Geothermal Resource Assessment and Development Recommendations for the Huangliu Formation in the Central Depression of the Yinggehai Basin
Abstract
:1. Introduction
2. Geological and Geothermal Settings
2.1. Tectonic Evolution
- Eocene Lingtou Formation (T100–T80): The lithology mainly consists of conglomeratic sandstone and mudstone.
- Lower Oligocene Yacheng Formation (T80–T70): The lithology mainly includes mud conglomerate, mud gravel sandstone, and mudstone.
- Upper Oligocene–Lower Miocene Lower Lingshui Formation (T70–T60): Subdivided into three sections (T60–T61, T61–T62, T62–T70), with lithology mainly comprising fine to coarse sandstone, gravel sandstone, and mudstone.
- Lower Miocene Sanya Formation (T60–T50): Subdivided into two sections (T50–T51, T51–T60), with lithology mainly consisting of sandy mudstone, mudstone, gravel sandstone, and unsorted sandstone to fine sandstone.
- Middle Miocene Meishan Formation (T50–T40): Subdivided into two sections (T40–T41, T41–T50), with lithology mainly comprising sandstone, siltstone, and mudstone.
- Upper Miocene Huangliu Formation (T40–T30): Subdivided into two sections (T30–T31, T31–T40), with lithology mainly consisting of mudstone, silty mudstone, and muddy siltstone.
- Pliocene Yinggehai Formation (T30–T20): The lithology mainly includes medium to fine sandstone and mudstone.
- Quaternary Ledong Formation (T20–T0): The lithology mainly comprises gray clay and gravel sandstone.
2.2. Geothermal Field Characteristics
2.2.1. Geothermal Gradient Distribution
2.2.2. Distribution of Heat Flow
2.2.3. Two-Dimensional Geothermal Field Characteristics of the Basin
3. Characteristics of the Huangliu Formation Geothermal Reservoir in the Central Depression of the Yinggehai Basin
3.1. Depth and Thickness of the Top and Bottom of the Huangliu Formation Geothermal Reservoir
3.2. Temperature of the Huangliu Formation Geothermal Reservoir
3.3. Characteristics of the Porosity of the Huangliu Formation Geothermal Reservoir
4. Geothermal Resource Assessment of the Huangliu Formation
4.1. Methods and Parameters
4.1.1. Calculation of Geothermal Resource Quantity Based on the Reservoir Volume Method
4.1.2. Calculation of Geothermal Resource Quantity Based on the Reservoir Volume Method
4.2. Calculation Parameters
4.3. Results
5. Geothermal Resource Advantage Area and Development Recommendations
6. Conclusions and Insights
- The Yinggehai Basin exhibits an excellent geothermal background with an average geothermal gradient of 39.4 ± 4.7 °C/km and an average terrestrial heat flow of 77.4 ± 19.1 mW/m2. The Huangliu Formation within the basin has optimally buried geothermal reservoirs with superior physical and thermal properties, exhibiting an average reservoir temperature of 140.9 °C, indicating substantial geothermal potential.
- Calculated using the volumetric method, the total geothermal resources of the 26 reservoirs in the Huangliu Formation amount to 2.75 × 1020 J, equivalent to 93.95 × 108 tec. Specifically, the primary section accounts for 1.22 × 1020 J, equivalent to 41.75 × 108 tec, and the secondary section for 1.53 × 1020 J, equivalent to 52.20 × 108 tec. The analysis of geothermal richness underscores the concentration of these resources, with reservoirs R14 and R23 exhibiting the highest geothermal richness, at 2.67 × 1011 J/m2 and 6.00 × 1010 J/m2, respectively.
- The confidence interval for the geothermal resources of the Huangliu Formation, calculated using the Monte Carlo method, ranges from 2.634 to 3.746 × 1020 J. The confidence interval for the primary section ranges from 1.046 to 1.756 × 1020 J, with an average of 1.392 × 1020 J (equivalent to approximately 47.55 ×108 tec), and the most probable resource amount is 1.372 × 1020 J (11.36%). For the secondary section, the confidence interval ranges from 1.275 to 2.297 × 1020 J, with an average of 1.750 × 1020 J (equivalent to approximately 59.79 × 108 tec), and the most probable resource amount is 1.745 × 1020 J (12.06%).
- Employing the Entropy-TOPSIS method to evaluate key geothermal parameters, reservoir R14 is identified as the prime target area for development, followed by R23, R26, R24, and R16. Considering the limited resources of offshore drilling platforms, a comprehensive utilization model integrating geothermal power generation with multiple applications is proposed, aiming to optimize energy efficiency and provide new insights for the efficient development of geothermal resources in the Yinggehai Basin.
