An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China
Abstract
1. Introduction
2. Research Methodology
2.1. Research Area
2.2. Urban Resilience Index Construction
Dimension | Indicator | Properties | Justification |
---|---|---|---|
Economy | EC1. Per Capita GDP | + | [54,55] |
EC2. Growth Rate of Fixed Assets Investment | + | [54] | |
EC3. Total Value of Imports and Exports | + | [55] | |
EC4. Disposable Income per Capita | + | [52] | |
EC5. Proportion of Tertiary Industry in GDP | + | [33,54] | |
EC6. Amount of Actual Utilized Foreign Capital | + | [52] | |
EC7. Added Value of High-tech Industries | + | [56] | |
EC8. Average Wage of Employed Staff and Workers | + | [34] | |
EC9. Total Retail Sales of Consumer Goods | + | [34,57] | |
EC10. Number of Industrial Enterprises Above Designated size | + | [52,58,59] | |
Ecology | EN1. Greening Rate of Built-up Area | + | [54,55] |
EN2. Park Green Area | + | [55] | |
EN3. Days Meeting Air Quality Standards | + | [60] | |
EN4. Centralized Wastewater Processing Rate | + | [54] | |
EN5. Comprehensive Utilization Rate of Industrial Solid Waste | + | [26,54] | |
EN6. Harmless Treatment Rate of Waste | + | [1,54,61] | |
Society | SO1. Urbanization Rate | + | [54,60] |
SO2. Number of Urban Employee Basic Endowment Insurances | + | [60] | |
SO3. Number of Urban Employee Basic Medical Insurances | + | [60] | |
SO4. Number of People Covered by Unemployment Insurance | + | [55] | |
SO5. Proportion of Science and Technology Expenditure to Public Budget | + | [26,57] | |
SO6. Number of Health Institutions | + | [34] | |
SO7. Number of Health Staff | + | [52,55] | |
SO8. Proportion of Social Security and Employment Expenditure to Public Budget | + | [55] | |
SO9. Public Library Book Collections | + | [55,59] | |
SO10. Proportion of Education Expenditure to Public Budget | + | [34,55] | |
Infrastructure | IN1. Urban Drainage Pipeline Length | + | [55,62] |
IN2. Number of Private Cars | + | [26,54] | |
IN3. Number of Internet Accesses | + | [54,63] | |
IN4. Number of Mobile Phone Subscribers | + | [30,34,54] | |
IN5. Length of Highways | + | [34,54] |
2.3. Method
2.3.1. Mearament Scales
2.3.2. Data Collection
2.3.3. Data Analysis
3. The Results of Structural Equation Modeling (SEM)
3.1. Measurement Model
3.1.1. Reliability Analysis
3.1.2. Validity Analysis
3.1.3. Common Method Bias (CMB)
3.2. Structural Model
4. Empirical Results in Huangshi City
4.1. The Weight of Indicators
4.2. The Empirical Evaluation Results of Urban Resilience in Huangshi City
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Theoretical Implications
5.4. Practical Implications
5.5. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, S.; Li, D.; Feng, H. Is smart city resilient? Evidence from China. Sustain. Cities Soc. 2019, 50, 101636. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Pena Jardim Gonçalves, L.A. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H. Spatial spillover effect of urban sprawl on total factor energy ecological efficiency: Evidence from 272 cities in China. Energy 2023, 273, 127212. [Google Scholar] [CrossRef]
- Jiang, N.; Jiang, W. How does regional integration policy affect urban resilience? Evidence from urban agglomeration in China. Environ. Impact Assess. Rev. 2024, 104, 107298. [Google Scholar] [CrossRef]
- Nikpour, A.; Ashoori, M. Evaluation of the principles and criteria of resilience in urban management (case study: Qazvin). Sustain. Cities Soc. 2023, 95, 104590. [Google Scholar] [CrossRef]
- Wang, W.; Wei, H.; Hassan, H.; He, X. Research progress and prospects of urban resilience in the perspective of climate change. Front. Earth Sci. 2024, 12, 1247360. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Lu, D. Evaluation of urban resilience based on trio spaces: An empirical study in Northeast China. Buildings 2023, 13, 1695. [Google Scholar] [CrossRef]
