Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia
Abstract
:1. Introduction
2. Potential of Palaeo–Climate/Environmental and Archaeological Records in Georgia
2.1. Ice Core(s)—Assessment of the State of Preservation of the Ice Archives in the Georgian Caucasus
2.2. Glacial Moraines
2.3. River-, Peat- and Lake-Sediment Cores
2.4. Archaeological Surveys and Dating Programmes
2.4.1. Metal Economies
2.4.2. Settlement and Connection Dynamics
3. Establishing an Interdisciplinary Climate–Environment–Archaeological–Historical Research Framework for Georgia
- -
- The impact (or not) of both slow and rapid climate and environmental change on the landscape dynamics and human populations in Georgia, the Greater Caucasus and the eastern Black Sea region (and possibly also the eastern Mediterranean regions for selected periods).
- -
- Human transformation of the environment through agriculture and metal economies from the Neolithic and Bronze Age to the present.
- -
- Key moments of human societal change through population movement, technological innovation, connection/trade, war and disease pandemics.
- -
- The (pre)historic impact of climate change and human-induced environmental pollution on ecosystems and its consequences in our own time (for food, environment and infrastructure security) through comparison with rapid warming and cooling periods in the past and the realisation of the toxic impact of the release of historic ‘legacy pollution’ into modern ecosystems.
- -
- A Greater Caucasus Mountain case study, whether in the Svaneti region, the upper Enguri valley, or Kazbegi, comprising extraction and analyses of ice cores (for climate and pollution-related research) and lake sediment cores (including anthropogenic pollution profiles), glacial moraines and radiocarbon/luminescence dating of known archaeological metal smelting/working sites.
- -
- A Rioni river valley case study in the central zone of the transect, comprising fluvial and alluvial geomorphology and sediment analyses, as well as minor element/metal pollution analyses, radiocarbon-dating of known metalworking sites, and synthesis of the settlement history from archaeological remains. This would need to combine the use of geomorphological (study of natural outcrops and drill cores, analysis of high-resolution DEMs), geophysical (electrical resistivity tomography, electromagnetic induction), geochronological (radiocarbon, luminescence), sedimentological-geochemical (grain size, rock magnetic, CNS and heavy mineral element analysis) and palaeobotanical (biomarker, phytolith or pollen) analyses (Figure 5) [95].
- -
- A Black Sea coastal plain and delta case study can expand on the research by Ilia State University and Cologne University already undertaken in this area for micro-topographical and landscape reconstruction linked to the Bronze Age to modern settlement evidence. New research needs to focus on known ombrotrophic peat bog analysis for prehistoric and historic pollution studies. A second dimension can be added through the geoarchaeological study of the Rioni delta, following the approaches of the international project lead by the German Archaeological Institute (DAI) with French and local partners in the northern Caucasus and the Kuban delta (Figure 12). The reconstruction of the geobioarchaeological landscapes over the longue durée will allow an assessment of changing delta topography, influenced by human alteration of the landscape and climate change.
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagona, A. The Archaeology of the Caucasus: From Earliest Settlements to the Iron Age; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Braund, D.; Nelson, C. Georgia in Antiquity: A History of Colchis and Transcaucasian Iberia, 550 BC–AD 562; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Rayfield, D. Edge of Empires: A History of Georgia; Reaktion Books: London, UK, 2012. [Google Scholar]
