Modeling Ecosystem Regulation Services and Performing Cost–Benefit Analysis for Climate Change Mitigation through Nature-Based Solutions Using InVEST Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Operational Framework
2.3. Data Collection
2.4. Land Use Land Cover Mapping
2.5. Modeling Carbon Storage and Sediment Retention Ecosystem Services
2.5.1. Carbon Storage
2.5.2. Sediment Retention
2.6. Scenario Development
2.6.1. Business as Usual Scenario (BAU)
2.6.2. Management Scenario (MS)
Forest Plantation
Agroforestry
Soil and Water Conservation Techniques (SWC)
2.7. Economic Valuation Methodology
2.7.1. Ecosystem Services
2.7.2. Management Scenarios
2.7.3. Sensitivity Analysis
3. Results and Discussion
3.1. Land Use Land Cover Change
3.2. Ecosystem Services
3.2.1. Sediment Retention
3.2.2. Carbon Storage
3.3. Impact of Future Change Scenarios on Biophysical Services
3.3.1. Impact of the BAU Scenario
3.3.2. Impact of Management Scenarios
3.4. Economic Valuation
3.4.1. Ecosystem Services Valuation and Actual Situation
3.4.2. Economic Impact of BAU Scenario
3.4.3. Economic Impact of Management Scenario
3.4.4. Sensitivity Analysis
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eekhout, J.P.C.; Boix-Fayos, C.; Pérez-Cutillas, P.; de Vente, J. The Impact of Reservoir Construction and Changes in Land Use and Climate on Ecosystem Services in a Large Mediterranean Catchment. J. Hydrol. 2020, 590, 125208. [Google Scholar] [CrossRef]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Wellbeing: Synthesis; Island Press: Washington, DC, USA, 2005; p. 137. [Google Scholar]
- MARRH (Ministère de l’Agriculture, des Ressources hydrauliques et de la Pêche). Phase 5 Report of the Water 2050 Study; MARRH: Tunis, Tunisia, 2022. [Google Scholar]
- McGuire, S. FAO, IFAD, and WFP. The State of Food Insecurity in the World 2015: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: FAO, 2015. Adv. Nutr. 2015, 6, 623–624. [Google Scholar] [CrossRef] [PubMed]
- World Bank Group. Tunisia Country Climate and Development Report; CCDR Series; World Bank: Washington, DC, USA, 2023; Available online: http://hdl.handle.net/10986/40658 (accessed on 17 March 2024).
- Khemiri, K.; Jebari, S.; Berndtsson, R.; Maalel, K. Is Climate or Direct Human Influence Responsible for Discharge Decrease in the Tunisian Merguellil Basin? Water 2021, 13, 2748. [Google Scholar] [CrossRef]
- Bouguerra, S.; Jebari, S.; Tarhouni, J. Spatiotemporal Analysis of Landscape Patterns and Its Effect on Soil Loss in the Rmel River Basin, Tunisia. Soil Water Res. 2021, 16, 39–49. [Google Scholar] [CrossRef]
- Bisaro, A.; Meyer, K. Integrating Nature-Based Solutions into Policies for Climate Change Adaptation and Disaster Risk Reduction; IUCN: Gland, Switzerland, 2022. [Google Scholar]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Bastin, J.-F.; Crowther, T.W. Integrated global assessment of the natural forest carbon potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef]
- Khalfaoui, M.; Daly-Hassen, H.; Stiti, B.; Jebari, S. Toward Decision-Making Support: Valuation and Mapping of New Management Scenario for Tunisian Cork Oak Forests. Forests 2020, 11, 197. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). State of the World’s Forests; FAO: Rome, Italy, 2022; ISBN 978-92-5-1072929. [Google Scholar]
- Pugh, T.A.M.; Arneth, A.; Kautz, M.; Poulter, B.; Smith, B. Important Role of Forest Disturbances in the Global Biomass Turnover and Carbon Sinks. Nat. Geosci. 2019, 12, 730–735. [Google Scholar] [CrossRef]