- Rodríguez-Izquierdo, E.; Cid, A.; García-Meneses, P.M.; Peña-Sanabria, K.A.; Lerner, A.M.; Matus-Kramer, A.; Escalante, A.E. From resilience attributes to city resilience. Landsc. Urban Plan. 2022, 226, 104485. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Ilıcak, Ö.; Feyzioğlu, O. A review of urban resilience literature. Sustain. Cities Soc. 2022, 77, 103579. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, B.; Kumar, N.; Kumar, A. Establishing conceptual components for urban resilience: Taking clues from urbanization through a planner’s lens. Nat. Hazards Rev. 2023, 24, 04022040. [Google Scholar] [CrossRef]
- Serbanica, C.; Constantin, D.L. Misfortunes never come singly. A holistic approach to urban resilience and sustainability challenges. Cities 2023, 134, 104177. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Qin, M. How digital transformation affects urban resilience: Empirical evidence from the Yangtze River Delta region. Sustainability 2023, 15, 6221. [Google Scholar] [CrossRef]
- Wang, T.; Yao, C.; Wei, Q. Resilience assessment and influencing factors of Chinese megacities. Sustainability 2023, 15, 6770. [Google Scholar] [CrossRef]
- Mu, X.; Fang, C.; Yang, Z. Spatio-temporal evolution and dynamic simulation of the urban resilience of Beijing-Tianjin-Hebei urban agglomeration. J. Geogr. Sci. 2022, 32, 1766–1790. [Google Scholar] [CrossRef]
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Lu, P.; Stead, D. Understanding the notion of resilience in spatial planning: A case study of Rotterdam, The Netherlands. Cities 2013, 35, 200–212. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landscape Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Qiao, D.; Shen, S.; Chen, J.; Lu, W.; Xu, C.; Su, M. Urban resilience assessment from the perspective of cross-media carbon metabolism. J. Clean. Prod. 2024, 445, 141383. [Google Scholar] [CrossRef]
- Almulhim, A.I.; Cobbinah, P.B. Framing resilience in Saudi Arabian cities: On climate change and urban policy. Sustain. Cities Soc. 2024, 101, 105172. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.; Du, M. Differences and drivers of urban resilience in eight major urban agglomerations: Evidence from China. Land 2022, 11, 1470. [Google Scholar] [CrossRef]
- Feng, X.; Xiu, C.; Bai, L.; Zhong, Y.; Wei, Y. Comprehensive evaluation of urban resilience based on the perspective of landscape pattern: A case study of Shenyang city. Cities 2020, 104, 102722. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, J.; Zhang, L. The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities. Sustain. Cities Soc. 2022, 86, 104160. [Google Scholar] [CrossRef]
- Tong, P. Characteristics, dimensions and methods of current assessment for urban resilience to climate-related disasters: A systematic review of the literature. Int. J. Disaster Risk Reduct. 2021, 60, 102276. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Zhu, X.; Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 2021, 74, 103210. [Google Scholar] [CrossRef]
- Chen, X.-L.; Yu, L.-X.; Lin, W.-D.; Yang, F.-Q.; Li, Y.-P.; Tao, J.; Cheng, S. Urban resilience assessment from the multidimensional perspective using dynamic Bayesian network: A case study of Fujian Province, China. Reliab. Eng. Syst. Saf. 2023, 238, 109469. [Google Scholar] [CrossRef]
- Keating, A.; Hanger-Kopp, S. Practitioner perspectives of disaster resilience in international development. Int. J. Disaster Risk Reduct. 2020, 42, 101355. [Google Scholar] [CrossRef]