- Rick, T.C.; Sandweiss, D.H. Archaeology, climate and global change in the Age of Humans. Proc. Natl. Acad. Sci. USA 2020, 117, 8250–8253. [Google Scholar] [CrossRef] [PubMed]
- Rockman, M.; Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl. Acad. Sci. USA 2020, 117, 8295–8302. [Google Scholar] [CrossRef] [PubMed]
- Büntgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J.o.; Herzig, F.; Heussner, K.-U.; Wanner, H.; et al. 2500 years of European climate variability and human susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Büntgen, U.; Myglan, V.S.; Ljungqvist, F.C.; McCormick, M.; Di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef]
- McCormick, M.; Büntgen, U.; Cane, M.A.; Cook, E.R.; Harper, K.; Huybers, P.; Litt, T.; Manning, S.W.; Mayewski, P.A.; More, A.F.M.; et al. Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence. J. Interdiscip. Hist. 2012, 43, 169–220. [Google Scholar] [CrossRef]
- Sigl, M.; Winstrup, M.; McConnell, J.R.; Welten, K.C.; Plunkett, G.; Ludlow, F.; Büntgen, U.; Caffee, M.W.; Chellman, N.; Dahl-Jensen, D.; et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 2015, 523, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Luterbacher, J.; Werner, J.P.; E Smerdon, J.; Fernández-Donado, L.; González-Rouco, F.J.; Barriopedro, D.; Ljungqvist, F.C.; Büntgen, U.; Zorita, E.; Wagner, S.; et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016, 11, 024001. [Google Scholar] [CrossRef]
- Manning, J.G.; Ludlow, F.; Stine, A.R.; Boos, W.R.; Sigl, M.; Marlon, J.R. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nat. Commun. 2017, 8, 900. [Google Scholar] [CrossRef]
- Roberts, C.N.; Woodbridge, J.; Palmisano, A.; Bevan, A.; Fyfe, R.; Shennan, S. Mediterranean landscape change during the Holocene: Synthesis, comparison and regional trends in population, land cover and climate. Holocene 2019, 29, 923–937. [Google Scholar] [CrossRef]
- Lüning, S.; Gałka, M.; Vahrenholt, F. Warming and cooling: The Medieval Climate Anomaly in Africa and Arabia. Paleoceanography 2017, 32, 1219–1235. [Google Scholar] [CrossRef]
- Roberts, N.; Moreno, A.; Valero-Garcés, B.L.; Corella, J.P.; Jones, M.; Allcock, S.; Woodbridge, J.; Morellón, M.; Luterbacher, J.; Xoplaki, E.; et al. Palaeoliminological evidence for an east-west climate see-saw in the Mediterranean since AD 900. Glob. Planet. Change 2012, 84–85, 23–34. [Google Scholar] [CrossRef]
- Haldon, J.; Roberts, N.; Izdebski, A.; Fleitmann, D.; McCormick, M.; Cassis, M.; Doonan, O.; Eastwood, W.; Elton, H.; Ladstätter, S.; et al. The climate and environment of Byzantine Anatolia: Integrating science, history and archaeology. J. Interdiscip. Hist. 2014, 45, 113–161. [Google Scholar] [CrossRef]
- Xoplaki, E.; Fleitmann, D.; Luterbacher, J.; Wagner, S.; Haldon, J.F.; Zorita, E.; Telelis, I.; Toreti, A.; Izdebski, A. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change. Quat. Sci. Rev. 2016, 136, 229–252. [Google Scholar] [CrossRef]
- Xoplaki, E.; Luterbacher, J.; Wagner, S.; Zorita, E.; Fleitmann, D.; Preiser-Kapeller, J.; Sargent, A.M.; White, S.; Toreti, A.; Haldon, J.F.; et al. Modelling climate and societal resilience in the eastern Mediterranean in the last millennium. Hum. Ecol. 2018, 46, 363–379. [Google Scholar] [CrossRef]
- Feurdean, A.; Galka, M.; Kuske, E.; Tantau, I.; Lamentowicz, M.; Florescu, G.; Liakka, J.; Hutchinson, S.M.; Mulch, A.; Hickler, T. Last Millennium hydro-climate variability in Central-Eastern Europe (Northern Carpathians, Romania). Holocene 2015, 25, 1179–1192. [Google Scholar] [CrossRef]
- Zanchetta, G.; Bini, M.; Bloomfield, K.; Izdebski, A.; Vivoli, N.; Regattieri, E.; Isola, I.; Drysdale, R.N.; Bajo, P.; Hellstrom, J.C.; et al. Beyond one-way determinism. San Frediano’s miracle and climate change in central and northern Italy in late antiquity. Clim. Change 2021, 165, 25. [Google Scholar] [CrossRef]
- Alizadeh, K.; Mohammadi, M.R.; Maziar, S.; Feizkhah, M. The Islamic Conquest or Flooding? Sasanian settlements and irrigation systems collapse in Mughan, Iranian Azerbaijan. J. Field Archaeol. 2021, 46, 316–332. [Google Scholar] [CrossRef]
- Büntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- McConnell, J.R.; Wilson, A.I.; Stohl, A.; Arienzo, M.M.; Chellman, N.J.; Eckhardt, S.; Thompson, E.M.; Pollard, A.M.; Steffensen, J.P. Steffensen. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars and imperial expansion during antiquity. Proc. Natl. Acad. Sci. USA 2018, 115, 5726–5731. [Google Scholar] [CrossRef]
- McConnell, J.R.; Chellman, N.J.; Wilson, A.I.; Stohl, A.; Arienzo, M.M.; Eckhardt, S.; Fritzsche, D.; Kipfstuhl, S.; Opel, T.; Place, P.F.; et al. Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate and conflict. Proc. Natl. Acad. Sci. USA 2019, 116, 14910–14915. [Google Scholar] [CrossRef] [PubMed]
- Loveluck, C.P.; More, A.F.; Spaulding, N.E.; Clifford, H.; Handley, M.J.; Hartman, L.; Korotkikh, E.V.; Kurbatov, A.V.; Mayewski, P.A.; Sneed, S.B.; et al. Alpine ice and the annual political economy of the Angevin Empire, from the death of Thomas Becket to Magna Carta, c. AD 1170-1216. Antiquity 2020, 94, 473–490. [Google Scholar] [CrossRef]
- Hao, Z.; Zheng, J.; Yu, Y.; Xiong, D.; Liu, Y.; Ge, Q. Climatic changes during the past two millennia along the ancient Silk Road. Prog. Phys. Geogr. 2019, 44, 605–623. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High mountain areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 131–202. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.G.; Davis, M.E.; Mosley-Thompson, E.; Porter, S.E.; Corrales, G.V.; Shuman, C.A.; Tucker, C.J. The impacts of warming on rapidly retreating high-altitude, low-latitude glaciers and ice core-derived climate records. Glob. Planet. Change 2021, 203, 103538. [Google Scholar] [CrossRef]
- Preunkert, S.; Legrand, M.; Kutuzov, S.; Ginot, P.; Mikhalenko, V.; Friedrich, R. The Elbrus (Caucasus, Russia) Ice Core Record—Part 1: Reconstruction of Past Anthropogenic Sulfur Emissions in South-Eastern Europe. Atmos. Chem. Phys. 2019, 19, 14119–14132. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Nosenko, G.; Kutuzov, S.; Rototaeva, O.; Khromova, T. Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. Cryosphere 2014, 8, 2367–2379. [Google Scholar] [CrossRef]
- Kurtubadze, M. The Caucasus Ecoregion, Physical Map. GRID-Arendal Resources Library. 2008. Available online: www.grida.no/resources/7902 (accessed on 15 July 2024).
- Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Kemp, S. High-Resolution Provenance of Desert Dust Deposited on Mt. Elbrus, Caucasus in 2009–2012 Using Snow Pit and Firn Core Records. Cryosphere 2013, 7, 1481–1498. [Google Scholar] [CrossRef]
- Mikhalenko, V.; Sokratov, S.; Kutuzov, S.; Ginot, P.; Legrand, M.; Preunkert, S.; Lavrentiev, I.; Kozachek, A.; Ekaykin, A.; Faïn, X.; et al. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. Cryosphere 2015, 9, 2253–2270. [Google Scholar] [CrossRef]
- Kutuzov, S.; Legrand, M.; Preunkert, S.; Ginot, P.; Mikhalenko, V.; Shukurov, K.; Poliukhov, A.; Toropov, P. The Elbrus (Caucasus, Russia) Ice Core Record—Part 2: History of Desert Dust Deposition. Atmos. Chem. Phys. 2019, 19, 14133–14148. [Google Scholar] [CrossRef]
- Kutuzov, S.S.; Mikhalenko, V.N.; Grachev, A.M.; Ginot, P.; Lavrentiev, I.I.; Kozachek, A.V.; Krupskaya, V.V.; Ekaykin, A.A.; Tielidze, L.G.; Toropov, P.A. First Geophysical and Shallow Ice Core Investigation of the Kazbek Plateau Glacier, Caucasus Mountains. Environ. Earth Sci. 2016, 75, 1488. [Google Scholar] [CrossRef]
- Mikhalenko, V.; Kutuzov, S.; Toropov, P.; Legrand, M.; Sokratov, S.; Chernyakov, G.; Lavrentiev, I.; Preunkert, S.; Kozachek, A.; Vorobiev, M.; et al. Accumulation Rates over the Past 260 Years Archived in Elbrus Ice Core, Caucasus. Clim. Past 2024, 20, 237–255. [Google Scholar] [CrossRef]
- U.S. Ice Drilling Program. Thermal Drill Operations and Maintenance Manual. 1–22, 2023. Available online: https://icedrill.org/library/thermal-drill-operations-and-maintenance-manual (accessed on 4 July 2024).
