Effect of Reduced Tillage and Residue Incorporation as Sustainable Agricultural Practices on the Yield and Nutrient Uptake of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exprimental Site and Soil
2.2. Experimental Details
2.3. Data Record and Analysis of Samples
2.4. Statistical Analyses
3. Results
3.1. Yield Parameters of Rice
3.2. Grain and Straw Yield of Rice
3.3. Nutrient Content in Rice
3.4. Nutrient Uptake by Rice
4. Discussion
4.1. Experiment 1
4.2. Experiment 2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabir, M.S.; Salam, M.U.; Chowdhury, A.; Rahman, N.M.F.; Iftekharuddaula, K.M.; Rahman, M.S.; Rashid, M.H.; Dipti, S.S.; Islam, A.; Latif, M.A.; et al. Rice vision for Bangladesh: 2050 and beyond. Bangladesh Rice J. 2015, 19, 1–18. [Google Scholar] [CrossRef]
- BBS—Bangladesh Bureau of Statistics. Statistical Yearbook of Bangladesh; Bangladesh Bureau of Statistics, Statistic Division, Ministry of Planning, Government of Peoples Republic of Bangladesh: Dhaka, Bangladesh, 2021. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Krupnick, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Venkatesh, M.S.; Hazra, K.K.; Ghosh, P.K.; Praharaj, C.S.; Kumar, N. Long–term effect of pulses and nutrient management on soil carbon sequestration in Indo-Gangetic plains of India. Can. J. Soil Sci. 2013, 93, 127–136. [Google Scholar] [CrossRef]
- Lobb, D.A.; Huffman, E.; Reicosky, D.C. Importance of information on tillage practices in the modelling of environmental processes and in the use of environmental indicators. J. Environ. Manag. 2007, 82, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; Nath, C.P.; Das, S.; Biswas, S.; Bhattacharyya, R.; Sudhishri, S.; Raj, R.; Singh, B.; Kakralia, S.K.; Rathi, N.; et al. Conservation agriculture in rice-mustard cropping system for five years: Impacts on crop productivity, profitability, water-use efficiency, and soil properties. Field Crops Res. 2020, 250, 107781. [Google Scholar] [CrossRef]
- Peng, Q.; Liu, B.; Hu, Y.; Wang, A.; Guo, Q.; Yin, B.; Cao, Q.; He, L. The role of conventional tillage in agricultural soil erosion. Agric. Ecosyst. Environ. 2023, 348, 108407. [Google Scholar] [CrossRef]
- Gupta Choudhury, S.; Srivastava, S.; Singh, R.; Chaudhari, S.K.; Sharma, D.K.; Singh, S.K.; Sarkar, D. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil. Soil Till. Res. 2014, 136, 76–83. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Raza, M.H.; Abid, M.; Faisal, M.; Yan, T.; Akhtar, S.; Adnan, K.M.M. Environmental and Health Impacts of Crop Residue burning: Scope of sustainable crop residue management practices. Int. J. Environ. Res. Public Health 2022, 19, 4753. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Saikanth, D.R.K.; Mangaraj, A.; Jena, L.; Boruah, A.; Talukdar, N.; Bahadur, R.; Ashraf, S. Impact of crop residue management on crop productivity and soil health: A review. Int. J. Stat. Appl. Math. 2023, SP-8, 599–605. [Google Scholar]
- He, Y.; Yang, K.; Zhuang, W.; Liu, C.; Li, L.; Zhang, C.; Li, M. Crop residue removal effects on soil erosion and phosphorus loss in purple soils region, southwestern China. Agronomy 2023, 3, 1137. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhary, A.; Ahlawat, O.P.; Naorem, A.; Upadhyay, G.; Chhokar, R.S.; Gill, S.C.; Khippal, A.; Tripathi, S.C.; Singh, G.P. Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil Till. Res. 2023, 228, 105641. [Google Scholar] [CrossRef]