- This study provides methodological insights for the assessment of geothermal resources in the Yinggehai Basin and establishes a solid foundation for resource development. However, due to the extensive and uneven drilling distribution in the central depression of the basin, the geothermal resource assessment data are somewhat limited. Despite exhaustive efforts to collect comprehensive drilling, geological, geophysical, and developmental data to evaluate the thermal storage characteristics and geothermal potential of the Huangliu Formation, the availability and completeness of data still constrain the scope and depth of the current study. Future work will focus on further enhancing and supplementing the dataset to achieve more systematic and comprehensive evaluations of geothermal resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, M.; Su, J.; Zhao, Y.; Hofmann, E.E.; Cao, Z.; Cai, W.-J.; Gan, J.; Lacroix, F.; Laruelle, G.G.; Meng, F.; et al. Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary Processes, and Future Trends. Annu. Rev. Earth Planet. Sci. 2022, 50, 593–626. [Google Scholar] [CrossRef]
- Guo, H.; Li, C.; Peng, B.; Shan, X.; Xu, J.; Zhang, Z.; Chang, J. Present-Day Geothermal Regime and Thermal Evolution of the Fukang Sag in the Junggar Basin, Northwest China. Minerals 2024, 14, 260. [Google Scholar] [CrossRef]
- Tang, X.Y.; Zhong, C.; Yang, S.C.; Hu, S.B. Characteristics and influence factors of the present geothermal field for basins in China’s offshore and adjacent areas. Acta Geol. Sin. 2023, 97, 911–921. [Google Scholar]
- Yuan, J.; Yang, Z.; Deng, C.; Krijgsman, W.; Hu, X.; Li, S.; Shen, Z.; Qin, H.; An, W.; He, H.; et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Natl. Sci. Rev. 2021, 8, nwaa173. [Google Scholar] [CrossRef]
- Zhan, H.W.; Suo, Y.H.; Zhu, J.J.; Li, S.Z.; Wang, P.C.; Wang, G.Z.; Zhou, J.; Wang, X.J. Closure mechanism of the South China Sea: Insights from subduction initiation along the Manila Trench. Acta Geol. Sin. 2023, 39, 2569–2582. [Google Scholar] [CrossRef]
- Huang, B.J.; Hui, T.; Huang, H.; Yang, J.H.; Xiao, X.M.; Li, L. Origin and accumulation of CO2 and its natural displacement of oils in the continental margin basins, northern South China Sea. AAPG Bull. 2015, 99, 1349–1369. [Google Scholar] [CrossRef]
- Huang, H.L.; Li, J.; Yang, H.W.; Zhang, G.; Gao, L.Y.; An, J.T.; Luo, M.; Li, W.T. Influence of diapir structure on formation and distribution of overpressure in the Yinggehai Basin, South China Sea. Energy Sci. Eng. 2022, 10, 1972–1985. [Google Scholar] [CrossRef]
- Lv, X.W.; Fu, M.Y.; Zhang, S.N.; Meng, X.H.; Liu, Y.; Ding, X.Q.; Zhang, Y.; Sun, T.J. Effect of Diagenesis on the Quality of Sandstone Reservoirs Exposed to High-Temperature, Overpressure, and CO2-Charging Conditions: A Case Study of Upper Miocene Huangliu Sandstones of Dongfang District, Yinggehai Basin, South China Sea. Front. Earth Sci. 2022, 10, 885602. [Google Scholar] [CrossRef]
- Xie, X.N.; Li, S.T.; Dong, W.L.; Hu, Z. Evidence for episodic expulsion of hot fluids along faults near diapiric structures of the Yinggehai Basin. South China Sea. Mar. Pet. Geol. 2001, 18, 715–728. [Google Scholar] [CrossRef]
- Fan, C.W.; Cao, J.J.; Luo, J.L.; Li, S.S.; Wu, S.J.; Dai, L.; Hou, J.X.; Mao, Q.R. Heterogeneity and influencing factors of marine gravity flow tight sandstone under abnormally high pressure: A case study from the Miocene Huangliu Formation reservoirs in LD10 area, Yinggehai Basin, South China Sea. Pet. Explor. Dev. 2021, 48, 1048–1062. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.H.; Shen, B.; Tang, D.; Wu, Y.X.; Wu, B.H.; Li, S.; Zhang, J.F. Evaluation of Saturation Interpretation Methods for Ultra-Low Permeability Argillaceous Sandstone Gas Reservoirs: A Case Study of the Huangliu Formation in the Dongfang Area. Processes 2024, 12, 271. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Z.L.; Fan, C.W.; Xu, M.G.; Hou, J.X. Diagenetic and hydrothermal fluid influence on tight sandstone reservoir quality: Gravity-flow deposits from the Huangliu Formation, Ledong area, Yinggehai Basin, South China Sea. J. Pet. Sci. Eng. 2022, 215, 110633. [Google Scholar] [CrossRef]
- Song, G.F.; Li, G.S.; Song, X.D.; Shi, Y. Multi-objective balanced method of optimizing the heat extraction performance for hot dry rock. Nat. Gas Ind. 2022, B9, 497–510. [Google Scholar] [CrossRef]
- Li, Y.Y.; Long, X.T.; Lu, J. Evaluation of geothermal resources potential in the uplifted mountain of Guangdong province using the Monte Carlo simulation. Front. Earth Sci. 2023, 11, 1233026. [Google Scholar] [CrossRef]