- Avak, S.E.; Trachsel, J.C.; Edebeli, J.; Brütsch, S.; Bartels-Rausch, T.; Schneebeli, M.; Schwikowski, M.; Eichler, A. Melt-Induced Fractionation of Major Ions and Trace Elements in an Alpine Snowpack. J. Geophys. Res. Earth Surf. 2019, 124, 1647–1657. [Google Scholar] [CrossRef]
- Garrison, C.; Baldwin, C.; Hernandez, M. The Vanishing Climate Archives: Scientists Scramble to Harvest Ice Cores as Glaciers Melt. 2021. Published 13 September 2021, Updated 22 September 2021. Available online: https://www.reuters.com/graphics/CLIMATE-CHANGE/ICE-CORES/zjvqkjkjlvx/ (accessed on 4 July 2024).
- Solomina, O.N.; Alexandrovskiy, A.L.; Zazovskaya, E.P.; A Konstantinov, E.; A Shishkov, V.; Kuderina, T.M.; Bushueva, I.S. Late-Holocene advances of the Greater Azau Glacier (Elbrus area, Northern Caucasus) revealed by 14C dating of paleosols. Holocene 2022, 32, 468–481. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Solomina, O.N.; Jomelli, V.; Dolgova, E.A.; Bushueva, I.S.; Mikhalenko, V.N.; Brauche, R.; Aster, T. Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium-10 data. Ice Snow 2020, 3, 453–470. [Google Scholar] [CrossRef]
- Gobejishvili, R. Late Pleistocene (Würmian) Glaciation of the Caucasus; Ehlers, J., Gibbard, P.L., Eds.; Developments in Quaternary Sciences; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, Part 1; pp. 129–134. [Google Scholar] [CrossRef]
- Blanchet, C.L.; Tjallingii, R.; Frank, M.; Lorenzen, J.; Reitz, A.; Brown, K.; Feseker, T.; Brückmann, W. High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan. Earth Planet. Sci. Lett. 2013, 364, 98–110. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G.; Rommens, T.; Vanmontfort, B.; Govers, G.; Poesen, J. Establishing a Holocene sediment budget for the river Dijle. Catena 2013, 77, 150–163. [Google Scholar] [CrossRef]
- Grygar, T.M.; Elznicová, J.; Kiss, T.; Smith, H.G. Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohře River, Czech Republic. Catena 2016, 144, 109–129. [Google Scholar] [CrossRef]
- Laermanns, H.; Kelterbaum, D.; May, S.M.; Elashvili, M.; Opitz, S.; Hülle, D.; Rölkens, J.; Verheul, J.; Riedesel, S.; Brückner, H. Mid- to Late Holocene landscape changes in the Rioni Delta area (Kolkheti lowlands, W. Georgia). Quat. Int. 2018, 465, 85–98. [Google Scholar] [CrossRef]
- Connor, S.E.; Thomas, I.; Kvavadze, E.V. A 5600-yr history of changing vegetation, sea levels and human impacts from the Black Sea coast of Georgia. Holocene 2007, 17, 25–36. [Google Scholar] [CrossRef]
- Connor, S.E.; Kvavadze, E.V. Modelling late Quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia, Caucasus. J. Biogeogr. 2008, 36, 529–545. [Google Scholar] [CrossRef]
- de Klerk, P.; Haberl, A.; Kaffke, A.; Krebs, M.; Matchutadze, I.; Minke, M.; Schulz, J.; Joosten, H. Vegetation history and environmental development since ca 6000 cal yr BP in and around Ispani 2 (Kolkheti lowlands, Georgia). Quat. Sci. Rev. 2009, 28, 890–910. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Finsinger, W.; Ersek, V. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution. Proc. Natl. Acad. Sci. USA 2018, 115, E5661–E5668. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Ersek, V.; Phillips, D.L.; Chauvel, C.; Tamas, C.G. Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model. Sci. Rep. 2018, 8, 6154. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.; Cullen, V.; White, D.; Bramham-Law, C.; Smith, V. Cryptotephra as a Dating and Correlation Tool in Archaeology. J. Archaeol. Sci. 2014, 42, 42–50. [Google Scholar] [CrossRef]