- Caldarice, O.; Tollin, N.; Pizzorni, M. The relevance of science-policy-practice dialogue. Exploring the urban climate resilience governance in Italy. City Territ. Archit. 2021, 8, 9. [Google Scholar] [CrossRef]
- Amegavi, G.B.; Nursey-Bray, M.; Suh, J. Exploring the realities of urban resilience: Practitioners’ perspectives. Int. J. Disaster Risk Reduct. 2024, 103, 104313. [Google Scholar] [CrossRef]
- Chelleri, L.; Baravikova, A. Understandings of urban resilience meanings and principles across Europe. Cities 2021, 108, 102985. [Google Scholar] [CrossRef]
- Xi, X.; Wang, S.; Yao, L.; Zhang, Y.; Niu, R.; Zhou, Y. Evaluation on geological environment carrying capacity of mining city—A case study in Huangshi City, Hubei Province, China. Int. J. Appl. Earth Obs. 2021, 102, 102410. [Google Scholar] [CrossRef]
- Hong, H.; Tao, A.-J.; Liu, Y.-J.; Long, Y.; Shao, S.; An, S.-W.; Xue, B.; Zhang, P.-Y.; Zhang, W.-Z.; Wu, K. High-quality development of resource-based cities in China: Dilemmas and breakthroughs. J. Nat. Resour. 2023, 38, 1–21. [Google Scholar]
- Wang, Z.; Fu, H.; Zhou, L. Multiple urban resilience evaluation of resource-based cities’ sustainable transformation effect. Resour. Conserv. Recy. 2023, 191, 106912. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.; Jing, Z.; Liu, B.; Niu, H. Evaluation and regulation of resource-based city resilience: Evidence from Shanxi Province, China. Int. J. Disaster Risk Reduct. 2022, 81, 103256. [Google Scholar] [CrossRef]
- Yi, P.; Wang, S.; Li, W.; Dong, Q. Urban resilience assessment based on “window” data: The case of three major urban agglomerations in China. Int. J. Disaster Risk Reduct. 2023, 85, 103528. [Google Scholar] [CrossRef]
- Heeks, R.; Ospina, A.V. Conceptualising the link between information systems and resilience: A developing country field study. Info. Syst. J. 2018, 29, 70–96. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, L.; Lu, H.; Fan, Y.; Zhang, Y.; Wu, Y. An assessment model for urban resilience based on the pressure-state-response framework and BP-GA neural network. Urban Clim. 2023, 49, 101543. [Google Scholar] [CrossRef]
- Chen, C.; Xu, L.; Zhao, D.; Xu, T.; Lei, P. A new model for describing the urban resilience considering adaptability, resistance and recovery. Saf. Sci. 2020, 128, 104756. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Li, G. Multi-stage composition of urban resilience and the influence of pre-disaster urban functionality on urban resilience. Nat. Hazards 2021, 107, 447–473. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Cutter, S.L.; Derakhshan, S. Temporal and spatial change in disaster resilience in US counties, 2010–2015. Environ. Hazards 2018, 19, 10–29. [Google Scholar] [CrossRef]
- Metaxas, T.; Psarropoulou, S. Sustainable development and resilience: A combined analysis of the cities of Rotterdam and Thessaloniki. Urban Sci. 2021, 5, 78. [Google Scholar] [CrossRef]
- Brown, C.; Shaker, R.R.; Das, R. A review of approaches for monitoring and evaluation of urban climate resilience initiatives. Environ. Dev. Sustain. 2016, 20, 23–40. [Google Scholar] [CrossRef]
- Feofilovs, M.; Romagnoli, F. Dynamic assessment of urban resilience to natural hazards. Int. J. Disaster Risk Reduct. 2021, 62, 102328. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Zhang, Y. An urban system perspective on urban flood resilience using SEM: Evidence from Nanjing city, China. Nat. Hazards 2021, 109, 2575–2599. [Google Scholar] [CrossRef]