- Wang, Y.B.; Wang, L.J.; Yang, B.; Wang, Z.T.; Hu, J.; Hu, D.; Wang, Y.Q.; Hu, S.B. Assessment of Geothermal Resources in the North Jiangsu Basin, East China, Using Monte Carlo Simulation. Energies 2021, 14, 259. [Google Scholar] [CrossRef]
- Luo, J.S.; Hu, G.W.; Xie, Z.H.; Duan, L.; Fu, X.F.; Sun, Y.H.; Wang, Y.G. Multiphase Palaeogene–Miocene deformation history and regional implications of the Yinggehai Basin, offshore Ailao Shan–red river shear zone. Mar. Pet. Geol. 2024, 162, 106731. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Graham, S.; McHargue, T. The Red River Fault zone in the Yinggehai Basin, South China Sea. Tectonophysics 2009, 476, 397–417. [Google Scholar] [CrossRef]
- Xv, Z.H.; Wang, L.; Jiang, Q.C.; Li, Y.X. Differences between Yinggehai Basin and Qiongdongnan Basin. Inn. Mong. Petrochem. Ind. 2010, 36, 105–108. [Google Scholar]
- Yang, D.H. A Study on Tectonic Deformation Characteristics and Paleotectonic Environment of the Yinggehai Basin during Depression. Master’s Thesis, China University of Petroleum, Beijing, China, 2021. [Google Scholar]
- Han, B.Y. Structural Deformation Anatomy and Sandbox Simulation Experiment in Yinggehai Basin. Master’s Thesis, China University of Petroleum, Beijing, China, 2020. [Google Scholar]
- Liu, J.; Jia, D.; Yin, H.W.; Li, S.; Fan, X.G.; He, Z.Y.; Cui, J.; Yang, S.; Zhang, Y. Sandbox modeling of transrotational tectonics with changeable poles: Implications for the Yinggehai Basin. Front. Earth Sci. 2021, 9, 687789. [Google Scholar] [CrossRef]
- Li, C.; Lv, C.F.; Chen, G.J.; Zhang, G.C.; Ma, M.; Yang, H.Z.; Bi, G.X. Zircon U-Pb ages and REE composition constraints on the provenance of the continental slope-parallel submarine fan, western Qiongdongnan Basin, northern margin of the South China Sea. Mar. Pet. Geol. 2019, 102, 350–362. [Google Scholar] [CrossRef]
- Yang, Y.L.; He, Y.L.; Xie, X.N.; Li, S.S.; Cao, L.C.; Zhang, D.J.; Huang, C.; Xiao, H.Y. Zircon U–Pb age constraints on the provenance and response to tectonics: Lower Oligocene of the western Qiongdongnan Basin, South China Sea. Mar. Pet. Geol. 2023, 148, 106059. [Google Scholar] [CrossRef]
- Liu, R.; Liu, J.Z.; Zhu, W.L.; Hao, F.; Xie, Y.H.; Wang, Z.F.; Wang, L.F. In situ stress analysis in the Yinggehai Basin, northwestern South China Sea: Implication for the pore pressure-stress coupling process. Mar. Pet. Geolog. 2016, 77, 341–352. [Google Scholar] [CrossRef]
- He, L.J.; Xiong, L.P.; Wang, J.Y.; Yang, J.H.; Dong, W.L. Tectono-thermal modeling of the Yinggehai Basin, South China Sea. Sci. China Ser. D-Earth Sci. 2001, 44, 7–13. [Google Scholar] [CrossRef]
- Yang, C.Q.; Zhou, W.; Wang, Y.; Peng, X.; Mo, F.Y.; Liu, S.Q.; Li, H.; He, Y.B. Subdivision of the first member of Huangliu Formation in Dongfang area of Yinggehai Basin and the main factors controlling the sedimentary evolution of submarine fan. China Offshore Oil Gas 2022, 34, 55–65. [Google Scholar]
- Mao, Q.R.; Fan, C.W.; Luo, J.L.; Cao, J.J.; You, L.; Fu, Y.; Li, S.S.; Shi, X.F.; Wu, S.J. Analysis of sedimentary-diagenetic evolution difference on middle-deep buried sandstone reservoirs under overpressure background: A case study of the Miocene Huangliu Formation in Yinggehai Basin, South China Sea. J. Palaeogeogr. 2022, 24, 344–360. (In Chinese) [Google Scholar]
- Qiao, Y.; Zuo, Y.H.; Tu, S.Q.; Zhang, J.Z.; Yang, M.H.; Zhang, T. Strata temperatures and geothermal resource evaluation in the Dongpu Depression, Bohai Bay Basin, North China. Sci. Rep. 2023, 13, 3630. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, F.; Evenick, J.C. Global distribution of geothermal gradients in sedimentary basins. Geosci. Front. 2023, 14, 101685. [Google Scholar] [CrossRef]
- Bédard, K.; Comeau, F.-A.; Raymond, J.; Malo, M.; Nasr, M. Geothermal Characterization of the St. Lawrence Lowlands Sedimentary Basin, Québec, Canada. Nat. Resour. Res. 2018, 27, 479–502. [Google Scholar] [CrossRef]
- Förster, A. Analysis of borehole temperature data in the Northeast German Basin: Continuous logs versus bottom-hole temperatures. Pet. Geosci. 2001, 7, 241–254. [Google Scholar] [CrossRef]
- Tang, X.Y.; Huang, S.P.; Yang, S.C.; Jiang, G.Z.; Hu, S.B. Correcting on logging-derived temperatures of the Pearl River Mouth Basin and characteristics of its present temperature field. Chin. J. Geophys. 2016, 59, 2911–2921. (In Chinese) [Google Scholar]
- Horner, D.R. Pressure build-up in wells. In Proceedings of the 3rd World Petroleum Congress, Hague, The Netherlands, 28 May–6 June 1951. [Google Scholar]
- Global Heat Flow Data Assessment Group; Fuchs, S.; Neumann, F.; Norden, B.; Beardsmore, G.; Chiozzi, P.; Anguiano Dominguez, A.P.; Duque, M.R.A.; Ojeda Espinoza, O.M.; Forster, F.; et al. The Global Heat Flow Database: Update 2023. V. 1; GFZ Data Services: Potsdam, Germany, 2023. [Google Scholar]
