R.; Zhao, W.H.; Yang, L. Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values. Fuel 2018, 217, 427–433. [Google Scholar] [CrossRef]
- Wang, H.Y.; Tan, B.; Zhang, X.D. Research on the technology of detection and risk assessment of fire areas in gangue hills. Environ. Sci. Pollut. Res. 2020, 27, 38776–38787. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, J.H.; Bi, M.S.; Gao, W.; Shu, C.M. Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion. J. Hazard. Mater. 2020, 400, 123251. [Google Scholar] [CrossRef]
- Qin, S.; Li, X.; Huang, J.; Li, W.; Wu, P.; Li, Q.; Li, L. Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. Environ. Pollut. 2023, 343, 123243. [Google Scholar] [CrossRef]
- Hua, Z.Q.; Zhu, Q.; Xu, J.J.; Ruan, M.Y. Development of composite bactericides for controlling acidification pollution in coal gangue piles and their mechanisms of bacterial inhibition. Environ. Technol. Innov. 2022, 25, 102094. [Google Scholar] [CrossRef]
- Dong, Y.B.; Lu, H.; Lin, H. Release characteristics of heavy metals in high-sulfur coal gangue: Influencing factors and kinetic behavior. Environ. Res. 2023, 217, 114871. [Google Scholar] [CrossRef]
- Chen, G.; Ye, Y.C.; Yao, N.; Hu, N.Y.; Zhang, J.; Huang, Y. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. J. Clean. Prod. 2021, 329, 129666. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Li, T.; Liu, P.; Zhang, B.B.; Che, L.L. A review of treatment technologies for acid mine drainage and sustainability assessment. J. Water Process Eng. 2023, 55, 104213. [Google Scholar] [CrossRef]
- Mokgehle, T.M.; Tavengwa, N.T. Recent developments in materials used for the removal of metal ions from acid mine drainage. Appl. Water Sci. 2021, 11, 42. [Google Scholar] [CrossRef]
- Lebron, Y.A.R.; Moreira, V.R.; Amaral, M.C.S. Metallic ions recovery from membrane separation processes concentrate: A special look onto ion exchange resins. Chem. Eng. J. 2021, 425, 131812. [Google Scholar] [CrossRef]
- Foureaux, A.F.S.; Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.S.; Amaral, M.C.S. Direct contact membrane distillation as an alternative to the conventional methods for value-added compounds recovery from acidic effluents: A review. Sep. Purif. Technol. 2020, 236, 116251. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.H.; Ren, N.Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, O.; Mousset, E.; Olvera-Vargas, H.; Lefebvre, O. Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab- to full-scale. Crit. Rev. Environ. Sci. Technol. 2022, 52, 240–309. [Google Scholar] [CrossRef]
- Maxim, T.; Yury, L.; Oleg, L.; Elena, M.; Asmelash, A. Increasing the Reliability of the Work of Artificial Filtering Arrays for the Purification of Quarry Waste Water. E3S Web Conf. 2017, 21, 02019. [Google Scholar] [CrossRef]
- Behera, M.; Nayak, J.; Banerjee, S.; Chakrabortty, S.; Tripathy, S.K. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J. Environ. Chem. Eng. 2021, 9, 105277. [Google Scholar] [CrossRef]
- Jarnerud, T.; Karasev, A.V.; Jönsson, P.G. Neutralization of Acidic Wastewater from a Steel Plant by Using CaO-Containing Waste Materials from Pulp and Paper Industries. Materials. 2021, 14, 2653. [Google Scholar] [CrossRef]
- Alakangas, L.; Andersson, E.; Mueller, S. Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes. Environ. Sci. Pollut. Res. 2013, 20, 7907–7916. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Moodley, I.; Sheridan, C.M.; Kappelmeyer, U.; Akcil, A. Environmentally sustainable acid mine drainage remediation: Research developments with a focus on waste/by-products. Miner. Eng. 2018, 126, 207–220. [Google Scholar] [CrossRef]
- Loudon, J.D. Mechanisms of Oxidation. Nature 1964, 202, 1252–1253. [Google Scholar] [CrossRef]
- Liu, L.H.; Liu, Q.F.; Zhang, S.; Li, Y.K.; Yang, L.T. The thermal transformation behavior and products of pyrite during coal gangue combustion. Fuel 2022, 324, 124803. [Google Scholar] [CrossRef]