- Johansen, C.; Horney, J.; Tien, I. Metrics for evaluating and improving community resilience. J. Infrastruct. Syst. 2017, 23, 04016032. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, C.-C.; Peng, D. Does regional integration improve economic resilience? Evidence from urban agglomerations in China. Sustain. Cities Soc. 2023, 88, 104273. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Zhou, Q.; Qiao, Y. Research on spatiotemporal differentiation and influence mechanism of urban resilience in China based on MGWR model. Int. J. Environ. Res. Public Health 2021, 18, 1056. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Fang, C.; Liu, H.; Liu, X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Busic-Sontic, A.; Schubert, R. Social resilience indicators for pandemic crises. Disasters 2024, 48, e12610. [Google Scholar] [CrossRef]
- Sun, D.; Qi, P.P.; Zhong, C.M.; Xu, C. Achieving resilience through knowledge management practices and risk management culture in agri-food supply chains. Environ. Sci. Pollut. Res. 2023, 30, 118647–118661. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Guo, N.; Gao, X.; Wu, F. How carbon emission reduction is going to affect urban resilience. J. Clean. Prod. 2022, 372, 133737. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Xu, X.; Luo, J. Integrated natural disasters urban resilience evaluation: The case of China. Nat. Hazards 2021, 107, 2105–2122. [Google Scholar] [CrossRef]
- Liu, L.; Lei, Y.; Zhuang, M.; Ding, S. The impact of climate change on urban resilience in the Beijing-Tianjin-Hebei region. Sci. Total. Environ. 2022, 827, 154157. [Google Scholar] [CrossRef]
- Lu, H.; Lu, X.; Jiao, L.; Zhang, Y. Evaluating urban agglomeration resilience to disaster in the Yangtze Delta city group in China. Sustain. Cities Soc. 2022, 76, 103464. [Google Scholar] [CrossRef]
- Cheng, P.; Fu, J.; Li, C.; Chen, X. A review of urban resilience quantitalive assessment. J. Catasrophology 2023, 38, 139–147. [Google Scholar]
- Zhang, M.; Chen, W.; Cai, K.; Gao, X.; Zhang, X.; Liu, J.; Wang, Z.; Li, D. Analysis of the spatial distribution characteristics of urban resilience and its influencing factors: A case study of 56 cities in China. Int. J. Environ. Res. Public Health 2019, 16, 4442. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, C.; Jiao, L.; Wei, Y.; Zhang, Y. Analysis on the spatial-temporal evolution of urban agglomeration resilience: A case study in Chengdu-Chongqing Urban Agglomeration, China. Int. J. Disaster Risk Reduct. 2022, 79, 103167. [Google Scholar] [CrossRef]
- Tang, D.; Li, J.; Zhao, Z.; Boamah, V.; Lansana, D.D. The influence of industrial structure transformation on urban resilience based on 110 prefecture-level cities in the Yangtze River. Sustain. Cities Soc. 2023, 96, 104621. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, X.-L.; Lin, C.-Z.; Wang, M.; He, X.-J. Development as adaptation: Framing and measuring urban resilience in Beijing. Adv. Clim. Chang. Res. 2018, 9, 234–242. [Google Scholar] [CrossRef]
- Wang, X.; Long, S. Analysis of sustainable development level for resource-exhausted cities in China from perspective of resilience. Pol. J. Environ. Stud. 2023, 32, 1967–1974. [Google Scholar] [CrossRef]
- Huang, H.; Li, R.; Wang, W.; Qin, T.; Zhou, R.; Fan, W. Concepts, models, and indicator systems for urban safety resilience: A literature review and an exploration in China. J. Saf. Sci. Resil. 2023, 4, 30–42. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, K.-L.; Miao, Z. Can telecommunications infrastructure enhance urban resilience? Empirical evidence from a differences-in-differences approach in China. Environ. Dev. Sustain. 2023. [CrossRef]
- The Notice of Huangshi Municipal People’s Government Office on the Establishment of Huangshi Resilient City Construction Leading Group. Available online: http://www.huangshi.gov.cn/xxxgk/2020_zc/qtzdgkwj/201506/t20150626_314667.html (accessed on 24 June 2024).