- Davies, J.H.; Davies, D.R. Earth’s surface heat flux. Solid Earth 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Jiang, G.Z.; Gao, P.; Rao, S.; Zhang, L.Y.; Tang, X.Y.; Huang, F.; Zhao, P.; Pang, Z.H.; He, L.J.; Hu, S.B.; et al. Compilation of heat flow data in the continental area of China (4th edition). Chin. J. Geophys. 2016, 59, 2892–2910. (In Chinese) [Google Scholar]
- Wu, D.; Li, X.L.; Liu, S.W.; Zhu, X.D.; Li, X.D.; Xiong, X.F.; Yi, H.W. Geothermal Regime of the Deep Area of the Qiongdongnan Basin, Northern Continental Margin of the South China Sea. Geol. J. China Univ. 2022, 28, 933–942. [Google Scholar]
- Tang, X.Y.; Hu, S.B.; Zhang, G.C.; Liang, J.S.; Yang, S.C.; Shen, H.L.; Rao, S. Geothermal characteristics and hydrocarbon accumulation of the northern marginal basins. South China Sea. Chin. J. Geophys. 2014, 57, 572–585. [Google Scholar]
- Tang, X.Y.; Hu, S.B.; Zhang, G.C.; Yang, S.C.; Shen, H.L.; Rao, S.; Li, W.W. Characteristic of surface heat flow in the Pearl River Mouth Basin and its relationship with thermal lithosphere thickness. Chin. J. Geophys. 2014, 57, 1857–1867. [Google Scholar]
- Ji, S.C.; Wang, Q.; Salisbury, M.H.; Wang, Y.J.; Jia, D. Reprint of: P-wave velocities and anisotropy of typical rocks from the Yunkai Mts. (Guangdong and Guangxi, China) and constraints on the composition of the crust beneath the South China Sea. J. Asian Earth Sci. 2017, 141, 213–234. [Google Scholar] [CrossRef]
- Zheng, F.; Song, R.C.; Dong, G.Y.; Chen, H.W.; Wang, Y.C.; Zhang, C.; Wu, T.; Zheng, H.A.; Liang, Y.K. Study on present geothermal field and thermal structure in Yinggehai Basin. J. Chengdu Univ. Technol. 2023, 50, 661–672. [Google Scholar]
- Zhang, J.; Shi, Y.L. Thermal structure of central basin in South China Sea and their geodynamic implications. J. Univ. Chin. Acad. Sci. 2004, 407–412. [Google Scholar]
- He, L.P.; Xiong, L.P.; Wang, J.Y. Heat flow and thermal modeling of the Yinggehai Basin, South China Sea. Tectonophysics 2002, 351, 245–253. [Google Scholar] [CrossRef]
- Moeck, I.S. Catalog of geothermal play types based on geologic controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef]
- Ciriaco, A.E.; Zarrouk, S.J.; Zakeri, G. Geothermal resource and reserve assessment methodology: Overview, analysis and future directions. Renew. Sustain. Energy Rev. 2020, 119, 109515. [Google Scholar] [CrossRef]
- Li, M.; Wang, G.L.; Li, W.J.; Liu, Z.M.; Zhang, W.; Ma, F.; Zhu, X. Discussion on potential assessment method of geothermal resources under balanced production and reinjection: A case study for the carbonate reservoir in Xiong’an New Area. Acta Geologica Sinica. 2024, 98, 1928–1940. [Google Scholar]
- Wang, S.J.; Li, F.; Yan, J.H.; Hu, J.W.; Wang, K.H.; Ren, H.T. Evaluation methods and application of geothermal resources in oilfields. Acta Pet. Sin. 2020, 41, 553–564. [Google Scholar]
- Aravena, D.; Muñoz, M.; Morata, D.; Lahsen, A.; Parada, M.Á.; Dobson, P. Assessment of high enthalpy geothermal resources and promising areas of Chile. Geothermics 2016, 59, 1–13. [Google Scholar] [CrossRef]
- Trota, A.; Ferreira, P.; Gomes, L.; Cabral, J.; Kallberg, P. Power production estimates from geothermal resources by means of small-size compact climeon heat power converters: Case studies from Portugal (Sete Cidades, Azores and Longroiva Spa, Mainland). Energies 2019, 12, 2838. [Google Scholar] [CrossRef]
- Shah, M.; Vaidya, D.; Sircar, A. Using Monte Carlo simulation to estimate geothermal resource in Dholera geothermal field, Gujarat, India. Multiscale and Multidisciplinary Modeling, Experiments and Design. Exp. Des. 2018, 1, 83–95. [Google Scholar]
- Derakhshan, S.H.; Deutsch, C.V. Direct simulation of P10, P50 and P90 reservoir models. In Proceedings of the PETSOC Canadian International Petroleum Conference, Calgary, AB, Canada, 17–19 June 2008. PETSOC-2008-188. [Google Scholar]
- GB/T 11615-2010; Geologic Exploration Standard of Geothermal Resources: Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China: Beijing, China, 2010.
- Luengo, D.; Martino, L.; Bugallo, M.; Elvira, V.; Särkkä, S. A survey of Monte Carlo methods for parameter estimation. EURASIP J. Adv. Signal Process. 2020, 2020, 25. [Google Scholar] [CrossRef]
- Iglesias, E.R.; Torres, R.J. Low-to medium-temperature geothermal reserves in Mexico: A first assessment. Geothermics 2003, 32, 711–719. [Google Scholar] [CrossRef]
- DZ-T 0331-2020; Specification for Estimation and Evaluation of Geothermal Resources. Ministry of Natural Resources, the People’s Republic of China: Beijing, China, 2020.
