The Adhesion Performance in Green-Glued Finger Joints Using Different Wood Ring Orientations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection, Preparation, and Characterization of Wood
2.2. Measurement of Moisture
2.3. Drying Protocol
2.4. Finger Joint Profile Cutting Protocol
2.5. Mechanical Tests
- P: applied load (N);
- a: distance from one of the supports to the applied load (mm). In this case, 242 mm;
- L: span of the tested element (mm). In this case, 700 mm;
- b: width of the section of the part (mm);
- h: height of the section of the part (mm);
- α: coefficient of elastic deformation;
- δ: deformation at span center.
2.6. Micro-Computed Tomography (Micro-CT)
2.7. Roughness Measurement
2.8. Statistical Analysis
3. Results
3.1. Wood Characterizations
3.2. Mechanical Test
3.3. Characterization by Microcomputed Tomography (Micro-CT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuadrado, J.; Zubizarreta, M.; Pelaz, B.; Marcos, I. Methodology to Assess the Environmental Sustainability of Timber Structures. Constr. Build. Mater. 2015, 86, 149–158. [Google Scholar] [CrossRef]
- Gilbert, B.P.; Davies, T.E.; McGavin, R.L.; Dowse, C.J. Towards Reducing the Capital Cost of Manufacturing Laminated Veneer Lumbers: Investigating Finger Jointing Solutions. Constr. Build. Mater. 2024, 411, 134158. [Google Scholar] [CrossRef]
- Hou, J.; Taoum, A.; Kotlarewski, N.; Nolan, G. Study on the Effect of Finger-Joints on the Strengths of Laminations from Fiber-Managed Eucalyptus Nitens. Forests 2023, 14, 1192. [Google Scholar] [CrossRef]
- Clouet, B. Comportement Hydromécanique d’assemblages Bois Collés à l’état Vert: Approches Expérimentale et Numérique. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2014. [Google Scholar]
- Romero, A.; Odenbreit, C. Experimental Investigation on Strength and Stiffness Properties of Laminated Veneer Lumber (LVL). Materials 2023, 16, 7194. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, V.; Aguiar, F.; Jardim, P.; Mascarenhas, F.; Marini, L.; Aquino, V.; Santos, H.; Panzera, T.; Lahr, F.; Christoforo, A. Is Cross-Laminated Timber (CLT) a Wood Panel, a Building, or a Construction System? A Systematic Review on Its Functions, Characteristics, Performances, and Applications. Forests 2023, 14, 264. [Google Scholar] [CrossRef]
- Hermawan, A.; Mohammad Sofi, A.Z.; Roszalli, M.N. Performance of Glued Laminated Timber (Glulam) Made from Rubberwood with Different Lamina Assembly Patterns and Adhesive Spreads Rates. In Proceedings of the IOP Conference Series: Earth and Environmental Science; Institute of Physics: London, UK, 2023; Volume 1145. [Google Scholar]
- Rodríguez-Grau, G.; Marín-Uribe, C.; Cortés-Rodríguez, P.; Montero, C.; Rosales, V.; Galarce, C. Bibliometric Analysis of the Green Gluing Technique (2000–2020): Trends and Perspectives. Forests 2022, 13, 1714. [Google Scholar] [CrossRef]
- Sterley, M. Green Gluing of Wood; KTH—Royal Institute of Technology: Stockolm, Sweden, 2004. [Google Scholar]
- Lissouck, R.O.; Pommier, R.; Castéra, P.; Ayina Ohandja, M.L. Timber Engineering as a Tool for Species in Tropical Rain Forests: The Case of Congo Basin Forest. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 15–19 July 2012. [Google Scholar]
- Bidzo, C.H.N.; Nziengui, C.F.P.; Ikogou, S.; Kaiser, B.; Pitti, R.M. Mechanical Behavior of Tropical Glued Laminated Timber Beams with Fingers Joints. Procedia Struct. Integr. 2022, 37, 447–452. [Google Scholar] [CrossRef]
- Morin-Bernard, A.; Blanchet, P.; Dagenais, C.; Achim, A. Glued-Laminated Timber from Northern Hardwoods: Effect of Finger-Joint Profile on Lamellae Tensile Strength. Constr. Build. Mater. 2021, 271, 121591. [Google Scholar] [CrossRef]