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. 2021, 173, 121092. [Google Scholar] [CrossRef]
- Al-Emran, M.; AlQudah, A.A.; Abbasi, G.A.; Al-Sharafi, M.A.; Iranmanesh, M. Determinants of Using AI-Based Chatbots for Knowledge Sharing: Evidence From PLS-SEM and Fuzzy Sets (fsQCA). IEEE T. Eng. Manag. 2023, 71, 4985–4999. [Google Scholar] [CrossRef]
- Shi, D.; Maydeu-Olivares, A. The effect of estimation methods on SEM fit indices. Educ. Psychol. Meas. 2019, 80, 421–445. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tahri, D.; Qiang, F. How does active learning pedagogy shape learner curiosity? A multi-site mediator study of learner engagement among 45,972 children. J. Intell. 2024, 12, 59. [Google Scholar] [CrossRef]
- Hu, X.; Li, R.Y.M.; Kumari, K.; Ben Belgacem, S.; Fu, Q.; Khan, M.A.; Alkhuraydili, A.A. Relationship between green leaders’ emotional intelligence and employees’ green behavior: A PLS-SEM approach. Behav. Sci. 2022, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, S.; Zeng, Z.; Liang, Z.; Chen, Y.; Guo, W. An empirical investigation of users’ switching intention to public service robots: From the perspective of PPM framework. Gov. Inform. Q. 2024, 41, 101933. [Google Scholar] [CrossRef]
- Hsieh, P.-J. Understanding medical consumers’ intentions to switch from cash payment to medical mobile payment: A perspective of technology migration. Technol. Forecast. Soc. 2021, 173, 121074. [Google Scholar] [CrossRef]
- Hossain, M.A.; Quaddus, M.; Hossain, M.M.; Gopakumar, G. Data-driven innovation development: An empirical analysis of the antecedents using PLS-SEM and fsQCA. Ann. Oper. Res. 2022, 333, 895–937. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Yang, A.Y.-Y. Evaluating the influence of sustainable urban disaster prevention planning satisfaction on residents’ living willingness: A structural equation modeling approach in Kaohsiung City. Sustainability 2024, 16, 5624. [Google Scholar] [CrossRef]
Latent Variables | Observed Variables |
---|---|
Economy | EC1. Per Capita GDP |
EC2. Growth Rate of Fixed Assets Investment | |
EC3. Total Value of Imports and Exports | |
EC4. Disposable Income per Capita | |
EC5. Proportion of Tertiary Industry in GDP | |
EC6. Amount of Actual Utilized Foreign Capital | |
EC7. Added Value of High-tech Industries | |
EC8. Average Wage of Employed Staff and Workers | |
EC9. Total Retail Sales of Consumer Goods | |
EC10. Number of Industrial Enterprises Above Designated size | |
Ecology | EN1. Greening Rate of Built-up Area |
EN2. Park Green Area | |
EN3. Days Meeting Air Quality Standards | |
EN4. Centralized Wastewater Processing Rate | |
EN5. Comprehensive Utilization Rate of Industrial Solid Waste | |
EN6. Harmless Treatment Rate of Waste | |
Society | SO1. Urbanization Rate |
SO2. Number of Urban Employee Basic Endowment Insurances | |