- Piris, G.; Herms, I.; Griera, A.; Colomer, M.; Arnó, G.; Gomez-Rivas, E. 3DHIP-calculator—A new tool to stochastically assess deep geothermal potential using the heat-in-place method from voxel-based 3D geological models. Energies 2021, 14, 7338. [Google Scholar] [CrossRef]
- Jiang, G.Z.; Wang, Y.Q.; Hu, J.; Zhang, C.; Wang, Y.B.; Zuo, Y.H.; Tang, X.C.; Ma, F.; Hu, S.B. Medium-high temperature geothermal resources in China: Exploration directions and optimizing prospecting targets. Sci. Technol. Rev. 2022, 40, 76–82. [Google Scholar]
- Rao, S.; Huang, S.D.; Hu, S.B.; Gao, T. Mechanism of Global Hot Dry Rock System Exploration Target Selection of Hot Dry Rock in Chinese Continent: Enlightenment from Genesis. Earth Sci. 2023, 48, 857–877. [Google Scholar]
- Li, Y.; Zhang, Y.; Zhang, X.; Zhao, J.; Huang, Y.; Wang, Z.; Yi, Y. Distribution of geothermal resources in Eryuan County based on entropy weight TOPSIS and AHP–TOPSIS methods. Nat. Gas Ind. B 2024, 11, 213–226. [Google Scholar] [CrossRef]
- Liang, Y.K.; Song, R.C.; Zheng, H.A.; Zhang, C.; Liang, Y.; Cheng, H.W.; Zheng, F. Comprehensive evaluation of reservoirs based on the entropy weight method, TOPSIS, and the gray correlation method: Taking the Huangliu Formation in Yinggehai Basin as an example. J. Chengdu Univ. Technol. 2024, 51, 91–101. [Google Scholar]
- Cambazoğlu, S.; Yal, G.P.; Eker, A.M.; Şen, O.; Akgün, H. Geothermal resource assessment of the Gediz Graben utilizing TOPSIS methodology. Geothermics 2019, 80, 92–102. [Google Scholar] [CrossRef]
Geological Structure | Rock Thermal Conductivity (k) (W/(m•k)) [42] | Rock Radioactive Heat Generation Rate (A) (μW/m3) [41] |
---|---|---|
Sedimentary Cover | 1.72 | 1.77 |
Upper Upper Crust | 2.93 | 0.9 |
Low Velocity Zone of the Lower Upper Crust | 3.1 | 1.3 |
Lower Crust | 3.3 | 0.024 |
Stratum | Reservoir | Top Depth | Average Top Depth | Bottom Depth | Average Bottom Depth | Average Thickness |
---|---|---|---|---|---|---|
m | m | m | m | m | ||
Member 1 of the Huangliu Formation | R01 | 2517.9–3223.3 | 2896.2 | 2493.6–3369.7 | 3047.5 | 59.6 |
R02 | 2537.5–2862.4 | 2697.2 | 2591.6–2895.2 | 2770.0 | 27.7 | |
R03 | 2528.8–3030.2 | 2734.9 | 2587.7–3100.3 | 2904.7 | 67.5 | |
R04 | 2999.5–3249.6 | 3121.1 | 3003.5–3331.4 | 3221.0 | 38.52 | |
R05 | 2408.9–2847.0 | 2660.6 | 2508.8–2892.2 | 2785.2 | 41.6 | |
R06 | 2233.8–2903.9 | 2548.8 | 2267.0–3014.1 | 2708.1 | 50.6 | |
R07 | 2691.8–2903.9 | 2754.3 | 2807.3–3079.1 | 3001.0 | 86.7 | |
R08 | 2108.0–2875.9 | 2564.6 | 2120.3–3008.7 | 2763.0 | 68.0 | |
R09 | 818.0–2243.5 | 1336.1 | 846.2–2321.9 | 1443.9 | 53.5 | |
R10 | 577.0–2330.7 | 1043.4 | 655.5–2408.3 | 1189.1 | 77.65 | |
R11 | 904.7–2054.0 | 1663.2 | 1046.5–2083.6 | 1733.2 | 28.8 | |
R12 | 462.5–962.5 | 648.5 | 567.7–1009.0 | 826.8 | 98.2 | |
R13 | 3355.3–3578.7 | 3436.1 | 3388.6–3607.2 | 3529.4 | 35.7 | |
R14 | 2373.7–4190.4 | 3424.7 | 2409.2–4244.6 | 3657.8 | 26.0 | |
R15 | 844.9–4096.2 | 2419.1 | 844.3–4133.5 | 2571.1 | 21.7 | |
R16 | 3674.4–3849.3 | 3752.0 | 3675.7–4109.9 | 3888.7 | 42.9 | |
R17 | 3642.7–4700.0 | 4104.8 | 3675.7–4805.1 | 4261.4 | 36.9 | |
Member 2 of the Huangliu Formation | R18 | 2549.9–2753.2 | 2622.0 | 2495.5–3316.0 | 3051.2 | 58.6 |
R19 | 2440.4–2760.1 | 2592.1 | 2251.7–3258.5 | 2877.5 | 22.0 | |
R20 | 2700.7–2857.7 | 2766.9 | 3292.2–3753.9 | 3558.2 | 60.5 | |
R21 | 2543.1–3168.5 | 2884.3 | 3295.0–3815.2 | 3634.2 | 26.1 | |
R22 | 3582.4–3952.3 | 3722.3 | 3610.4–4056.0 | 3788.9 | 38.6 | |
R23 | 2118.6–4700.0 | 3854.5 | 3606.1–5048.4 | 4400.6 | 46.9 | |
R24 | 844.9–4477.3 | 3130.0 | 2673.8–4906.9 | 4207.2 | 65.9 | |