- Lowe, D.J.; Pearce, N.J.; Jorgensen, M.A.; Kuehn, S.C.; Tryon, C.A.; Hayward, C.L. Correlating Tephras and Cryptotephras Using Glass Compositional Analyses and Numerical and Statistical Methods: Review and Evaluation. Quat. Sci. Rev. 2017, 175, 1–44. [Google Scholar] [CrossRef]
- Cristea, G.; Cuna, S.M.; Fărcaş, S.; Tanţău, I.; Dordai, E.; Măgdaş, D.A. Carbon isotope composition as indicator for climatic changes during the middle and late Holocene in a peat bog from Maramureş Mountains (Romania). Holocene 2014, 24, 15–23. [Google Scholar] [CrossRef]
- Foulds, S.; Brewer, P.; Macklin, M.; Haresign, W.; Betson, R.; Rassner, S. Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Sci. Total Environ. 2014, 476–477, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Messager, E.; Poulenard, J.; Sabatier, P.; Develle, A.-L.; Wilhelm, B.; Nomade, S.; Scao, V.; Giguet-Covex, C.; Von Grafenstein, U.; Arnaud, F.; et al. Paravani, a puzzling lake in the South Caucasus. Quat. Int. 2021, 579, 6–18. [Google Scholar] [CrossRef]
- Cromartie, A.; Blanchet, C.; Barhoumi, C.; Messager, E.; Peyron, O.; Ollivier, V.; Sabatier, P.; Etienne, D.; Karakhanyan, A.; Khatchadourian, L.; et al. The vegetation, climate, and fire history of a mountain steppe: A Holocene reconstruction from the South Caucasus, Shenkani, Armenia. Quat. Sci. Rev. 2020, 246, 106485. [Google Scholar] [CrossRef]
- Robles, M.; Peyron, O.; Brugiapaglia, E.; Ménot, G.; Dugerdil, L.; Ollivier, V.; Ansanay-Alex, S.; Develle, A.-L.; Tozalakyan, P.; Meliksetian, K.; et al. Impact of climate changes on vegetation and human societies during the Holocene in the south Caucasus (Vanevan, Armenia): A multi-proxy approach including pollen, NPPs and brGDGTs. Quat. Sci. Rev. 2022, 277, 107297. [Google Scholar] [CrossRef]
- Wick, L.; Lemcke, G.; Sturm, M. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: High-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 2003, 13, 665–675. [Google Scholar] [CrossRef]
- Lordkipanidze, O. At the Source of the Ancient Georgian Civilization; Iv. Javakhishvili Tbilisi State University: Tbilisi, Georgia, 2002; 207p. (In Georgian) [Google Scholar]
- Bar-Yosef, O.; Belfer-Cohen, A.; Mesheviliani, T.; Jakeli, N.; Bar-Oz, G.; Boaretto, E.; Goldberg, P.; Kvavadze, E.; Matskevich, Z. Dzudzuana: An Upper Palaeolithic cave site in the Caucasus foothills (Georgia). Antiquity 2011, 85, 331–349. [Google Scholar] [CrossRef]
- Kaukhchishvili, T. Geography of Strabo: Information about Georgia; Publishing House of the Academy of Sciences of the Georgian SSR: Tbilisi, Georgia, 1957. (In Georgian) [Google Scholar]
- Kunze, R.; Arnhold, S.; Mödlinger, M. Analytische Untersuchungen zu ostgeorgischen Bronzeobjekten: Das Fallbeispiel Nazarlebi. Praehist. Z. 2023, 98, 191–222. [Google Scholar] [CrossRef]
- Jibladze, L. Secondary Centers for the Metallurgical Production of Bronze in the Colchis Valley; Amirani, XIV–XV: Tbilisi, Georgia, 2006. (In Georgian) [Google Scholar]
- Khakhutaishvili, D. The Manufacture of Iron in Ancient Colchis; BAR Publishing: Oxford, UK, 2009; p. 147. ISBN 9781407303895. [Google Scholar]