SO3. Number of Urban Employee Basic Medical Insurances | |
SO4. Number of People Covered by Unemployment Insurance | |
SO5. Proportion of Science and Technology Expenditure to Public Budget | |
SO6. Number of Health Institutions | |
SO7. Number of Health Staff | |
SO8. Proportion of Social Security and Employment Expenditure to Public Budget | |
SO9. Public Library Book Collections | |
SO10. Proportion of Education Expenditure to Public Budget | |
Infrastructure | IN1. Urban Drainage Pipeline Length |
IN2. Number of Private Cars | |
IN3. Number of Internet Accesses | |
IN4. Number of Mobile Phone Subscribers | |
IN5. Length of Highways |
Measure | Item | Number (Person) | Percentage (%) |
---|---|---|---|
Gender | Male | 755 | 51.57% |
Female | 709 | 48.43% | |
Age | Below 30 | 56 | 3.83% |
30~44 | 1389 | 94.46% | |
45~59 | 10 | 0.68% | |
60 and over | 9 | 0.61% | |
Education | Junior middle school and lower | 8 | 0.55% |
High school | 27 | 1.84% | |
College degree | 95 | 6.5% | |
Bachelor’s degree | 957 | 65.51% | |
Master’s degree and over | 375 | 25.61% |
Latent Variable | Observation Variable | Standardization Factor Loading | Cronbach’s Alpha | AVE | CR |
---|---|---|---|---|---|
Economy | EC1 | 0.668 | 0.958 | 0.724 | 0.963 |
EC2 | 0.843 | ||||
EC3 | 0.860 | ||||
EC4 | 0.838 | ||||
EC5 | 0.889 | ||||
EC6 | 0.884 | ||||
EC7 | 0.893 | ||||
EC8 | 0.874 | ||||
EC9 | 0.877 | ||||
EC10 | 0.859 | ||||
Ecology | EN1 | 0.839 | 0.958 | 0.775 | 0.954 |
EN2 | 0.858 | ||||
EN3 | 0.897 | ||||
EN4 | 0.892 | ||||
EN5 | 0.899 | ||||
EN6 | 0.895 | ||||
Society | SO1 | 0.874 | 0.972 | 0.778 | 0.969 |
SO2 | 0.853 | ||||
SO3 | 0.854 | ||||
SO4 | 0.894 | ||||
SO5 | 0.908 | ||||
SO6 | 0.898 | ||||
SO7 | 0.856 | ||||
SO8 | 0.879 | ||||
SO9 | 0.867 | ||||
SO10 | 0.91 | ||||
Infrastructure | IN1 | 0.896 | 0.954 | 0.783 | 0.956 |
IN2 | 0.895 | ||||
IN3 | 0.884 | ||||
IN4 | 0.851 | ||||
IN5 | 0.884 | ||||
IN6 | 0.897 |
Fitting Index | Criterion | Actual Value | Result | |
---|---|---|---|---|
Acceptable | Good | |||
CMIN/DF | <5 | [2,3) | 4.160 | Acceptable |
GFI | [0.7,0.9) | >0.9 | 0.939 | Good |
AGFI | >0.5 | 0.921 | Good | |
RMSEA | <0.1 | <0.07 | 0.044 | Good |
NFI | [0.7,0.9) | >0.9 | 0.975 | Good |
IFI | [0.7,0.9) | >0.9 | 0.981 | Good |
TLI | [0.7,0.9) | >0.9 | 0.977 | Good |
CFI | [0.7,0.9) | >0.9 | 0.981 | Good |
PNFI | >0.5 | 0.794 | Good | |
PCFI | >0.5 | 0.799 | Good |
Dimension | Average Value | Standard Deviation | Economy | Ecology | Society | Infrastructure |
---|---|---|---|---|---|---|
Economy | 3.561 | 0.654 | 0.851 | |||
Ecology | 3.827 | 0.668 | 0.658 ** | 0.880 | ||
Society | 3.772 | 0.664 | 0.682 ** | 0.736 ** | 0.882 | |
Infrastructure | 3.759 | 0.688 | 0.648 ** | 0.669 ** | 0.800 ** | 0.884 |
Fitting Index | Single-Factor Confirmatory Factor Analysis Value | Actual Value | Criterion | |