- Ahmad, Z.; Lum, W.C.; Lee, S.H.; Razlan, M.A.; Mohamad, W.H.W. Mechanical Properties of Finger Jointed Beams Fabricated from Eight Malaysian Hardwood Species. Constr. Build. Mater. 2017, 145, 464–473. [Google Scholar] [CrossRef]
- Rosales, V.; Rodríguez-Grau, G.; Galarce, C.; Montero, C.; Alvarado, C.; Muñoz, L.; Pommier, R. Feasibility of Bonding High-Moisture-Content Wood Using Nothofagus Chilean Species. Forests 2023, 14, 2386. [Google Scholar] [CrossRef]
- Sterley, M.; Gustafsson, P.J. Shear Fracture Characterization of Green-Glued Polyurethane Wood Adhesive Bonds at Various Moisture and Gluing Conditions. Wood Mater. Sci. Eng. 2012, 7, 93–100. [Google Scholar] [CrossRef]
- Pommier, R.; Elbez, G. Finger-Jointing Green Softwood: Evaluation of the Interaction between Polyurethane Adhesive and Wood. Wood Mater. Sci. Eng. 2006, 1, 127–137. [Google Scholar] [CrossRef]
- Ayarkwa, J.; Hirashima, Y.; Sasaki, Y.; Yamasaki, M. Influence of Finger-Joint Geometry and End Pressure on Tensile Properties of Three Finger-Jointed Tropical African Hardwoods. S. Afr. For. J. 2000, 188, 37–49. [Google Scholar] [CrossRef]
- Tsalagkas, D.; Börcsök, Z.; Pásztory, Z. The Effect of Finger Length and Adhesive Type on the Curing Time of Finger-Jointed Black Pine (Pinus nigra L.) Lumber. Wood Mater. Sci. Eng. 2021, 16, 312–320. [Google Scholar] [CrossRef]
- Bustos, C.; Hernández, R.E.; Beauregard, R.; Mohammad, M. Effects of End-Pressure on the Finger-Joint Quality of Black Spruce Lumber: A Microscopic Analysis. Maderas. Cienc. Tecnol. 2011, 13, 319–328. [Google Scholar] [CrossRef]
- Groom, L.H.; Leichti, R.J. Effect of Adhesive Stiffness and Thickness on Stress Distributions in Structural Finger Joints. J. Adhes. 1994, 44, 69–83. [Google Scholar] [CrossRef]
- Faircloth, A.; Kumar, C.; McGavin, R.; Gilbert, B.; Leggate, W. Mechanical Performance and Bond Integrity of Finger Jointed High-Density Sub-Tropical Hardwoods for Residential Decking. Forests 2023, 14, 956. [Google Scholar] [CrossRef]
- NCh2245:2015; Hoja de Datos de Seguridad para Productos Químicos—Contenido y Orden de las Secciones. Instituto Nacional de Normalización: Santiago, Chile, 2015.
- Grabianowski, M.; Manley, B.; Walker, J.C.F. Acoustic Measurements on Standing Trees, Logs and Green Lumber. Wood Sci. Technol. 2006, 40, 205–216. [Google Scholar] [CrossRef]
- Balmori Roiz, J.A.; Acuña Rello, L.B.; Otero, L.A. Estudio de La Influencia de La Dirección de La Fibra En La Velocidad de Propagación de Ultrasonidos (FAKOPP) En Madera Estructural de “Pinus sylvestris L.” y “Pinus radiata D. Don.”. In Proceedings of the 6th Rehabend Congress, Burgos, Spain, 24–27 May 2016. [Google Scholar]
- NCh176/1; Madera-Parte 1: Determinación Del Contenido de Humedad. Instituto Nacional de Normalización: Santiago, Chile, 2019.
- NCh176/2; Madera-Parte 2: Determinación de Densidad. Instituto Nacional de Normalización: Santiago, Chile, 1988.
- He, S.; Lin, L.; Wu, Z.; Chen, Z. Application of Finite Element Analysis in Properties Test of Finger-Jointed Lumber. J. Bioresour. Bioprod. 2020, 5, 124–133. [Google Scholar] [CrossRef]
- NCh 2148; Madera Laminada Encolada Estructural—Requisitos, Métodos de Muestreo e Inspección. Instituto Nacional de Normalización: Santiago, Chile, 2013.
- EN 408:2010+A1:2012; Timber Structures—Structural Timber and Glued Laminated Timber—Determination of Some Physical and Mechanical Properties. European Committee for Standardization: Brussels, Belgium, 2010.