R25 | 1470.9–3831.9 | 2813.6 | 2673.8–4197.6 | 3301.9 | 27.1 | |
R26 | 3620.0–4190.4 | 3833.4 | 3775.8–4718.9 | 4391.2 | 101.5 |
Lithology | Rock Thermal Conductivity (k) (W/(m•K)) | Rock Radioactive Heat Generation Rate (A) () | ||
---|---|---|---|---|
Previous Measurement Data [38,43] | Current Measurement Data | Previous Measurement Data [43] | Current Measurement Data | |
Sandstone | 2.09 ± 0.62 | 2.30 ± 0.54 | 1.44 ± 0.40 | 1.15 ± 0.31 |
Mudstone | 1.66 ± 0.29 | 2.03 ± 0.04 | - | 1.75 ± 0.08 |
Overall | 1.87 ± 0.52 | 2.25 ± 0.49 | 1.44 ± 0.40 | 1.31 ± 0.38 |
Current value | 1.97 ± 0.54 | 1.36 ± 0.38 |
Stratum | Reservoir | (g·cm−3) | * (kJ·kg−1·°C−1) | (°C) | (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Likeliest | Min | Max | Likeliest | Min | Max | Likeliest | Min | Max | Likeliest | ||
Member 1 of the Huangliu Formation | R01 | 1.72 | 3.48 | 2.49 | 0.84 | 1.32 | - | 125.5 | 142.7 | 139.2 | 7.50 | 20.70 | 17.93 |
R02 | 2.22 | 2.87 | 2.45 | 0.84 | 1.32 | - | 130.0 | 138.2 | 133.5 | 10.7 | 20.2 | 15.55 | |
R03 | 2.40 | 2.64 | 2.51 | 0.84 | 1.32 | - | 151.0 | 163.0 | 159.0 | 4.90 | 11.60 | 10.85 | |
R04 | 1.82 | 5.00 | 2.54 | 0.84 | 1.32 | - | 160.5 | 169.7 | 166.0 | 6.35 | 20.78 | 11.66 | |
R05 | 1.79 | 2.66 | 2.46 | 0.84 | 1.32 | - | 110.1 | 125.0 | 123.4 | 0.10 | 22.70 | 0.30 | |
R06 | 2.25 | 2.58 | 2.43 | 0.84 | 1.32 | - | 96.2 | 132.2 | 110.8 | 8.85 | 29.34 | 21.30 | |
R07 | 2.35 | 2.57 | 2.48 | 0.84 | 1.32 | - | 128.6 | 141.6 | 135.1 | 10.60 | 15.50 | 15.22 | |
R08 | 1.20 | 2.51 | 2.45 | 0.84 | 1.32 | - | 119.6 | 139.5 | 128.7 | 21.10 | 26.50 | 22.17 | |
R09 | 2.02 | 2.64 | 2.40 | 0.84 | 1.32 | - | 56.7 | 97.6 | 67.1 | 10.99 | 17.32 | 13.5 | |
R10 | 2.27 | 2.59 | 2.43 | 0.84 | 1.32 | - | 50.7 | 77.2 | 64.2 | 3.72 | 28.86 | 24.95 | |
R11 | 2.21 | 2.54 | 2.42 | 0.84 | 1.32 | - | 68.7 | 100.2 | 86.3 | 0 | 29.20 | 13.36 | |
R12 | 1.23 | 2.34 | 2.15 | 0.84 | 1.32 | - | 41.2 | 76.1 | 56.7 | 1.80 | 29.40 | 17.78 | |
R13 | 2.32 | 2.65 | 2.49 | 0.84 | 1.32 | - | 171.3 | 177.9 | 175.2 | 0 | 20.00 | 10.58 | |
R14 | 1.89 | 2.51 | 2.27 | 0.84 | 1.32 | - | 123.1 | 210.6 | 171.2 | 7.40 | 39.30 | 25.84 | |
R15 | 1.86 | 2.69 | 2.38 | 0.84 | 1.32 | - | 91.3 | 173.1 | 132.1 | 0.30 | 42.10 | 6.41 | |
R16 | 1.60 | 3.29 | 2.40 | 0.84 | 1.32 | - | 160.5 | 201.6 | 181.6 | 5.82 | 36.5 | 21.04 | |
R17 | 1.52 | 3.26 | 2.54 | 0.84 | 1.32 | - | 187.5 | 196.4 | 192.7 | 5.60 | 22.00 | 12.38 | |
Member 2 of the Huangliu Formation | R18 | 2.32 | 2.51 | 2.42 | 0.84 | 1.32 | - | 114.4 | 135.8 | 124.6 | 13.1 | 35.4 | 22.12 |
R19 | 2.25 | 2.58 | 2.44 | 0.84 | 1.32 | - | 86.2 | 132.1 | 106.0 | 8.85 | 29.34 | 19.79 | |
R20 | 2.23 | 2.83 | 2.50 | 0.84 | 1.32 | - | 140.4 | 157.1 | 146.2 | 4.50 | 29.80 | 25.52 | |
R21 | 1.82 | 5.00 | 2.52 | 0.84 | 1.32 | - | 170.2 | 188.5 | 177.5 | 6.35 | 20.78 | 11.66 | |
R22 | 1.89 | 2.63 | 2.48 | 0.84 | 1.32 | - | 185.7 | 222.5 | 200.4 | 7.00 | 25.50 | 12.81 | |
R23 | 1.52 | 3.26 | 2.55 | 0.84 | 1.32 | - | 168.5 | 216.6 | 189.5 | 5.60 | 22.00 | 12.28 | |
R24 | 2.03 | 2.68 | 2.40 | 0.84 | 1.32 | - | 167.8 | 217.5 | 190.0 | 5.82 | 36.50 | 17.69 | |
R25 | 2.50 | 2.79 | 2.70 | 0.84 | 1.32 | - | 151.7 | 177.9 | 163.6 | 0.90 | 14.25 | 9.05 | |
R26 | 2.37 | 2.42 | 2.40 | 0.84 | 1.32 | - | 159.3 | 226.1 | 187.4 | 11.20 | 37.30 | 27.92 |
Number of Iterations | Min (×1019 J) | Max (×1019 J) | Mean (×1019 J) | Medin (×1019 J) |
---|---|---|---|---|
1000 | 2.21 | 5.00 | 3.40 | 3.39 |
2000 | 2.26 | 4.98 | 3.42 | 3.41 |
3000 | 2.25 | 4.86 | 3.41 | 3.40 |
4000 | 2.20 | 5.29 | 3.44 | 3.43 |
5000 | 2.23 | 5.05 | 3.42 | 3.41 |
6000 | 2.20 | 5.11 | 3.42 | 3.40 |