---|---|---|---|---|
Acceptable | Good | |||
CMIN/DF | 25.263 | 4.160 | <5 | [2,3) |
GFI | 0.571 | 0.981 | [0.7,0.9) | >0.9 |
AGFI | 0.511 | 0.921 | >0.5 | |
RMSEA | 0.122 | 0.044 | <0.1 | <0.07 |
NFI | 0.827 | 0.975 | [0.7,0.9) | >0.9 |
IFI | 0.833 | 0.981 | [0.7,0.9) | >0.9 |
TLI | 0.821 | 0.977 | [0.7,0.9) | >0.9 |
CFI | 0.833 | 0.981 | [0.7,0.9) | >0.9 |
PNFI | 0.774 | 0.794 | >0.5 | |
PCFI | 0.779 | 0.799 | >0.5 |
Dimensions | Dimension–Weight | Indicators | Weight1 | Weight2 |
---|---|---|---|---|
Economy | 0.2300 | EC1 | 0.0787 | 0.0181 |
EC2 | 0.0994 | 0.0229 | ||
EC3 | 0.1014 | 0.0233 | ||
EC4 | 0.0988 | 0.0227 | ||
EC5 | 0.1048 | 0.0241 | ||
EC6 | 0.1042 | 0.0240 | ||
EC7 | 0.1052 | 0.0242 | ||
EC8 | 0.1030 | 0.0237 | ||
EC9 | 0.1034 | 0.0238 | ||
EC10 | 0.1012 | 0.0233 | ||
Ecology | 0.2400 | EN1 | 0.1589 | 0.0381 |
EN2 | 0.1625 | 0.0390 | ||
EN3 | 0.1699 | 0.0408 | ||
EN4 | 0.1689 | 0.0405 | ||
EN5 | 0.1703 | 0.0409 | ||
EN6 | 0.1695 | 0.0407 | ||
Society | 0.2700 | SO1 | 0.0994 | 0.0268 |
SO2 | 0.0970 | 0.0262 | ||
SO3 | 0.0971 | 0.0262 | ||
SO4 | 0.1017 | 0.0275 | ||
SO5 | 0.1033 | 0.0279 | ||
SO6 | 0.1021 | 0.0276 | ||
SO7 | 0.0974 | 0.0263 | ||
SO8 | 0.1000 | 0.0270 | ||
SO9 | 0.0986 | 0.0266 | ||
SO10 | 0.1035 | 0.0279 | ||
Infrastructure | 0.2600 | IN1 | 0.1688 | 0.0439 |
IN2 | 0.1686 | 0.0438 | ||
IN3 | 0.1666 | 0.0433 | ||
IN4 | 0.1604 | 0.0417 | ||
IN5 | 0.1666 | 0.0433 | ||
IN6 | 0.1690 | 0.0439 |
Year | Urban Resilience | Economy Resilience | Ecology Resilience | Society Resilience | Infrastructure Resilience |
---|---|---|---|---|---|
2013 | 0.5103 | 0.1174 | 0.1225 | 0.1378 | 0.1327 |
2014 | 0.5628 | 0.1295 | 0.1351 | 0.1520 | 0.1463 |
2015 | 0.5888 | 0.1354 | 0.1413 | 0.1590 | 0.1531 |
2016 | 0.5763 | 0.1326 | 0.1383 | 0.1556 | 0.1498 |
2017 | 0.6794 | 0.1563 | 0.1631 | 0.1834 | 0.1767 |
2018 | 0.7287 | 0.1676 | 0.1749 | 0.1968 | 0.1895 |
2019 | 0.7899 | 0.1817 | 0.1896 | 0.2133 | 0.2054 |
2020 | 0.8168 | 0.1879 | 0.1960 | 0.2205 | 0.2124 |
2021 | 0.8663 | 0.1992 | 0.2079 | 0.2339 | 0.2252 |
2022 | 0.9015 | 0.2074 | 0.2164 | 0.2434 | 0.2344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Y.; Liang, L.; Zhou, W. An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China. Sustainability 2024, 16, 7031. https://doi.org/10.3390/su16167031
Si Y, Liang L, Zhou W. An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China. Sustainability. 2024; 16(16):7031. https://doi.org/10.3390/su16167031
Chicago/Turabian StyleSi, Yanning, Lizhi Liang, and Wenguang Zhou. 2024. "An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China" Sustainability 16, no. 16: 7031. https://doi.org/10.3390/su16167031
APA StyleSi, Y., Liang, L., & Zhou, W. (2024). An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China. Sustainability, 16(16), 7031. https://doi.org/10.3390/su16167031