- Othman, A.; Sulaiman, A.; Sulaiman, S.K. Carbide lime in acid mine drainage treatment. J. Water Process Eng. 2017, 15, 31–36. [Google Scholar] [CrossRef]
- Chen, Y.T.; Li, J.T.; Chen, L.X.; Hua, Z.S.; Huang, L.N.; Liu, J.; Xu, B.B.; Liao, B.; Shu, W.S. Biogeochemical Processes Governing Natural Pyrite Oxidation and Release of Acid Metalliferous Drainage. Environ. Sci. Technol. 2014, 48, 5537–5545. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yu, E.D.; Wang, D.J.; Deng, H. Sulfur vacancy enhances the electronic and optical properties of FeS2 as the high performance electrode material. J. Alloys Compd. 2021, 858, 157662. [Google Scholar] [CrossRef]
- Arrouvel, C. Crystal shapes, triglyphs, and twins in minerals: The case of pyrite. Am. Mineral. 2022, 107, 2251–2260. [Google Scholar] [CrossRef]
- Rickard, D.; Luther, G.W. Chemistry of iron sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef]
- Tian, H.; Wang, L.B.; Du, Y.G.; Sun, Y.; Wu, F.; Ye, H.P.; Chen, S.H.; Guo, L.; Zhang, T.C. One-step natural pyrite-assisted mechanochemical detoxification of Cr(VI) in soda ash Chromite Ore Processing Residue: Effectiveness, mechanisms, and life cycle analysis. J. Clean. Prod. 2022, 380, 134958. [Google Scholar] [CrossRef]
- Chandra, A.P.; Gerson, A.R. The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surf. Sci. Rep. 2010, 65, 293–315. [Google Scholar] [CrossRef]
- Seiffert, F.; Bandow, N.; Bouchez, J.; von Blanckenburg, F.; Gorbushina, A.A. Microbial Colonization of Bare Rocks: Laboratory Biofilm Enhances Mineral Weathering. Procedia Earth Planet. Sci. 2014, 10, 123–129. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Li, B.; Liu, G.; Gao, W.; Cong, H.Y.; Bi, M.S.; Ma, L.; Deng, J.; Shu, C.M. Study of combustion behaviour and kinetics modelling of Chinese Gongwusu coal gangue: Model-fitting and model-free approaches. Fuel 2020, 268, 117284. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, S.Q.; Tang, Z.Q.; Cai, J.W.; Zhong, Y.; Zhou, B.Z. Free Radical and Functional Group Reaction and Index Gas CO Emission during Coal Spontaneous Combustion. Combust. Sci. Technol. 2018, 190, 834–848. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, T.; Liang, Y.T.; Wang, Z.W. A review on numerical solutions to self-heating of coal stockpile: Mechanism, theoretical basis, and variable study. Fuel 2016, 182, 80–109. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Tsai, Y.T.; Deng, J.; Shu, C.-M. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique. J. Therm. Anal. Calorim. 2016, 126, 1591–1602. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wu, J.M.; Chang, L.P.; Wang, J.F.; Xue, S.; Li, Z.F. Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: A case study of Shendong coal (China). Int. J. Coal Geol. 2013, 120, 41–49. [Google Scholar] [CrossRef]
- Ling, C.C.; Liu, X.F.; Li, M.Q.; Wang, X.B.; Shi, Y.B.; Qi, J.; Zhao, J.C.; Zhang, L.Z. Sulphur vacancy derived anaerobic hydroxyl radical generation at the pyrite-water interface: Pollutants removal and pyrite self-oxidation behavior. Appl. Catal. B-Environ. 2021, 290, 120051. [Google Scholar] [CrossRef]
- Kong, L.H.; Hu, X.Y.; He, M.C. Mechanisms of Sb(III) Oxidation by Pyrite-Induced Hydroxyl Radicals and Hydrogen Peroxide. Environ. Sci. Technol. 2015, 49, 3499–3505. [Google Scholar] [CrossRef]
- Schoonen, M.A.A.; Harrington, A.D.; Laffers, R.; Strongin, D.R. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochim. Cosmochim. Acta 2010, 74, 4971–4987. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Dai, C.; Zhou, X.; Si, H. An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution. Chem. Eng. J. 2014, 244, 438–445. [Google Scholar] [CrossRef]
- Wu, D.L.; Feng, Y.; Ma, L.M. Oxidation of Azo Dyes by H2O2 in Presence of Natural Pyrite. Water Air Soil Pollut. 2013, 224, 1407. [Google Scholar] [CrossRef]