- Huang, S.; Zeng, Y.; Wu, J.; Shi, Q.; Pan, X. Effect of crop residue retention on rice yield in China: A meta-analysis. Field Crops Res. 2013, 154, 188–194. [Google Scholar] [CrossRef]
- Franke, A.C.; van den Brand, G.J.; Giller, K.E. Which farmers benefit most from sustainable intensification? An ex-ante impact assessment of expanding legume production in Malawi. Eur. J. Agron. 2014, 58, 28–38. [Google Scholar] [CrossRef]
- Snapp, S.S.; Blackie, M.J.; Gilbert, R.A.; Bezner-Kerr, R.; Kanyama-Phiri, G.Y. Biodiversity can support a greener revolution in Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 20840–20845. [Google Scholar] [CrossRef] [PubMed]
- Bremner, R.; Snapp, S.S.; Chirwa, M.; Shumba, L.; Msachi, R. Participatory research on legume diversification with Malawian smallholder farmers for improved human nutrition and soil fertility. Exp. Agric. 2007, 43, 437–453. [Google Scholar] [CrossRef]
- Sayed, A.; Sarker, A.; Kim, J.E.; Rahman, M.; Mahmud, M.G.A. Environmental sustainability and water productivity on conservation tillage of irrigated maize in red brown terrace soil of Bangladesh. J. Saudi Soc. Agric. Sci. 2020, 19, 276–284. [Google Scholar] [CrossRef]
- Carretta, L.; Tarolli, P.; Cardinali, A.; Nasta, P.; Romano, N.; Masin, R. Evaluation of runoff and soil erosion under conventional tillage and no-till management: A case study in northeast Italy. Catena 2021, 197, 104972. [Google Scholar] [CrossRef]
- Singh, D.; Mishra, A.K.; Patra, S.; Dwivedi, A.K.; Ojha, C.S.P.; Singh, V.P.; Mariappan, S.; Babu, S.; Singh, N.; Yadav, D.; et al. Effect of long-term tillage practices on runoff and soil erosion in sloping croplands of Himalaya, India. Sustainability 2023, 15, 8285. [Google Scholar] [CrossRef]
- Adil, M.; Lu, S.; Yao, Z.; Zhang, C.; Lu, H.; Bashir, S.; Maitah, M.; Gul, I.; Razzaq, S.; Qiu, L. No-tillage enhances soil water storage, grain yield and water use efficiency in dryland wheat (Triticum aestivum) and maize (Zea mays) cropping systems: A global meta-analysis. Funct. Plant Biol. 2024, 51, FP23267. [Google Scholar] [CrossRef]
- Gicheru, P.T.; Gachene, C.K.K.; Mbuvi, J.P. Effects of soil management practices and tillage systems on soil moisture conservation and maize yield on a sandy loam in semiarid Kenya. J. Sustain. Agric. 2006, 27, 77–92. [Google Scholar] [CrossRef]
- Fiorini, A.; Boselli, R.; Maris, S.C.; Santelli, S.; Ardenti, F.; Capra, F.; Tabaglio, V. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric. Ecosyst. Environ. 2020, 296, 106926. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; vanGestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2014, 517, 365–368. [Google Scholar] [CrossRef]
- Sadiq, M.; Li, G.; Rahim, N.; Tahir, M.M. Sustainable conservation tillage technique for improving soil health by enhancing soil physicochemical quality indicators under wheat mono-cropping system conditions. Sustainability 2021, 13, 8177. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis: Part 1; American Society of Agronomy, Inc.: Madison, WI, USA, 1965. [Google Scholar]
- Walkey, A.J.; Black, A.I. Estimation of organic carbon by chromic acid titration method. J. Soil Sci. 1934, 25, 259–260. [Google Scholar]