- Bouguerra, S.; Jebari, S.; Tarhouni, J. An Analysis of Sediment Production and Control in Rmel River Basin Using InVEST Sediment Retention Model. J. New Sci. 2019, 66, 4. [Google Scholar]
- Pechanec, V.; Purkyt, J.; Benc, A.; Nwaogu, C.; Štěrbová, L.; Cudlín, P. Modelling of the Carbon Sequestration and Its Prediction under Climate Change. Ecol. Inform. 2018, 47, 50–54. [Google Scholar] [CrossRef]
- Benra, F.; De Frutos, A.; Gaglio, M.; Álvarez-Garretón, C.; Felipe-Lucia, M.; Bonn, A. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Chen, G.; Lin, Y.; Yang, A.; Cheng, J. Coupling PLUS–InVEST Model for Ecosystem Service Research in Yunnan Province, China. Sustainability 2023, 15, 271. [Google Scholar] [CrossRef]
- Dworczyk, C.; Burkhard, B. Challenges Entailed in Applying Ecosystem Services Supply and Demand Mapping Approaches: A Practice Report. Land 2023, 12, 52. [Google Scholar] [CrossRef]
- Shaaban, M.; Schwartz, C.; Macpherson, J.; Piorr, A. A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes. Land 2021, 10, 131. [Google Scholar] [CrossRef]
- Guettaya, I.; El Ouni, M.R. In Situ-based Assessment of Soil Liquefaction Potential—Case Study of an Earth Dam in Tunisia. Front. Struct. Civ. Eng. 2014, 8, 456–461. [Google Scholar] [CrossRef]
- INS (Institut National de la Statistique). Rapport National Genre Tunisie 2015; Institut National de la Statistique: Tunis, Tunisia, 2015. [Google Scholar]
- Larbi, I.; Forkuor, G.; Hountondji, F.C.C.; Agyare, W.A.; Mama, D. Predictive Land Use Change under Business as Usual and Afforestation Scenarios in the Vea Catchment, West Africa. Int. J. Adv. Remote Sens. GIS 2019, 8, 3011–3029. [Google Scholar] [CrossRef]
- Clark, L. Clark Labs. Available online: http://www.clarklabs.org (accessed on 2 January 2015).
- Tallis, H.T.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; Pennington, D.; Mendoza, G.; Aukema, J.; et al. InVEST 1.004 Beta User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA, 2010. [Google Scholar]
- Liang, C.; Schimel, J.; Jastrow, J. The Importance of Anabolism in Microbial Control Over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial Interactions among Ecosystem Services in an Urbanizing Agricultural Watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Li, F.; Wang, R.; Zhao, D. Effects of Land Use and Cover Change on Terrestrial Carbon Stocks in Urbanized Areas: A Study from Changzhou, China. J. Clean. Prod. 2015, 103, 651–657. [Google Scholar] [CrossRef]
- Roig, S.; del Río, M.; Cañellas, I.; Montero, G. Litter Fall in Mediterranean Pinus pinaster Ait. Stands under Different Thinning Regimes. For. Ecol. Manag. 2005, 206, 179–190. [Google Scholar] [CrossRef]
- Shaiek, O.; Loustau, D.; Garchi, S.; Bachtobji, B.; El Aouni, M.H. Estimation Allométrique de la Biomasse du Pin Maritime en Dune Littorale: Cas de la Forêt de Rimel (Tunisie). Forêt Méditerranéenne 2010, 31, 231–242. [Google Scholar]
- Shaiek, O.; Loustau, D.; Trichet, P.; Meredieu, C.; Bachtobji, B.; Garchi, S.; El Aouni, M.H. Generalized Biomass Equations for the Main Aboveground Biomass Components of Maritime Pine Across Contrasting Environments. Ann. For. Sci. 2011, 68, 443–452. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Martínez, J.R.F.; Pleguezuelo, C.R.R.; Tavira, S.C. Biomass Carbon Stock in Relation to Different Land Uses in a Semiarid Environment. J. Land Use Sci. 2014, 9, 474–486. [Google Scholar] [CrossRef]