- Borda, M.J.; Elsetinow, A.R.; Strongin, D.R.; Schoonen, M.A. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 2003, 67, 935–939. [Google Scholar] [CrossRef]
- Xu, T. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes. Adv. Powder Technol. 2017, 28, 1841–1848. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, J.F.; Xue, S.; Wu, J.M.; Chang, L.P.; Li, Z.F. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in situ FTIR. Int. J. Coal Geol. 2016, 154, 155–164. [Google Scholar] [CrossRef]
- Wang, J.; Guo, G.J.; Han, Y.Z.; Hou, Q.L.; Geng, M.; Zhang, Z.C. Mechanolysis mechanisms of the fused aromatic rings of anthracite coal under shear stress. Fuel 2019, 253, 1247–1255. [Google Scholar] [CrossRef]
- Zhong, X.X.; W, D.; Xu, Y.L.; Xin, H.H. The variation characteristics of free radicals in coal oxidation. J. China Coal Soc. 2010, 35, 960–963. [Google Scholar]
- Mu, C.L.; Cao, Y.H.; Wang, H.J.; Yu, H.; Peng, F. A kinetics study on cumene oxidation catalyzed by carbon nanotubes: Effect of N-doping. Chem. Eng. Sci. 2018, 177, 391–398. [Google Scholar] [CrossRef]
- Di Somma, I.; Marotta, R.; Andreozzi, R.; Caprio, V. Kinetic and chemical characterization of thermal decomposition of dicumylperoxide in cumene. J. Hazard. Mater. 2011, 187, 157–163. [Google Scholar] [CrossRef]
- Di Somma, I.; Marotta, R.; Andreozzi, R.; Caprio, V. Dicumyl Peroxide Thermal Decomposition in Cumene: Development of a Kinetic Model. Ind. Eng. Chem. Res. 2012, 51, 7493–7499. [Google Scholar] [CrossRef]
- Li, J.L.; Lu, W.; Kong, B.; Cao, Y.J.Z.; Qi, G.S.; Qin, C.R. Mechanism of Gas Generation during Low-Temperature Oxidation of Coal and Model Compounds. Energy Fuels 2019, 33, 1527–1539. [Google Scholar] [CrossRef]
- Tahmasebi, A.; Yu, J.L.; Han, Y.N.; Yin, F.K.; Bhattacharya, S.; Stokie, D. Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air. Energy Fuels 2012, 26, 3651–3660. [Google Scholar] [CrossRef]
- Wang, D.M.; Xin, H.H.; Qi, X.Y.; Dou, G.L.; Qi, G.S.; Ma, L.Y. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 2016, 163, 447–460. [Google Scholar] [CrossRef]
- Cunha, M.L.; Gahan, C.S.; Menad, N.; Sandström, Å. Leaching Behaviour of Industrial Oxidic By-products: Possibilities to Use as Neutralisation Agent in Bioleaching. Adv. Mater. Forum 2008, 587–588, 748–752. [Google Scholar]
- Rodríguez-Jordá, M.P.; Garrido, F.; García-González, M.T. Effect of the addition of industrial by-products on Cu, Zn, Pb and As leachability in a mine sediment. J. Hazard. Mater. 2012, 213, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Pan, Y.T.; Liu, W.L. Co-Disposal of Coal Gangue and Red Mud for Prevention of Acid Mine Drainage Generation from Self-Heating Gangue Dumps. Minerals 2020, 10, 1081. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef] [PubMed]
- Kefeni, K.K.; Msagati, T.M.; Mamba, B.B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage. Chem. Eng. J. 2015, 276, 222–231. [Google Scholar] [CrossRef]
- Demers, I.; Mbonimpa, M.; Benzaazoua, M.; Bouda, M.; Awoh, S.; Lortie, S.; Gagnon, M. Use of acid mine drainage treatment sludge by combination with a natural soil as an oxygen barrier cover for mine waste reclamation: Laboratory column tests and intermediate scale field tests. Miner. Eng. 2017, 107, 43–52. [Google Scholar] [CrossRef]
- Pabst, T.; Bussière, B.; Aubertin, M.; Molson, J. Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: A numerical hydro-geochemical assessment. J. Contam. Hydrol. 2018, 214, 39–53. [Google Scholar] [CrossRef]
- Lu, J.N.; Alakangas, L.; Jia, Y.; Gotthardsson, J. Evaluation of the application of dry covers over carbonate-rich sulphide tailings. J. Hazard. Mater. 2013, 244, 180–194. [Google Scholar] [CrossRef]