- Nelson, D.W.; Sommer, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Keeney, D.R., Baker, D.E., Miller, R.H., Ellis, R.J., Rhoades, J.D., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Olsen, S.R.; Cole, C.U.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate; Circular No. 939; U.S. Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, sodium and potassium. In Methods of Soil Analysis: Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 225–245. [Google Scholar]
- Fox, R.L.; Olson, R.A.; Rhoades, H.F. Evaluating the sulfur status of soils by plants and soil tests. Soil Sci. Soc. Am. J. 1964, 28, 243–246. [Google Scholar] [CrossRef]
- FRG. Fertilizer Recommendation Guide-2018; Bangladesh Agricultural Research Council: Farmgate, Dhaka, 2018. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis: A Laboratory Manual of Methods for the Examination of Soils and the Determination of the Inorganic Constituents of Plants; Hans Publishers: Bombay, India, 1966. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Choudhary, V.K.; Gurjar, D.S.; Meena, R.S. Crop residue and weed biomass incorporation with microbial inoculation improve the crop and soil productivity in the rice (Oryza sativa L.) toria (Brassica rapa L.) cropping system. Environ. Dev. Sustain. 2020, 7, 10048. [Google Scholar] [CrossRef]
- Coulibaly, S.; Touré, M.; Kouamé, A.; Kambou, I.; Soro, S.; Yéo, K.; Koné, S. Incorporation of crop residues into soil: Apractice to improve soil chemical properties. Agric. Sci. 2020, 11, 1186–1198. [Google Scholar] [CrossRef]
- Dai, J.; Hu, J.; Zhu, A.; Lin, X. No-tillage with half-amount residue retention enhances microbial functional diversity, enzyme activity and glomalin-related soil protein content within soil aggregates. Soil Use Manag. 2017, 33, 153–162. [Google Scholar] [CrossRef]
- Arshadullah, M.; Ali, A.; Hyder, S.I.; Khan, A.M. Effect of wheat residue incorporation along with N starter dose on rice yield and soil health under saline sodic soil: Effect of wheat straw with N on rice production. Pak. J. Sci. Ind. Res. 2012, 22, 753–757. [Google Scholar] [CrossRef]
- Khatri, N.; Rawal, N.; Chalise, D.; Bista, M.; Pandey, B.P. Effect of crop residue and nitrogen level in yield and yield attributing traits of rice under rice-wheat cropping system. Int. J. Adv. Biol. Biomed. Res. 2020, 8, 146–152. [Google Scholar] [CrossRef]
- Singh, G.; Dhillon, B.S. Growth and productivity of rice crop as influenced by crop residue incorporation under rice-wheat cropping system. Pharma Innov. J. 2022, SP-11, 582–584. [Google Scholar]
- Sarwar, G.; Hussain, N.; Schmeisky, H.; Muhammad, S. Efficiency of various organic residues for enhancing rice-wheat production under normal soil conditions. Pak. J. Bot. 2008, 40, 2107–2113. [Google Scholar]
- Dotaniya, M.L. Impact of crop residue management practices on yield and nutrient uptake in rice-wheat system. Curr. Advan. Agric. Sci. 2013, 5, 269–271. [Google Scholar]
- Sharma, S.; Dhaliwal, S.S. Rice residue incorporation and nitrogen application: Effects on yield and micronutrient transformations under rice–wheat cropping system. J. Plant Nutr. 2020, 43, 2697–2711. [Google Scholar] [CrossRef]