- Stiti, B.; Khaldi, A.; Hanchi, B. Carbon Stocks Distribution in Shrub Species of a North African Cork Oak Forest. Afr. J. Ecol. 2016, 55, 693–696. [Google Scholar] [CrossRef]
- Zribi, L.; Chaar, H.; Khaldi, A.; Hanchi, B.; Mouillot, F.; Gharbi, F. Estimate of Biomass and Carbon Pools in Disturbed and Undisturbed Oak Forests in Tunisia. For. Syst. 2016, 25, e060. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz De Torres, M.A.; Ordóñez-Fernández, R.; Moreno-García, M.; Márquez-García, J.; Carbonell-Bojollo, R. Soil Nitrate and Organic Carbon Improvement by Use of Leguminous Plants as Cover Crops in an Organic Olive Orchard. AGROFOR Int. J. 2019, 4, 41–49. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524–525, 166–177. [Google Scholar] [CrossRef]
- Bouguerra, S.; Jebari, S. Identification and Prioritization of Sub-watersheds for Land and Water Management Using In-VEST SDR Model: Rmel River Basin, Tunisia. Arab J. Geosci. 2017, 10, 348. [Google Scholar] [CrossRef]
- Rukundo, E.; Liu, S.; Dong, Y.; Rutebuka, E.; Asamoah, E.F.; Xu, J.; Wu, X. Spatio-temporal Dynamics of Critical Ecosystem Services in Response to Agricultural Expansion in Rwanda, East Africa. Ecol. Indic. 2018, 89, 696–705. [Google Scholar] [CrossRef]
- Majumdar, A.; Avishek, K. Assessing Tradeoffs and Synergies between Land Use Land Cover Change and Ecosystem Services in River Ecosystem Using InVEST Model. Res. Square 2024. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; USDA-ARS: Washington, DC, USA, 1997.
- Vigiak, O.; Borselli, L.; Newham, L.T.H.; McInnes, J.; Roberts, A.M. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 2012, 138, 74–88. [Google Scholar] [CrossRef]
- Zante, P.; Collinet, J. Cartographie des Risques Érosifs sur le Bassin Versant de la Retenue Collinaire de el Hnach (Dorsale Tunisienne); IRD: Tunis, Tunisia, 2001; 70p.
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Teng, F.; Xu, S.-Q. Definition of Business as Usual and Its Impacts on Assessment of Mitigation Efforts. Adv. Clim. Change Res. 2012, 3, 212–219. [Google Scholar] [CrossRef]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Richard Mark, D.; Rafik Fatehali, H. Climate Change and Water Resources Planning, Development, and Management in Zimbabwe (English); The Zimbabwe Water Forum Policy Note, no. 11; World Bank Group: Washington, DC, USA, 2016; Available online: http://documents.worldbank.org/curated/en/115321468197068948/Climate-change-and-water-resources-planning-development-and-management-in-Zimbabwe (accessed on 8 February 2024).
- Verdone, M. The Economics of Ecosystem Restoration: Case Studies and Benefits; IUCN: Gland, Switzerland, 2015. [Google Scholar]
- Touhami, I.; Aouinti, H.; Khabthani, M.A.; Bergaoui, K.; Chirino, E.; Rzigui, T.; Bellot, J.; Khaldi, A.; Khouja, M.L.; Mannaï-Tayech, B. Monitoring Land-Cover Changes in Mediterranean Coastal Dunes, Northwest Tunisia, Using Remote Sensing Data. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12794. [Google Scholar] [CrossRef]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef]
- Jendoubi, D.; Liniger, H.; Ifejika Speranza, C. Impacts of Land Use and Topography on Soil Organic Carbon in a Mediterranean Landscape (North-western Tunisia). SOIL 2019, 5, 239–251. [Google Scholar] [CrossRef]
- EFIMED. New Observation Site in Tunisia to Study Climate Change and Forests. MedForest, 7 May 2020. [Google Scholar]