- Meseguer, A.G. Hormigon Armado (Vol. II): Calculos en Estados Limite; Fundación Escuela de la Edificación: Madrid, Spain, 2001. [Google Scholar]
- Kazup, Á.; Fegyverneki, G.; Gácsi, Z. Evaluation of the Applicability of Computer-Aided Porosity Testing Methods for Different Pore Structures. Metallogr. Microstruct. Anal. 2022, 11, 774–789. [Google Scholar] [CrossRef]
- Jakob, M.; Mahendran, A.R.; Gindl-Altmutter, W.; Bliem, P.; Konnerth, J.; Müller, U.; Veigel, S. The Strength and Stiffness of Oriented Wood and Cellulose-Fibre Materials: A Review. Prog. Mater. Sci. 2022, 125, 100916. [Google Scholar] [CrossRef]
- Shirmohammadli, Y.; Pizzi, A.; Raftery, G.M.; Hashemi, A. One-Component Polyurethane Adhesives in Timber Engineering Applications: A Review. Int. J. Adhes. Adhes. 2023, 123, 103358. [Google Scholar] [CrossRef]
- Clerc, G.; Brülisauer, M.; Affolter, S.; Volkmer, T.; Pichelin, F.; Niemz, P. Characterization of the Ageing Process of One-Component Polyurethane Moisture Curing Wood Adhesive. Int. J. Adhes. Adhes. 2017, 72, 130–138. [Google Scholar] [CrossRef]
- Yang, G.; Gong, Z.; Luo, X.; Chen, L.; Shuai, L. Bonding Wood with Uncondensed Lignins as Adhesives. Nature 2023, 621, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jeong, B.; Park, B.-D. A Comparison of Adhesion Behavior of Urea-Formaldehyde Resins with Melamine-Urea-Formaldehyde Resins in Bonding Wood. Forests 2021, 12, 1037. [Google Scholar] [CrossRef]
- Iždinský, J.; Reinprecht, L.; Sedliačik, J.; Kúdela, J.; Kučerová, V. Bonding of Selected Hardwoods with PVAc Adhesive. Appl. Sci. 2020, 11, 67. [Google Scholar] [CrossRef]
- Yue, K.; Wang, F.; Lu, W.; Tang, Z.; Chen, Z.; Liu, W. Tensile Properties of Finger-Jointed Lumber under High-Temperature and Oxygen-Free Conditions. Holzforschung 2021, 75, 838–846. [Google Scholar] [CrossRef]
- Hill, S.J.; Kirby, N.M.; Mudie, S.T.; Hawley, A.M.; Ingham, B.; Franich, R.A.; Newman, R.H. Effect of Drying and Rewetting of Wood on Cellulose Molecular Packing. Holzforschung 2010, 64, 421–427. [Google Scholar] [CrossRef]
- Tomad, J.; Leelatanon, S.; Jantawee, S.; Srisuchart, K.; Matan, N. Internal Stress Development within Wood during Drying: Regime and Kinetics. Dry. Technol. 2023, 41, 77–88. [Google Scholar] [CrossRef]
- González-Prieto, O.; Casas Mirás, J.M.; Torres, L.O. Finger-Jointing of Green Eucalyptus Globulus L. Wood with One-Component Polyurethane Adhesives. Eur. J. Wood Wood Prod. 2022, 80, 429–437. [Google Scholar] [CrossRef]
- Alia-Syahirah, Y.; Paridah, M.T.; Hamdan, H.; Anwar, U.M.K.; Nordahlia, A.S.; Lee, S.H. Effects of Anatomical Characteristics and Wood Density on Surface Roughness and Their Relation to Surface Wettability of Hardwood. J. Trop. For. Sci. 2019, 31, 269–277. [Google Scholar] [CrossRef]
- Yu, Q.; Pan, X.; Yang, Z.; Zhang, L.; Cao, J. Effects of the Surface Roughness of Six Wood Species for Furniture Production on the Wettability and Bonding Quality of Coating. Forests 2023, 14, 996. [Google Scholar] [CrossRef]
- Báder, M.; Németh, R. Moisture-Dependent Mechanical Properties of Longitudinally Compressed Wood. Eur. J. Wood Prod. 2019, 77, 1009–1019. [Google Scholar] [CrossRef]
Physical Parameter | Statistical Tests | Finger Joint of Green Gluing | Wet Wood | Finger Joint of Dry Wood | Dry Wood |
---|---|---|---|---|---|
Oven-dry density (kg/m3) | Average | 0.511 | 0.534 | 0.541 | 0.548 |