7000 | 2.18 | 5.06 | 3.41 | 3.40 |
8000 | 2.16 | 5.10 | 3.41 | 3.40 |
9000 | 2.22 | 5.14 | 3.42 | 3.41 |
10,000 | 2.20 | 5.25 | 3.42 | 3.40 |
Stratum | Reservoir | Monte Carlo Calculation of Total Geothermal Resources | Volumetric Method of Calculating Geothermal Resources (×1018 J) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Probability = 100% | Probability = 90% | Maximum Probability | (×1018 J) | r (×1018 J) | w (×1018 J) | ||||||
Min (×1019 J) | Max (×1019 J) | Mean (×1019 J) | Min (×1019 J) | Max (×1019 J) | Probability % | Mean (×1019 J) | |||||
Member 1 of the Huangliu Formation | S01 | 12.06 | 31.83 | 20.43 | 15.50 | 25.82 | 9.14 | 20.36 | 18.30 | 13.00 | 5.30 |
S02 | 0.94 | 1.67 | 1.28 | 0.42 | 1.46 | 7.11 | 1.31 | 1.09 | 0.81 | 0.28 | |
S03 | 1.46 | 2.46 | 1.95 | 1.61 | 2.30 | 5.79 | 2.16 | 1.71 | 1.39 | 0.31 | |
S04 | 0.47 | 1.52 | 0.85 | 0.60 | 1.20 | 9.08 | 0.83 | 0.62 | 0.50 | 0.12 | |
S05 | 2.24 | 5.46 | 3.87 | 3.00 | 4.78 | 8.24 | 3.85 | 3.42 | 3.40 | 0.02 | |
S06 | 2.22 | 4.90 | 3.42 | 2.74 | 4.19 | 9.24 | 3.24 | 2.98 | 1.96 | 1.02 | |
S07 | 0.30 | 0.50 | 0.40 | 0.33 | 0.47 | 6.18 | 0.40 | 0.35 | 0.26 | 0.09 | |
S08 | 2.71 | 6.02 | 4.35 | 3.44 | 5.33 | 8.71 | 4.36 | 4.27 | 2.78 | 1.50 | |
S09 | 3.28 | 11.40 | 6.20 | 4.35 | 8.63 | 9.99 | 5.39 | 4.70 | 3.61 | 1.09 | |
S10 | 1.25 | 3.63 | 2.29 | 1.67 | 2.95 | 8.83 | 2.25 | 2.11 | 1.29 | 0.82 | |
S11 | 0.73 | 1.88 | 1.26 | 0.95 | 1.59 | 9.26 | 1.21 | 1.12 | 0.87 | 0.26 | |
S12 | 0.13 | 0.71 | 0.36 | 0.22 | 0.53 | 10.01 | 0.32 | 0.34 | 0.23 | 0.11 | |
S13 | 0.51 | 0.88 | 0.70 | 0.57 | 0.82 | 6.38 | 0.62 | 0.60 | 0.49 | 0.11 | |
S14 | 17.57 | 50.56 | 31.61 | 23.52 | 40.29 | 9.70 | 31.42 | 29.55 | 17.25 | 12.30 | |
S15 | 13.58 | 52.96 | 29.76 | 20.48 | 40.29 | 10.04 | 28.54 | 24.37 | 21.49 | 2.87 | |
S16 | 16.95 | 45.42 | 29.08 | 22.28 | 36.69 | 8.99 | 28.91 | 25.49 | 16.82 | 8.67 | |
S17 | 0.79 | 2.00 | 1.35 | 1.02 | 1.72 | 7.53 | 1.35 | 1.20 | 0.96 | 0.25 | |
Member 2 of the Huangliu Formation | S18 | 5.51 | 9.65 | 7.53 | 6.32 | 8.76 | 9.14 | 7.41 | 6.60 | 4.27 | 2.33 |
S19 | 3.34 | 8.01 | 5.43 | 4.15 | 6.88 | 7.83 | 5.11 | 4.71 | 3.20 | 1.50 | |
S20 | 1.61 | 3.11 | 2.38 | 1.97 | 2.79 | 7.83 | 2.24 | 2.13 | 1.30 | 0.83 | |
S21 | 1.68 | 5.80 | 3.29 | 2.29 | 4.63 | 9.81 | 2.75 | 2.34 | 1.88 | 0.46 | |
S22 | 6.11 | 12.66 | 9.27 | 7.50 | 11.16 | 8.46 | 8.86 | 8.19 | 6.42 | 1.77 | |
S23 | 38.21 | 112.63 | 70.42 | 51.85 | 90.92 | 10.33 | 66.49 | 61.64 | 49.12 | 12.52 | |
S24 | 23.27 | 55.91 | 39.49 | 31.86 | 47.74 | 9.45 | 38.28 | 34.11 | 24.09 | 10.02 | |
S25 | 2.13 | 4.03 | 3.01 | 2.44 | 3.62 | 6.93 | 2.78 | 2.61 | 2.23 | 0.38 | |
S26 | 22.51 | 47.06 | 34.19 | 27.66 | 41.29 | 9.16 | 32.82 | 30.45 | 17.41 | 13.05 |
Item | Primary Advantageous Target Area | Secondary Advantageous Target Area | ||||
---|---|---|---|---|---|---|
Weightage Percentage % | Positive Ideal Solution | Negative Ideal Solution | Weightage Percentage % | Positive Ideal Solution | Negative Ideal Solution | |
Rock Density (kg/m3) | 1.658 | 0.98868 | 0.01132 | 2.059 | 0.98868 | 0.01132 |
Reservoir Porosity (%) | 2.548 | 0.99849 | 0.00151 | 3.165 | 0.99849 | 0.00151 |
Depth of Reservoir Burial (m) | 3.797 | 0.99743 | 0.00257 | 4.717 | 0.99743 | 0.00257 |
Reservoir Temperature (°C) | 16.430 | 0.99944 | 0.00056 | 20.412 | 0.99944 | 0.00056 |
Reservoir Volume (m3) | 24.546 | 0.99973 | 0.00026 | 30.495 | 0.99973 | 0.00028 |
Geothermal Resource Abundance of the Reservoir (J/m2) | 3.312 | 0.99392 | 0.00608 | 4.115 | 0.99392 | 0.00608 |
Average Terrestrial Heat Flow of the Reservoir (mW/m2) | 20.899 | 0.99960 | 0.00040 | 26.536 | 0.99940 | 0.00060 |