- Belhadj Khedher, F.; Mouillot, F. Gizement climatique et incendies de forêt en Tunisie: Sècheresse et évènements de sirocco dans les modèles climatiques. In Proceedings of the Actes du XXXIV ème Colloque International de l’AIC, Casablance, Morocco, 7–8 July 2021. [Google Scholar]
- FAO. The Multiple Dimensions of Food Security, WFP, The State of Food Insecurity in the World 2016; FAO: Rome, Italy, 2016. [Google Scholar]
- Panyawai, J.; Tuntiprapas, P.; Prathep, A. High macrophyte canopy complexity enhances sediment retention and carbon storage in coastal vegetative meadows at Tangkhen Bay, Phuket, Southern Thailand. Ecol. Res. 2019, 34, 201–212. [Google Scholar] [CrossRef]
- Degife, A.; Worku, H.; Gizaw, S. Environmental implications of soil erosion and sediment yield in Lake Hawassa watershed, south-central Ethiopia. Environ. Syst. Res. 2021, 10, 28. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Bewket, W. Towards Integrated Watershed Management in Highland Ethiopia: The Chemoga Watershed Case Study. Land Degrad. Dev. 2003, 44, 169. [Google Scholar]
- Ersoy Tonyaloğlu, E. Future land use/land cover and its impacts on ecosystem services: Case of Aydın, Turkey. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- García-Mayor, C.; Nolasco-Cirugeda, A. New Approach to Landscape-Based Spatial Planning Using Meaningful Geolocated Digital Traces. Land. 2023, 12, 951. [Google Scholar] [CrossRef]
- Zandebasiri, M.; Goujani, H.J.; Iranmanesh, Y.; Azadi, H.; Viira, A.-H.; Habibi, M. Ecosystem services valuation: A review of concepts, systems, new issues, and considerations about pollution in ecosystem services. Environ. Sci. Pollut. Res. 2023, 30, 83051–83070. [Google Scholar] [CrossRef] [PubMed]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, N. Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ. 2022, 8, 15–34. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Daly-Hassen, H.; Gader, G.; Potthast, M.C. Une Approche Économique pour Choisir les Options d’Adaptation des Forêts au Changement Climatique: Application à la Forêt de Chêne Liège en Tunisie. In Proceedings of the XIVème Congrès Forestier Mondial, Durban, South Africa, 7–11 September 2015. [Google Scholar]
Type | Date of Acquisition | Resolution (m) | Source | Number of Bands |
---|---|---|---|---|
Landsat8 (OLI/TIRS) | 21 August 2021 | 30 | Earth Explorer (usgs.gov) | 11 |
Lucode | Lulc_Name | c_Above | c_Below | c_Soil | c_Dead |
---|---|---|---|---|---|
1 | Bare soil | 0 | 0 | 0 | 0 |
2 | Arboriculture | 9 | 5 | 100 | 0 |
3 | Coniferous trees | 33 | 9 | 10 | 3 |
4 | Crop field | 7 | 4 | 0 | 0 |
5 | Constructed area | 0 | 0 | 10 | 0 |
6 | Deciduous forest | 151 | 43 | 458 | 6 |
7 | Scrubland | 4 | 11 | 10 | 3 |
8 | Water | 0 | 0 | 0 | 0 |
9 | Mixed forest | 93 | 26 | 458 | 5 |
Data | Type | Source |
---|---|---|
Digital Elevation model (DEM) | Raster (30 m) | SRTM |
Rainfall (2010–2020) | Monthly, annually | INM/DGRE |
Map of Soil types | Raster (30 m) | DG/ACTA |
LULC map | Raster (30 m) | DG/ACTA |
C, K, P factors | Decimal | [39] |
K, IC, SDR max parameters | Decimal | [33,38] |
Horizon | Scenario | Adaptation Management | Intervention Details | Area (ha) |
---|---|---|---|---|
2050 | BAU: Business as Usual | No management | No interventions | - |
Management Scenario | Soil and water conservation techniques | Contour ridges in crop field | 230.12 | |