- Gzelishvili, I.A. Zhelezoplavil’noe Proizvodstvo v Drevney Gruzii (Iron Smelting Production in Ancient Georgia); Metsniereba: Tbilisi, Georgia, 1964. [Google Scholar]
- Khakhutaishvili, D.A. Proizvodstvo Zheleza v Drevney Kolkhide (The Production of Iron in Ancient Colchis); Metsniereba: Tbilisi, Georgia, 1987. [Google Scholar]
- Erb-Satullo, N.L.; Gilmour, B.J.J.; Khakhutaishvili, N. The ebb and flow of copper and iron smelting in the south Caucasus. Radiocarbon 2018, 60, 159–180. [Google Scholar] [CrossRef]
- Sulava, N.; Gilmour, B.; Chagelishvili, R.; Beridze, T.; Rezesidze, N. Late Bronze Age (Colchian) copper production in the Dogurashi mountain area of Lechkhumi: Recent archaeological and geological investigations and future aims. J. Hist. Metall. Soc. 2020, 52, 59–72. [Google Scholar]
- Nadiradze, J. Sairkhe Sakartvelos Udzvelesi Kalaki (Sairkhe: An Ancient City of Georgia); Metsniereba: Tbilisi, Georgia, 1990. [Google Scholar]
- Gamkrelidze, G. Ancient Settlements of Central Colchis; Metsniereba: Tbilisi, Georgia, 1982. (In Georgian) [Google Scholar]
- Jibladze, L. Kuftin and the Bronze-Early Iron Age Settlements of the Colchis Plain; Georgian Academy of Sciences: Tbilisi, Georgia, 2003. (In Georgian) [Google Scholar]
- Hamburg, J.; Lorenzon, M. Before Meeting the Greeks: Kutaisi influence in Late Bronze and Early Iron Age Colchian Settlements. J. Field Archaeol. 2022, 47, 13–31. [Google Scholar] [CrossRef]
- Lordkipanidze, O. Phasis: The River and the City in Colchis. Steiner: Stuttgart, Germany, 2000. [Google Scholar]
- Gamkrelidze, G. Researches in Iberia-Colchology; Georgian National Museum: Tbilisi, Georgia, 2012. (In Georgian) [Google Scholar]
- Licheli, V. Geoarchaeology of Phasis (Georgia). Méditerranée Rev. Géographique Des Pays Méditerranéens 2016, 126, 119–128. [Google Scholar] [CrossRef]
- Tsetskhladze, G.R. Ionians in the Eastern Black Sea Littoral (Colchis). In Ionians in the West and East; Tsetskhladze, G.R., Ed.; In Proceedings of the International Conference Ionians in the East and West, Museu d’Arqueologia de Catalunya-Empúries, Empúries/L’Escala, Spain, 26–29 October 2015; Peeters Publishers: Leuven, Belgium, 2022; pp. 915–975. [Google Scholar]
- Lawrence, P. From Colchis to the Laz. Рoднoй Язык 2018, 1, 69–84. [Google Scholar]
- Khrushkova, L.G. The Spread of Christianity in the Eastern Black Sea Littoral (Written and Archaeological Sources). Anc. West East 2007, 6, 177–219. [Google Scholar] [CrossRef]
- Durak, K. The commercial history of Trebizond and the region of Pontos from the seventh to the eleventh centuries: An international emporium. Mediterr. Hist. Rev. 2021, 36, 3–41. [Google Scholar] [CrossRef]
- Sauer, E.W.; Chologauri, L.; Gabunia, A.; Hopper, K.; Lawrence, D.; MacDonald, E.; Mashkour, M.; Mowat, F.A.; Naskidashvili, D.; Pitskhelauri, K.; et al. Dariali: The ‘Caspian Gates’ in the Caucasus from Antiquity to the Age of the Huns and the Middle Ages: The Joint Georgian-British Dariali Gorge Excavations & Surveys of 2013–2016; Oxbow: Oxford, UK, 2020. [Google Scholar]
- Bedianashvili, G.; Jamieson, A.; Sagona, C. The Early Kurgan Period In Rabati, Georgia: The Cultural Sequence And A New Suite Of Radiocarbon Dates. Radiocarbon 2021, 63, 1673–1713. [Google Scholar] [CrossRef]