Resource Quantity Contained in the Reservoir’s Rock Framework (J) | 21.359 | 0.99940 | 0.00060 | 6.772 | 0.99779 | 0.00221 |
Resource Quantity Contained in the Reservoir’s Pore Fluid (J) | 5.451 | 0.99779 | 0.00221 | 1.729 | 0.99960 | 0.00040 |
Reservoir | Primary Advantageous Target Area | Reservoir | Secondary Advantageous Target Area | ||||||
---|---|---|---|---|---|---|---|---|---|
D+ | D− | Comprehensive Score Index | Ranking | D+ | D− | Comprehensive Score Index | Ranking | ||
R14 | 0.417 | 0.760 | 0.6457 | 1 | R14 | 0.328 | 0.832 | 0.7173 | 1 |
R23 | 0.459 | 0.805 | 0.6367 | 2 | R23 | 0.528 | 0.738 | 0.5828 | 2 |
R24 | 0.571 | 0.550 | 0.4905 | 3 | R26 | 0.629 | 0.647 | 0.5071 | 3 |
R26 | 0.636 | 0.597 | 0.4843 | 4 | R24 | 0.584 | 0.564 | 0.4913 | 4 |
R16 | 0.629 | 0.481 | 0.4334 | 5 | R16 | 0.617 | 0.515 | 0.4551 | 5 |
R15 | 0.702 | 0.391 | 0.3579 | 6 | R01 | 0.688 | 0.395 | 0.3644 | 6 |
R01 | 0.703 | 0.363 | 0.3407 | 7 | R15 | 0.730 | 0.383 | 0.3441 | 7 |
R18 | 0.836 | 0.275 | 0.2472 | 8 | R18 | 0.807 | 0.326 | 0.2880 | 8 |
R22 | 0.834 | 0.265 | 0.2413 | 9 | R10 | 0.864 | 0.336 | 0.2799 | 9 |
R10 | 0.894 | 0.278 | 0.2373 | 10 | R22 | 0.817 | 0.311 | 0.2755 | 10 |
R09 | 0.857 | 0.252 | 0.2270 | 11 | R09 | 0.829 | 0.304 | 0.2682 | 11 |
R12 | 0.941 | 0.268 | 0.2219 | 12 | R12 | 0.917 | 0.327 | 0.2627 | 12 |
R08 | 0.868 | 0.237 | 0.2148 | 13 | R08 | 0.838 | 0.291 | 0.2579 | 13 |
R02 | 0.909 | 0.247 | 0.2139 | 14 | R02 | 0.880 | 0.305 | 0.2572 | 14 |
R20 | 0.898 | 0.237 | 0.2085 | 15 | R20 | 0.869 | 0.293 | 0.2523 | 15 |
R21 | 0.891 | 0.230 | 0.2053 | 16 | R21 | 0.863 | 0.286 | 0.2487 | 16 |
R13 | 0.925 | 0.239 | 0.2051 | 17 | R13 | 0.898 | 0.296 | 0.2481 | 17 |
R11 | 0.915 | 0.229 | 0.2002 | 18 | R11 | 0.888 | 0.286 | 0.2439 | 18 |
R06 | 0.890 | 0.220 | 0.1981 | 19 | R06 | 0.862 | 0.275 | 0.2421 | 19 |
R19 | 0.866 | 0.213 | 0.1971 | 20 | R04 | 0.893 | 0.283 | 0.2408 | 20 |
R04 | 0.921 | 0.226 | 0.1966 | 21 | R19 | 0.838 | 0.265 | 0.2404 | 21 |
R17 | 0.927 | 0.226 | 0.1962 | 22 | R17 | 0.904 | 0.284 | 0.2388 | 22 |
R05 | 0.907 | 0.216 | 0.1925 | 23 | R07 | 0.917 | 0.279 | 0.2333 | 23 |
R25 | 0.920 | 0.217 | 0.1905 | 24 | R05 | 0.892 | 0.269 | 0.2314 | 24 |
R07 | 0.941 | 0.221 | 0.1901 | 25 | R25 | 0.902 | 0.271 | 0.2313 | 25 |
R03 | 0.921 | 0.196 | 0.1752 | 26 | R03 | 0.898 | 0.253 | 0.2196 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zheng, F.; Song, R.; Zhang, C.; Dong, B.; Zhang, J.; Zhang, Y.; Wu, T. Geothermal Resource Assessment and Development Recommendations for the Huangliu Formation in the Central Depression of the Yinggehai Basin. Sustainability 2024, 16, 7104. https://doi.org/10.3390/su16167104
Chen H, Zheng F, Song R, Zhang C, Dong B, Zhang J, Zhang Y, Wu T. Geothermal Resource Assessment and Development Recommendations for the Huangliu Formation in the Central Depression of the Yinggehai Basin. Sustainability. 2024; 16(16):7104. https://doi.org/10.3390/su16167104
Chicago/Turabian StyleChen, Haiwen, Feng Zheng, Rongcai Song, Chao Zhang, Ben Dong, Jiahao Zhang, Yan Zhang, and Tao Wu. 2024. "Geothermal Resource Assessment and Development Recommendations for the Huangliu Formation in the Central Depression of the Yinggehai Basin" Sustainability 16, no. 16: 7104. https://doi.org/10.3390/su16167104
APA StyleChen, H., Zheng, F., Song, R., Zhang, C., Dong, B., Zhang, J., Zhang, Y., & Wu, T. (2024). Geothermal Resource Assessment and Development Recommendations for the Huangliu Formation in the Central Depression of the Yinggehai Basin. Sustainability, 16(16), 7104. https://doi.org/10.3390/su16167104