- Tassé, N.; Germain, M.D.; Bergeron, M. Composition of Interstitial Gases in Wood Chips Deposited on Reactive Mine Tailings: Consequences for Their Use as an Oxygen Barrier. In Environmental Geochemistry of Sulfide Oxidation; Alpers, C.N., Blowes, D.W., Eds.; American Chemical Society: Washington, DC, USA, 1993. [Google Scholar]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Demers, I.; Bussière, B.; Benzaazoua, M.; Mbonimpa, M.; Blier, A. Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Miner. Eng. 2008, 21, 317–329. [Google Scholar] [CrossRef]
- Soares, A.B.; Possa, M.V.; de Souza, V.P.; Soares, P.S.M.; Barbosa, M.C.; Ubaldo, M.D.; Bertolino, A.; Borma, L.S. Design of a Dry Cover Pilot Test for Acid Mine Drainage Abatement in Southern Brazil, Part II: Pilot Unit Construction and Initial Monitoring. Mine Water Environ. 2010, 29, 277–284. [Google Scholar] [CrossRef]
- Fu, T.L.; Wu, Y.G.; Ou, L.S.; Yang, G.; Liang, T.C. Effects of thin Covers on the Release of Coal Gangue Contaminants. Energy Procedia 2012, 16, 327–333. [Google Scholar] [CrossRef]
- Han, X.N.; Dong, Y.; Geng, Y.Q.; Li, N.; Zhang, C.Y. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics. Sci. Rep. 2021, 11, 15368. [Google Scholar] [CrossRef]
- Bussière, B.; Aubertin, M.; Mbonimpa, M.; Molson, J.W.; Chapuis, R.P. Field experimental cells to evaluate the hydrogeological behavior of oxygen barriers made of silty metarials. Can. Geotech. J. 2007, 44, 245–265. [Google Scholar] [CrossRef]
- Soares, A.B.; Ubaldo, M.D.; de Souza, V.P.; Soares, P.S.M.; Barbosa, M.C.; Mendonça, R.M.G. Design of a dry cover pilot test for acid mine drainage abatement in southern Brazil. Part 1: Material characterization and numeric modeling. Mine Water Environ. 2009, 28, 219–231. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, C.L.; Yang, Q.; Dang, Z.; Zhang, L.J. Performance and mechanisms of PropS-SH/Ce(dbp)3 coatings in the inhibition of pyrite oxidationtion for acid mine drainage control. Environ. Pollut. 2023, 322, 121162. [Google Scholar] [CrossRef]
- Ogbughalu, O.T.; Vasileiadis, S.; Schumann, R.C.; Gerson, A.R.; Li, J.; Smart, R.S.; Short, M.D. Role of microbial diversity for sustainable pyrite oxidation control in acid and metalliferous drainage prevention. J. Hazard. Mater. 2020, 393, 122338. [Google Scholar] [CrossRef]
- Fan, R.; Short, M.D.; Zeng, S.J.; Qian, G.J.; Li, J.; Schumann, R.C.; Kawashima, N.; Smart, R.S.; Gerson, A.R. The Formation of Silicate-Stabilized Passivating Layers on Pyrite for Reduced Acid Rock Drainage. Environ. Sci. Technol. 2017, 51, 11317–11325. [Google Scholar] [CrossRef]
- Kang, C.U.; Jeon, B.H.; Kumar, R.; Park, S.S.; Park, H.S.; Kim, S.J. Stability of Coatings on Sulfide Minerals in Acidic and Low-Temperature Environments. Mine Water Environ. 2017, 36, 436–442. [Google Scholar] [CrossRef]
- Kang, C.U.; Jeon, B.H.; Park, S.S.; Kang, J.S.; Kim, K.H.; Kim, D.K.; Choi, U.K.; Kim, S.J. Inhibition of pyrite oxidation by surface coating: A long-term field study. Environ. Geochem. Health 2016, 38, 1137–1146. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, R.; Short, M.D.; Li, J.; Schumann, R.C.; Xu, H.L.; Smart, R.S.C.; Gerson, A.R.; Qian, G.J. Formation of Aluminum Hydroxide-Doped Surface Passivating Layers on Pyrite for Acid Rock Drainage Control. Environ. Sci. Technol. 2018, 52, 11786–11795. [Google Scholar] [CrossRef]
- Evangelou, V.P. Pyrite Oxidation and Its Control; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Qian, G.J.; Fan, R.; Short, M.D.; Schumann, R.C.; Pring, A.; Gerson, A.R. The Combined Effects of Galvanic Interaction and Silicate Addition on the Oxidative Dissolution of Pyrite: Implications for Acid and Metalliferous Drainage Control. Environ. Sci. Technol. 2019, 53, 11922–11931. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, V.P. Pyrite microencapsulation technologies: Principles and potential field application. Ecol. Eng. 2001, 17, 165–178. [Google Scholar] [CrossRef]