- Ritchie, K.; Wouters, W.; Mirtskhulava, G.; Jokhadze, S.; Zhvania, D.; Abuladze, J.; Hansen, S. Neolithic fishing in the South Caucasus as seen from Aruchlo I, Georgia. Archaeol. Res. Asia 2021, 25, 100252. [Google Scholar] [CrossRef]
- Braund, D.; Stolba, V.F.; Peter, U. (Eds.) Environment and Habitation around the Ancient Black Sea; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Palmisano, A.; Lawrence, D.; de Gruchy, M.W.; Bevan, A.; Shennan, S. Holocene regional population dynamics and climatic trends in the Near East: A first comparison using archaeo-demographic proxies. Quat. Sci. Rev. 2021, 252, 106739. [Google Scholar] [CrossRef]
- Degroot, D.; Anchukaitis, K.; Bauch, M.; Burnham, J.; Carnegy, F.; Cui, J.; de Luna, K.; Guzowski, P.; Hambrecht, G.; Huhtamaa, H.; et al. Towards a rigorous understanding of societal responses to climate change. Nature 2021, 59, 539–550. [Google Scholar] [CrossRef]
- Rodda, C.; Birkel, S.; Mayewski, P. A 2000 Year-Long Proxy and Observational Reconstruction of Central Asian Climate. Quat. Sci. Rev. 2019, 223, 105847. [Google Scholar] [CrossRef]
- Potocki, M.; Mayewski, P.A.; Matthews, T.; Perry, L.B.; Schwikowski, M.; Tait, A.M.; Korotkikh, E.; Clifford, H.; Kang, S.; Sherpa, T.C.; et al. Mt. Everest’s highest glacier is a sentinel for accelerating ice loss. Clim. Atmos. Sci. 2022, 5, 7. [Google Scholar] [CrossRef]
- Spagnesi, A.; Bohleber, P.; Barbaro, E.; Feltracco, M.; De Blasi, F.; Dreossi, G.; Stocker-Waldhuber, M.; Festi, D.; Gabrieli, J.; Gambaro, A.; et al. Preservation of chemical and isotopic signatures within the Weißseespitze millennial old ice cap (Eastern Alps), despite the ongoing ice loss. Front. Earth Sci. 2023, 11, 1322411. [Google Scholar] [CrossRef]
- Ogier, C.; van Manen, D.-J.; Maurer, H.; Räss, L.; Hertrich, M.; Bauder, A.; Farinotti, D. Ground penetrating radar in temperate ice: Englacial water inclusions as limiting factor for data interpretation. J. Glaciol. Publ. Online 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Spaulding, N.E.; Sneed, S.B.; Handley, M.J.; Bohleber, P.; Kurbatov, A.V.; Pearce, N.J.; Erhardt, T.; Mayewski, P.A. A New Multi-Element Method for LA-ICP-MS Data Acquisition from Glacier Ice Cores. Environ. Sci. Technol. 2017, 51, 13282–13287. [Google Scholar] [CrossRef]
- Bohleber, P.; Erhardt, T.; Spaulding, N.; Hoffmann, H.; Fischer, H.; Mayewski, P. Temperature and Mineral Dust Variability Recorded in Two Low Accumulation Alpine Ice Cores over the Last Millennium. Clim. Past 2018, 14, 21–37. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Delile, H.; Lee, C.; Stos-Gale, Z.; Billström, K.; Andersen, T.; Hannu, H.; Albarède, F. Large-scale tectonic cycles in Europe revealed by distinct Pb isotope provinces. Geochem. Geophys. Geosyst. 2016, 17, 3854–3864. [Google Scholar] [CrossRef]
- Longman, J.; Ersek, V.; Veres, D. High variability between regional histories of long-term atmospheric Pb pollution. Sci. Rep. 2020, 10, 20890. [Google Scholar] [CrossRef] [PubMed]
- von Suchodoletz, H.; Zielhofer, C.; Hoth, S.; Umlauft, J.; Schneider, B.; Zeeden, C.; Sukhishvili, L.; Faust, D. North Atlantic influence on Holocene flooding in the southern Greater Caucasus. Holocene 2018, 28, 609–620. [Google Scholar] [CrossRef]