- Bird, J.A.; Horwath, W.R.; Eagle, A.J.; van Kessel, C. Immobilization of fertilizer nitrogen in rice: Effects of straw management practices. Soil Sci. Soc. Am. J. 2001, 65, 1143–1152. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice residue-management options and effects on soil properties and crop productivity. J. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Badarinath, K.V.S.; Chand, T.R.K.; Prasad, V.K. Agricultural crop residue burning in the Indo-Gangetic plains a study using IRS-P6 AWiFS satellite data. Curr. Sci. 2006, 91, 1085–1089. [Google Scholar]
- Chivenge, P.; Rubianes, F.; Chin, D.V.; Thach, T.V.; Khang, V.T.; Romasanta, R.R.; Hung, N.V. Rice straw incorporation influences nutrient cycling and soil organic Matter. In Sustainable Rice Straw Management; Gummert, M., Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystems services: An overview. Agric. Ecosyst. Environ. 2013, 187, 87–105. [Google Scholar] [CrossRef]
- Mupangwa, W.; Twomlow, S.; Walker, S.; Hove, L. Effect of minimum tillage and mulch on maize (Zea mays L.) yield and water content of clayey and sandy soils. J. Phys. Chem. Earth 2007, 32, 1127–1134. [Google Scholar] [CrossRef]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef]
- Mupangwa, W.; Twomlow, S.; Walker, S. Reduced tillage, mulching, and rotational effects on maize (Zea mays L.), cowpea (Vigna unguiculata (Walp) L.) and sorghum (Sorghum bicolour L. (Moench)) yields under semi-arid conditions. Field Crops Res. 2012, 132, 139–148. [Google Scholar] [CrossRef]
- Li, R.; Gao, Y.; Chen, Q.; Li, Z.; Gao, F.; Meng, Q.; Li, T.; Liu, A.; Wang, Q.; Wu, L.; et al. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat. Soil Till. Res. 2021, 212, 105045. [Google Scholar] [CrossRef]
- Zhou, G.; Cao, W.; Bai, J.; Xu, C.; Zeng, N.; Gao, S.; Rees, R.M. Non-additive responses of soil C and N to rice straw and hairy vetch (Viciavillosa roth L.) mixtures in a paddy soil. Plant Soil 2019, 436, 229–244. [Google Scholar] [CrossRef]
- Sakala, W.D.; Cadisch, G.; Giller, K.E. Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization. Soil Biol. Biochem. 2000, 32, 679–688. [Google Scholar] [CrossRef]
- Kaewpradit, W.; Toomsan, B.; Cadisch, G.; Vityakon, P.; Limpinuntana, V.; Saenjan, P.; Jogloy, S.; Patanothai, A. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Res. 2009, 110, 130–138. [Google Scholar] [CrossRef]
- Ardell, D.; Halvorson, A.L.; Black, J.M.; Krupingley, S.D.; Merril, B.J.; Tonaka, D.L. Spring wheat response to tillage system and nitrogen fertilization within a crop fallow system. J. Agron. 2000, 92, 151. [Google Scholar] [CrossRef]
- Ngwira, A.; Johnsen, F.H.; Aune, J.B.; Mekuria, M.; Thierfelder, C. Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi. J. Soil Water Conserv. 2014, 69, 107–119. [Google Scholar] [CrossRef]
- Thierfelder, C.; Mombeyarara, T.; Mango, N.; Rusinamhodzi, L. Integration of conservation agriculture in smallholder farming systems of southern Africa: Identification of key entry points. Int. J. Agric. Sustain. 2013, 11, 317–330. [Google Scholar] [CrossRef]
- Alkhafaji, A.J. Effect of minimum and conventional tillage on growth and yield of two rice variety (Anbar 33 and Forat). Al-Kufa J. Biol. 2010, 2, 1–8. [Google Scholar]
- Linquist, B.; Fischer, A.; Godfrey, L.; Greer, C.; Hill, J.; Koffler, K.; Moeching, M.; Mutters, R.; van Kesse, C. Minimum tillage could benefit California rice farmers. Calif. Agric. 2008, 62, 24–29. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.Q.P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