- Ji, M.K.; Gee, E.D.; Yun, H.S.; Lee, W.R.; Park, Y.T.; Khan, M.A.; Jeon, B.H.; Choi, J. Inhibition of sulfide mineral oxidation by surface coating agents: Batch and field studies. J. Hazard. Mater. 2012, 229, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Fallgren, P.; Morris, J.; Gossard, R. Biological source treatment of acid mine drainage using microbial and substrate amendments: Microcosm studies. Mine Water Environ. 2008, 27, 128. [Google Scholar] [CrossRef]
- Lan, Y.; Huang, X.; Deng, B. Suppression of pyrite oxidation by iron 8-hydroxyquinoline. Arch. Environ. Contam. Toxicol. 2002, 43, 168–174. [Google Scholar] [CrossRef]
- Liu, Y.; Dang, Z.; Xu, Y.; Xu, T.Y. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study. J. Anal. Methods Chem. 2013, 2013, 387124. [Google Scholar] [CrossRef]
- Shu, X.H.; Dang, Z.; Zhang, Q.; Yi, X.Y.; Lu, G.N.; Guo, C.L.; Yang, C. Passivation of metal-sulfide tailings by covalent coating. Miner. Eng. 2013, 42, 36–42. [Google Scholar] [CrossRef]
- Louis, A.M.P.; Yu, H.; Shumlas, S.L.; Van Aken, B.; Schoonen, M.A.A.; Strongin, D.R. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions. Environ. Sci. Technol. 2015, 49, 7701–7708. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.L.; Lu, X.; Xin, Z.; Liu, J. Corrosion resistance of novel silane-functional polybenzoxazine coating on steel. Corros. Sci. 2013, 70, 145–151. [Google Scholar] [CrossRef]
- Ouyang, Y.T.; Liu, Y.; Zhu, R.L.; Ge, F.; Xu, T.Y.; Luo, Z.; Liang, L.B. Pyrite oxidation inhibition by organosilane coatings for acid mine drainage control. Miner. Eng. 2015, 72, 57–64. [Google Scholar] [CrossRef]
- Diao, Z.H.; Shi, T.H.; Wang, S.Z.; Huang, X.F.; Zhang, T.; Tang, Y.T.; Zhang, X.Y.; Qiu, R.L. Silane-based coatings on the pyrite for remediation of acid mine drainage. Water Res. 2013, 47, 4391–4402. [Google Scholar] [CrossRef] [PubMed]
- Fytas, K.; Bousquet, P. Silicate micro-encapsulation of pyrite to prevent acid mine drainage. CIM Bull. 2002, 95, 96–99. [Google Scholar]
- Sari, M.G.; Ramezanzadeh, B.; Shahbazi, M.; Pakdel, A.S. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite. Corros. Sci. 2015, 92, 162–172. [Google Scholar] [CrossRef]
- Gao, X.Z.; Liu, H.J.; Cheng, F.; Chen, Y. Thermoresponsive polyaniline nanoparticles: Preparation, characterization, and their potential application in waterborne anticorrosion coatings. Chem. Eng. J. 2016, 283, 682–691. [Google Scholar] [CrossRef]
- Zhou, C.L.; Lu, X.; Xin, Z.; Liu, J.; Zhang, Y.F. Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel. Corros. Sci. 2014, 80, 269–275. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Xu, Y. PropS-SH/SiO2 nanocomposite coatings for pyrite oxidation inhibition to control acid mine drainage at the source. J. Hazard. Mater. 2017, 338, 313–322. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, C.B.; Magaribuchi, K.; Seno, K.; Ito, M.; Hiroyoshi, N. Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex. J. Hazard. Mater. 2018, 344, 322–332. [Google Scholar] [CrossRef]
- Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. Suppression of Pyrite Oxidation by Carrier Microencapsulation Using Silicon and Catechol. Miner. Process. Extr. Metall. Rev. 2012, 33, 89–98. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, C.B.; Seno, K.; Jeon, S.; Ito, M.; Hiroyoshi, N. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Chemosphere 2018, 205, 414–425. [Google Scholar] [CrossRef]
- Li, X.L.; Hiroyoshi, N.; Tabelin, C.B.; Naruwa, K.; Harada, C.; Ito, M. Suppressive effects of ferric-catecholate complexes on pyrite oxidation. Chemosphere 2019, 214, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Tabelin, C.B.; Veerawattananun, S.; Ito, M.; Hiroyoshi, N.; Igarashi, T. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations. Sci. Total Environ. 2017, 580, 687–698. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Veerawattananun, S.; Ito, M.; Hiroyoshi, N.; Igarashi, T. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions. Sci. Total Environ. 2017, 581, 126–135. [Google Scholar] [CrossRef]