Contour ridges in scrubland | 270.98 | |||
Mico-basin | 277.30 | |||
Agroforestry plantation | Plantation of carob trees | 857.00 | ||
Forest plantation | Plantation of cork trees | 1156.87 | ||
Plantation of pine trees | ||||
Plantation of carob trees | ||||
Combination | All types of interventions | 2792.27 |
Soil and Water Conservation | Forest Plantation | Agroforestry Plantation | |||
---|---|---|---|---|---|
Contour Ridges | Micro-Basins | Cork Oak | Pine | Carob | |
Cost of installation/plantation | 485.21 | 75.81 | 585.57 | 736.91 | 606.51 |
Cost of maintenance/fencing | 0 | 0 | 402.10 | 0 | 348.74 |
Lifetime | 15 | 10 | 300 | 1000 | 500 |
LULC Class | Area (ha) | ||||
---|---|---|---|---|---|
1990 | % Change | 2021 | % Change | 2050 | |
Arboriculture | 2860 | 280.61 | 10,885.5 | 46.34 | 15,929.91 |
Coniferous forests | 3956.08 | −17.46 | 3265.2 | −16.31 | 2732.52 |
Crop field | 27,889.3 | 5.66 | 29,469.06 | 2.29 | 30,142.61 |
Deciduous forests | 24345 | −14.72 | 20,760.21 | −10.14 | 18,655.02 |
Scrubland | 17,978.8 | −22.47 | 13,939.74 | −9.30 | 12,643.92 |
Mixed forests | 3898.34 | −17.11 | 3231.18 | −23.69 | 2465.57 |
Year | Carbon Storage t ha−1 | Sediment Retention t ha−1 | |
---|---|---|---|
1990 | Past situation | 1.71 | 19.25 |
2021 | Actual situation | 1.61 | 15.55 |
2050 | BAU: Business as Usual | 1.35 | 11.08 |
Soil and water conservation techniques | 1.42 | 14.58 | |
Agroforestry | 1.53 | 14.34 | |
Reforestation | 1.82 | 15.12 | |
Combination | 2.42 | 23.25 |
BAU | Soil and Water Conservation | Agroforestry | Reforestation | Combined Intervention | |
---|---|---|---|---|---|
Benefits M€ | 9.76 | 10.64 | 10.75 | 11.24 | 14.11 |
Costs M€ | - | −0.60 | −0.79 | −1.24 | 2.64 |
NPV M€ | - | 10.04 | 9.95 | 10.00 | 11.46 |
Intervention surface (ha) | - | 778.40 | 857.00 | 1156.87 | 2792.27 |
NPV 2% | NPV 4% | NPV 6% | NPV 10% | |
---|---|---|---|---|
Soil and Water Conservation | 10.04 | 7.76 | 6.18 | 4.21 |
Agroforestry | 9.95 | 7.56 | 5.90 | 3.87 |
Reforestation | 10.00 | 7.46 | 5.71 | 3.58 |
Combined intervention | 11.46 | 8.20 | 6.00 | 3.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouguerra, S.; Stiti, B.; Khalfaoui, M.; Jebari, S.; Khaldi, A.; Berndtsson, R. Modeling Ecosystem Regulation Services and Performing Cost–Benefit Analysis for Climate Change Mitigation through Nature-Based Solutions Using InVEST Models. Sustainability 2024, 16, 7201. https://doi.org/10.3390/su16167201
Bouguerra S, Stiti B, Khalfaoui M, Jebari S, Khaldi A, Berndtsson R. Modeling Ecosystem Regulation Services and Performing Cost–Benefit Analysis for Climate Change Mitigation through Nature-Based Solutions Using InVEST Models. Sustainability. 2024; 16(16):7201. https://doi.org/10.3390/su16167201
Chicago/Turabian StyleBouguerra, Sana, Boutheina Stiti, Mariem Khalfaoui, Sihem Jebari, Abdelhamid Khaldi, and Ronny Berndtsson. 2024. "Modeling Ecosystem Regulation Services and Performing Cost–Benefit Analysis for Climate Change Mitigation through Nature-Based Solutions Using InVEST Models" Sustainability 16, no. 16: 7201. https://doi.org/10.3390/su16167201
APA StyleBouguerra, S., Stiti, B., Khalfaoui, M., Jebari, S., Khaldi, A., & Berndtsson, R. (2024). Modeling Ecosystem Regulation Services and Performing Cost–Benefit Analysis for Climate Change Mitigation through Nature-Based Solutions Using InVEST Models. Sustainability, 16(16), 7201. https://doi.org/10.3390/su16167201