- Kuparadze, D.M.; Pataridze, D.V.; Kerestedjian, T.N. Ancient Georgian Iron Metallurgy and Its Ore Base. In Geoarchaeology and Archaeomineralogy; Kostov, R.I., Gaydarska, B., Gurova, M., Eds.; In Proceedings of the International Conference, Sofia, Bulgaria, 28–30 October 2008, pp. 248–252; St Ivan Rilksi Publishing House: Sofia, Bulgaria, 2008. [Google Scholar]
- Dan, A.; Başaran, S.; Brückner, H.; Erkul, E.; Pint, A.; Rabbel, W.; Shumilovskikh, L.; Wilken, D.; Wunderlich, T. Ainos in Thrace: Research Perspectives in Historical Geography and Geoarchaeology. Anatolia Antiq. 2019, 27, 127–144. [Google Scholar] [CrossRef]
- Fouache, E.; Kelterbaum, D.; Brückner, H.; Lericolais, G.; Porotov, A.; Dikarev, V. The Late Holocene evolution of the Black Sea—A critical view on the so-called Phanagorian regression. Quat. Int. 2012, 266, 162–174. [Google Scholar] [CrossRef]
- Brückner, H. Deltas, floodplains, and harbours as geo-bio-archives. Human-environment interactions in western Anatolia. Göttinger Stud. Zur Mediterr. Archäologie 2020, 9, 37–50+Tafeln 3-6. [Google Scholar]
- Frankopan, P. The Earth Transformed: An Untold History; Bloomsbury: London, UK; Dublin, OH, USA, 2023. [Google Scholar]
- Beckwith, C.I. Empires of the Silk Road: A History of Central Eurasia from the Bronze Age to the Present; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Cunliffe, B. By Steppe, Desert & Ocean: The Birth of Eurasia; Oxford University Press: Oxford, UK; New York, NY, USA, 2015. [Google Scholar]
- Frankopan, P. The Silk Roads: A New History of the World; Bloomsbury: London, UK; Dublin, OH, USA, 2015. [Google Scholar]
- Boivin, N.; Crowther, A. Mobilizing the Past to shape a better Anthropocene. Nat. Ecol. Evol. 2021, 5, 273–284. [Google Scholar] [CrossRef]
- Leonardi, G.S.; Ruadze, E.; Saei, A.; Laycock, A.; Chenery, S.; Crabbe, H.; Marchant, E.; Khonelidze, I.; Sturua, L.; Imnadze, P.; et al. Identifying Sources of Lead Exposure for Children in the Republic of Georgia, with Lead Isotope Ratios. Int. J. Environ. Res. Public Health 2023, 20, 6912. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loveluck, C.P.; Tielidze, L.G.; Elashvili, M.; Kurbatov, A.V.; Gadrani, L.; Erb-Satullo, N.; von Suchodoletz, H.; Dan, A.; Laermanns, H.; Brückner, H.; et al. Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia. Sustainability 2024, 16, 7116. https://doi.org/10.3390/su16167116
Loveluck CP, Tielidze LG, Elashvili M, Kurbatov AV, Gadrani L, Erb-Satullo N, von Suchodoletz H, Dan A, Laermanns H, Brückner H, et al. Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia. Sustainability. 2024; 16(16):7116. https://doi.org/10.3390/su16167116
Chicago/Turabian StyleLoveluck, Christopher P., Levan G. Tielidze, Mikheil Elashvili, Andrei V. Kurbatov, Lela Gadrani, Nathaniel Erb-Satullo, Hans von Suchodoletz, Anca Dan, Hannes Laermanns, Helmut Brückner, and et al. 2024. "Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia" Sustainability 16, no. 16: 7116. https://doi.org/10.3390/su16167116
APA StyleLoveluck, C. P., Tielidze, L. G., Elashvili, M., Kurbatov, A. V., Gadrani, L., Erb-Satullo, N., von Suchodoletz, H., Dan, A., Laermanns, H., Brückner, H., Schlotzhauer, U., Sulava, N., & Chagelishvili, R. (2024). Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia. Sustainability, 16(16), 7116. https://doi.org/10.3390/su16167116