- Pracht, J.; Boenigk, J.; Isenbeck-Schröter, M.; Keppler, F.; Schöler, H.F. Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere 2001, 44, 613–619. [Google Scholar] [CrossRef]
- Schweigert, N.; Zehnder, A.J.B.; Eggen, R.I.L. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ. Microbiol. 2001, 3, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Lottermoser, B.G.; Ashley, P.M. Mobility and retention of trace elements in hardpan-cemented cassiterite tailings, north Queensland, Australia. Environ. Geol. 2006, 50, 835–846. [Google Scholar] [CrossRef]
- Hsu, I.L.; Yeh, F.H.; Chin, Y.C.; Cheung, C.I.; Chia, Z.C.; Yang, L.X.; Chen, Y.J.; Cheng, T.Y.; Wu, S.P.; Tsai, P.J.; et al. Multiplex antibacterial processes and risk in resistant phenotype by high oxidation-state nanoparticles: New killing process and mechanism investigations. Chem. Eng. J. 2021, 409, 128266. [Google Scholar] [CrossRef]
- Pardhi, D.M.; Karaman, D.S.; Timonen, J.; Wu, W.; Zhang, Q.; Satija, S.; Mehta, M.; Charbe, N.; McCarron, P.A.; Tambuwala, M.M.; et al. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int. J. Pharm. 2020, 586, 119531. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Q.; Cai, J.F.; Hua, W.D.; Li, K.; Zhang, X.F.; Xiao, L.X.; Zhang, W.; Ni, Y.F.; Zhang, J.Z. Effect of a new tungsten trioxide-based bactericide on the environment of piggeries and piglet health. Environ. Technol. Innov. 2022, 28, 102628. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X.K.; Hu, X.Y.; Xia, Y.; Zhang, X.W. Solar-Driven Photocatalytic Disinfection Over 2D Semiconductors: The Generation and Effects of Reactive Oxygen Species. Sol. RRL 2021, 5, 594. [Google Scholar] [CrossRef]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; Qaiss, A.K.; Bouhfid, R. Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors. Environ. Sci. Pollut. Res. 2021, 28, 44638–44666. [Google Scholar] [CrossRef] [PubMed]
- Siebert, H.M.; Marmulla, R.; Stahmann, K.P. Effect of SDS on planctonic Acidithiobacillus thiooxidans and bioleaching of sand samples. Miner. Eng. 2011, 24, 1128–1131. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Zhu, Q.; Xu, J.J.; Zhang, X. Effect of Bactericides on Control of Acidification Pollution and Spontaneous Combustion of Coal Gangue Dumps in China and Its Mechanism. Sustainability 2020, 12, 6697. [Google Scholar] [CrossRef]
- Ping, W. Selective Bactericides for at-Source Pollution Control of Acid Coal Waste Piles. Res. Environ. Sci. 2008, 21, 23–26. [Google Scholar]
- Peng, A.A.; Liu, H.C.; Nie, Z.Y.; Xia, J.L. Effect of surfactant Tween-80 on sulfur oxidation and expression of sulfur metabolism relevant genes of Acidithiobacillus ferrooxidans. Trans. Nonferrous Met. Soc. China 2012, 22, 3147–3155. [Google Scholar] [CrossRef]
- Zhe, Z.; Zhi, D.; Xiaohua, S. Study on the inhibition of biological oxidation in sulfide tailings. Chin. J. Environ. Eng. 2010, 4, 1191–1195. [Google Scholar]
- Ren, W.X.; Li, P.J.; Zheng, L.; Fan, S.X.; Verhozina, V.A. Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans. J. Hazard. Mater. 2009, 162, 17–22. [Google Scholar] [CrossRef]
- Wang, D.M.; Dou, G.L.; Zhong, X.X.; Xin, H.H.; Qin, B.T. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 2014, 117, 218–223. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, H.H.; Song, S.N.; Hu, Y.A.; Li, J.A. Role of an additive in retarding coal oxidation at moderate temperatures. Proc. Combust. Inst. 2011, 33, 2515–2522. [Google Scholar] [CrossRef]
- Xi, Z.L.; Li, M.M.; Li, X.; Lu, L.P.; Wang, J.W. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal. Fuel 2022, 314, 122732. [Google Scholar] [CrossRef]
- Xi, Z.L.; Jin, B.X.; Shan, Z. Reaction mechanisms involving peroxy radical in the low-temperature oxidation of coal. Fuel 2021, 300, 120943. [Google Scholar] [CrossRef]