Standard deviation | 0.046 | 0.045 | 0.039 | 0.037 | |
Size sample | 14 | 14 | 16 | 16 |
Statistical Tests | Finger Joint of Green Gluing | Wet Wood | Finger Joint of Dry Wood | Dry Wood |
---|---|---|---|---|
Average | 12.345 | 8.707 | 9.650 | 10.497 |
Standard deviation | 2.900 | 1.727 | 2.475 | 2.709 |
Size sample | 69 | 70 | 80 | 80 |
Factors | Degrees of Freedom | Sum of Squares | Mean Square | F-Value | Probability | F Critical |
---|---|---|---|---|---|---|
Between groups | 3 | 502.765 | 167.588 | 26.847 | 2.2169 × 10−15 * | 2.635 |
Within groups | 295 | 1841.500 | 6.242 | |||
Total | 298 | 2344.265 |
Finger Joint of Green Gluing | Wet Wood | Finger Joint of Dry Wood | Dry Wood | |
---|---|---|---|---|
Finger-joint of green gluing | - | <0.001 * | <0.001 * | <0.001 * |
Wet wood | - | 0.0988 NS | <0.001 * | |
Finger-joint of dry wood | - | 0.1421 NS | ||
Dry wood | - |
Condition | Orientation | |||||
---|---|---|---|---|---|---|
R/T | R/R | T/T | ||||
Dry | Mean MOR (MPa) | 23.09 | Mean MOR (MPa) | 20.10 | Mean MOR (MPa) | 18.02 |
COV | 0.175 | COV | 0.396 | COV | 0.398 | |
Type of failure | c (100%) | Type of failure | b (20%) c (80%) | Type of failure | c (100%) | |
Mean MOE (Mpa) | 10,665.4 | Mean MOE (Mpa) | 10,319.97 | Mean MOE (Mpa) | 9842.91 | |
COV | 0.99 | COV | 0.056 | COV | 0.148 | |
Green | Mean MOR (MPa) | 51.32 | Mean MOR (MPa) | 50.42 | Mean MOR (MPa) | 45.80 |
COV | 0.158 | COV | 0.074 | COV | 0.109 | |
Type of failure | a (25%) b (60%) c (15%) | Type of failure | a (30%) b (40%) c (30%) | Type of failure | a (50%); b (50%) | |
Mean MOE (Mpa) | 11,151.88 | Mean MOE (Mpa) | 11,813.25 | Mean MOE (Mpa) | 11,771.55 | |
COV | 0.126 | COV | 0.092 | COV | 0.182 |
Sample | Thickness of the Glued Line (µm) | Average Porosity (%) | Average Porosity in Glue Line (%) |
---|---|---|---|
Dry R/T | 340 ± 72.1 | 56.7 ± 0.79 | 13.7 |
Green R/T | 341.3 ± 120.7 | 59.6 ± 0.33 | 11.3 |
Dry R/R | 229 ± 63.7 | 70.7 ± 0.29 | 9.4 |
Green R/R | 350 ± 55.7 | 50.2 ± 0.48 | 1.49 |
Dry T/T | 187.7 ± 51.9 | 66.3 ± 0.23 | 6.07 |
Green T/T | 247 ± 61.4 | 52.5 ± 1.41 | 7.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Grau, G.; Cordonnier, P.-L.; Navarrete, B.; Montero, C.; Alvarado, C.; Pommier, R.; Rosales, V.; Galarce, C. The Adhesion Performance in Green-Glued Finger Joints Using Different Wood Ring Orientations. Sustainability 2024, 16, 7158. https://doi.org/10.3390/su16167158
Rodríguez-Grau G, Cordonnier P-L, Navarrete B, Montero C, Alvarado C, Pommier R, Rosales V, Galarce C. The Adhesion Performance in Green-Glued Finger Joints Using Different Wood Ring Orientations. Sustainability. 2024; 16(16):7158. https://doi.org/10.3390/su16167158
Chicago/Turabian StyleRodríguez-Grau, Gonzalo, Pierre-Louis Cordonnier, Benjamín Navarrete, Claudio Montero, Claudia Alvarado, Régis Pommier, Víctor Rosales, and Carlos Galarce. 2024. "The Adhesion Performance in Green-Glued Finger Joints Using Different Wood Ring Orientations" Sustainability 16, no. 16: 7158. https://doi.org/10.3390/su16167158
APA StyleRodríguez-Grau, G., Cordonnier, P.-L., Navarrete, B., Montero, C., Alvarado, C., Pommier, R., Rosales, V., & Galarce, C. (2024). The Adhesion Performance in Green-Glued Finger Joints Using Different Wood Ring Orientations. Sustainability, 16(16), 7158. https://doi.org/10.3390/su16167158