- Li, J.H.; Li, Z.H.; Yang, Y.L.; Zhang, X.Y.; Yan, D.C.; Liu, L.W. Inhibitive Effects of Antioxidants on Coal Spontaneous Combustion. Energy Fuels 2017, 31, 14180–14190. [Google Scholar] [CrossRef]
- Onifade, M.; Genc, B.; Gbadamosi, A.R.; Morgan, A.; Ngoepe, T. Influence of antioxidants on spontaneous combustion and coal properties. Process Saf. Environ. Prot. 2021, 148, 1019–1032. [Google Scholar] [CrossRef]
- Rietjens, S.J.; Bast, A.; Haenen, G. New insights into controversies on the antioxidant potential of the olive oil antioxidant hydroxytyrosol. J. Agric. Food Chem. 2007, 55, 7609–7614. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Xi, Z.L.; Jin, B.X.; Jin, L.Z.; Li, M.T.; Li, S.S. Characteristic analysis of complex antioxidant enzyme inhibitors to inhibit spontaneous combustion of coal. Fuel 2020, 267, 117301. [Google Scholar] [CrossRef]
- Lu, Y.; Xi, Z.L.; Jin, B.X.; Li, M.T.; Ren, C.X. Reaction mechanism and thermodynamics of the elimination of peroxy radicals by an antioxidant enzyme inhibitor complex. Fuel 2020, 272, 117719. [Google Scholar] [CrossRef]
- Xi, Z.; Shan, Z.; Li, M.; Wang, X. Analysis of Coal Spontaneous Combustion by Thermodynamic Methods. Combust. Sci. Technol. 2021, 193, 2305–2330. [Google Scholar] [CrossRef]
- Dou, G.L.; Wang, D.M.; Zhong, X.X.; Qin, B.T. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal. Fuel Process. Technol. 2014, 120, 123–127. [Google Scholar] [CrossRef]
- Ma, L.Y.; Wang, D.M.; Wang, Y.; Xin, H.H.; Dou, G.L.; Xu, C.H. Experimental Investigation on a Sustained Release Type of Inhibitor for Retarding the Spontaneous Combustion of Coal. Energy Fuels 2016, 30, 8904–8914. [Google Scholar] [CrossRef]
- Li, Z.H.; Kong, B.; Wei, A.Z.; Yang, Y.L.; Zhou, Y.B.; Zhang, L.Z. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method. Environ. Sci. Pollut. Res. 2016, 23, 23593–23605. [Google Scholar] [CrossRef] [PubMed]
- Ighalo, J.O.; Kurniawan, S.B.; Iwuozor, K.O.; Aniagor, C.O.; Ajala, O.J.; Oba, S.N.; Iwuchukwu, F.U.; Ahmadi, S.; Igwegbe, C.A. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf. Environ. Prot. 2022, 157, 37–58. [Google Scholar] [CrossRef]
- Zhu, Q.; Ruan, M.Y.; Hu, Z.Q.; Ye, C. Addition of carbon sources and nutrient salts can inhibit gangue acidification by changing microbial community structure. Environ. Sci. Pollut. Res. 2022, 29, 90046–90057. [Google Scholar] [CrossRef]
- Chang, I.S.; Shin, P.K.; Kim, B.H. Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res. 2000, 34, 1269–1277. [Google Scholar] [CrossRef]
- Jong, T.; Parry, D.L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res. 2003, 37, 3379–3389. [Google Scholar] [CrossRef]
- Logan, B.E.; Rossi, R.; Ragab, A.a.; Saikaly, P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Hui, X. A Study on the Ferric Reduction Microorganism nju-T1 Isolated from Shizishan Tailings, Tongling, Anhui Province. Geol. J. China Univ. 2011, 17, 59. [Google Scholar]
- Jin, S.; Fallgren, P.H.; Morris, J.M.; Cooper, J.S. Source treatment of acid mine drainage at a backfilled coal mine using remote sensing and biogeochemistry. Water Air Soil Pollut. 2008, 188, 205–212. [Google Scholar] [CrossRef]
- Lin, C.; Clark, M.; McConchie, D.; Lancaster, G.; Ward, N. Effects of Bauxsol (TM) on the immobilisation of soluble acid and environmentally significant metals in acid sulfate soils. Soil Res. 2002, 40, 805–815. [Google Scholar] [CrossRef]
- Sandlin, W.; Langman, J.; Moberly, J. A review of acid rock drainage, seasonal flux of discharge and metal concentrations, and passive treatment system limitations. Int. J. Min. Reclam. Environ. 2021, 35, 34–47. [Google Scholar] [CrossRef]
Role | Mechanization | Crucial Microbial |
---|---|---|
Catalysis | Catalyzing chemical oxidation or participating in biological oxidation. | IOB, T. t, T. a, Sulfobacillus, Thermoacido philic archaebacteria |
Self-heating | (1) Releasing biochemical heat, accompanied by microbial growth. (2) Accelerating heat release of chemical reaction through catalytic action. | T. f, Psendomonas |
Mineral weathering | (1) Chemical dissolution through organic acid, produced by mycelia. (2) Mechanical decomposition by mycelia, increasing specific surface area. | Fungus, Actinomycetes |
Description | Representative Substances |
---|---|
Organometallics | Zn-Pentachlorophenate |
Organic halide | Na-Pentachlorophenate |
Alcohols, phenols, and ethers | Ethanol, p-nitrophenol, and ethylene glycol-methyl ether |
Aldehydes, ketones, and quinones | Glutaraldehyde, o-hydroxycyclopentenedione, and spergon |
Acids and salts | Sorbic acid |
Esters | Dimethyl fumarate |
Nitriles | Chlorothalonil |
Guanidines | Chlorhexidine |
Organo-nitro compounds | Furacilin |
Organic phosphorus and organic arsenics | Lauric arsine |
Heterocycles | / |
Description | Bactericide | Effective Dosage (mg/L) | Fe oxidation Inhibition Rate (%) | Price (CNY/kg) | Reference |
---|---|---|---|---|---|
Preservatives | Kathon | 30 | 75–83.50 | 12 | [108,109] |
SBZ | 30 | 75.89 | 12 | ||
Triclosan | 16 | 75–83.50 | 160 | ||
Anionic surfactants | SDS | 10–30 | 75.69–82.83 | 14.6 | [110] |
Cationic surfactants | CTAB | 5 | 80.84 | 200 | [111] |
Low-molecular-weight organic acids | Formic acid | 9.20–11.68 | 65–100 | 5 | [112] |
Acetic acid | 48 | 95 | 5 | ||
Propionic acid | 59.20 | 100 | 6 |
Description | Name | Mechanization | Reference |
---|---|---|---|
Inorganic inhibitors | MgCl2 | Water absorption. | [118] |
CaCl2 | |||
NaCl | |||
Na3PO4 | Influencing the pathway of hydroxyl decomposition, promoting its conversion to ether, and improving thermal stability. | [114] | |
Organic inhibitors | HTY | (1) Reacting with highly active free radicals, such as ·OH and ·OOH, to produce lowly active polyphenol free radicals, cutting off the chain reaction of free radicals. (2) Two hydroxyl groups on the HTY molecule interacting to form hydrogen bonds (O18-H19 is the hydrogen bond donor), and the resulting o-diphenol structure clearing hydroxyl radicals through the H transfer mechanism. | [119,120] |
SOD | ROO· is rapidly quenched at room temperature by disproportionation (giving electrons to generate H2O2), terminating the chain propagation reaction, and restraining the generation of free radicals, such as ·OOH, CHO·, and ·OH. | [121,122,123] | |
CAT | Rapidly neutralizing superoxide free radicals and decomposing hydrogen peroxide into harmless molecules. | [121] | |
Cu-SOD | Forming cyclization reaction and eliminating ROO·. | [121,122,123] | |
Zn-SOD | |||
Mn-CAT | |||
Polyethylene glycol | Inhibiting the formation of surface functional groups during oxidation. | [113] | |
Tea polyphenol | Inhibiting peroxide free radicals. | [124] | |
Acrylic acid plus ascorbic acid | Preventing free radical chain reaction. | [125] | |
Diphenylamine | / | [126] | |
Tetramethyl piperidine | Binding with free radicals to form inactive substances. | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cao, Y.; Ruan, M.; Li, R.; Bian, Q.; Hu, Z. Mechanism and In Situ Prevention of Oxidation in Coal Gangue Piles: A Review Aiming to Reduce Acid Pollution. Sustainability 2024, 16, 7208. https://doi.org/10.3390/su16167208
Li Y, Cao Y, Ruan M, Li R, Bian Q, Hu Z. Mechanism and In Situ Prevention of Oxidation in Coal Gangue Piles: A Review Aiming to Reduce Acid Pollution. Sustainability. 2024; 16(16):7208. https://doi.org/10.3390/su16167208
Chicago/Turabian StyleLi, Yuanyuan, Yingjia Cao, Mengying Ruan, Rui Li, Qi Bian, and Zhenqi Hu. 2024. "Mechanism and In Situ Prevention of Oxidation in Coal Gangue Piles: A Review Aiming to Reduce Acid Pollution" Sustainability 16, no. 16: 7208. https://doi.org/10.3390/su16167208
APA StyleLi, Y., Cao, Y., Ruan, M., Li, R., Bian, Q., & Hu, Z. (2024). Mechanism and In Situ Prevention of Oxidation in Coal Gangue Piles: A Review Aiming to Reduce Acid Pollution. Sustainability, 16(16), 7208. https://doi.org/10.3390/su16167208