Residue | Moisture (%) | N (%) | P (%) | K (%) | S (%) |
---|---|---|---|---|---|
Soybean residue | 68% | 0.78 | 0.16 | 1.07 | 0.30 |
Black gram residue | 70% | 0.81 | 0.22 | 0.46 | 0.28 |
Rice straw residue | 35% | 0.40 | 0.13 | 1.31 | 0.09 |
Treatments | Plant Height (cm) | Number of Effective Tillers Hill−1 | Panicle Length (cm) | Number of Filled Grains Panicle−1 | Number of Unfilled Grains Panicle−1 | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|
T1 | 73.42 b | 8.67 c | 21.14 | 78.05 c | 10.76 a | 21.89 |
T2 | 91.12 a | 15.46 a | 23.01 | 112.26 a | 9.89 ab | 22.90 |
T3 | 81.80 ab | 12.33 b | 22.73 | 108.60 b | 10.04 ab | 22.40 |
T4 | 93.08 a | 14.69 a | 23.03 | 111.15 ab | 9.23 b | 22.70 |
T5 | 94.55 a | 15.75 a | 23.40 | 114.20 a | 8.03 c | 22.97 |
T6 | 95.16 a | 15.64 a | 23.70 | 112.44 a | 8.80 bc | 22.68 |
CV (%) | 1.92 | 1.03 | 0.19 | 0.66 | 0.52 | 0.08 |
SE (±) | 2.08 | 0.63 | 1.30 | 3.26 | 0.23 | 0.23 |
LOS | * | * | NS | * | * | NS |
Treatment Combination | Plant Height (cm) | Number of Effective Tillers Hill−1 | Panicle Length (cm) | Number of Filled Grains Panicle−1 | Number of Unfilled Grains Panicle−1 | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|
Tillage (T) | ||||||
CT | 94.23 a | 15.41 | 23.50 | 113.02 a | 8.96 | 22.66 |
MT | 93.09 b | 15.29 | 23.20 | 112.57 b | 8.96 | 22.7 |
Residue (R) | ||||||
I0 | 91.09 c | 14.95 b | 22.901 b | 111.86 c | 10.06 a | 22.57 |
I1 | 94.44 b | 15.39 a | 23.39 ab | 112.35 b | 8.69 b | 22.67 |
I2 | 95.45 a | 15.71 a | 23.76 a | 114.17 a | 8.13 C | 22.79 |
Year (Y) | ||||||
Y1 | 93.32 b | 15.29 | 23.27 | 112.74 | 8.95 | 22.64 |
Y2 | 94.01 a | 15.41 | 23.44 | 112.84 | 8.96 | 22.72 |
Tillage (T) × Residue (R) | ||||||
CT × I0 | 91.63 c | 14.82 c | 23.17 ab | 112.34 b | 10.06 a | 22.47 |
CT × I1 | 94.74 b | 15.59 ab | 23.58 a | 112.47 b | 8.62 bc | 22.69 |
CT × I2 | 96.31 a | 15.81 a | 23.76 a | 114.25 a | 8.21 cd | 22.83 |
MT × I0 | 90.57 d | 15.08 bc | 22.66 b | 111.38 c | 10.05 a | 22.68 |
MT × I1 | 94.13 b | 15.19 bc | 23.2 ab | 112.23 b | 8.76 b | 22.66 |
MT × I2 | 94.6 b | 15.61 ab | 23.75 a | 114.09 a | 8.06 d | 22.76 |
Tillage (T) × Year (Y) | ||||||
CT × Y1 | 93.88 ab | 15.33 | 23.4 | 112.97 a | 8.96 | 22.59 |
CT × Y2 | 94.58 a | 15.48 | 23.61 | 113.07 a | 8.97 | 22.73 |
MT × Y1 | 92.76 c | 15.24 | 23.13 | 112.51 b | 8.95 | 22.68 |
MT × Y2 | 93.44 bc | 15.34 | 23.28 | 112.62 b | 8.96 | 22.71 |
Residue (R) × Year (Y) | ||||||
I0 × Y1 | 90.73 d | 14.90 b | 22.82 c | 111.81 c | 10.05 a | 22.43 |
I0 × Y2 | 91.47 d | 15.01 b | 23.01 bc | 111.91 c | 10.06 a | 22.72 |
I1 × Y1 | 94.09 c | 15.31 ab | 23.28 abc | 112.31 b | 8.78 b | 22.65 |
I1 × Y2 | 94.78 bc | 15.47 ab | 23.5 abc | 112.39 b | 8.59 bc | 22.70 |
I2 × Y1 | 95.14 ab | 15.65 a | 23.7 ab | 114.11 a | 8.03 d | 22.85 |
I2 × Y2 | 95.78 a | 15.77 a | 23.81 a | 114.23 a | 8.24 cd | 22.74 |
Tillage (T) × Residue (R) × Year (Y) | ||||||
CT × I0 × Y1 | 91.12 de | 14.80 c | 23.00 | 112.26 b | 10.06 a | 22.18 |
CT × I0 × Y2 | 92.14 d | 14.84 c | 23.33 | 112.41 b | 10.06 a | 22.76 |
CT × I1 × Y1 | 94.55 c | 15.46 abc | 23.49 | 112.44 b | 8.8 b | 22.70 |
CT × I1 × Y2 | 94.93 bc | 15.72 ab | 23.67 | 112.5 b | 8.43 bc | 22.68 |
CT × I2 × Y1 | 95.96 ab | 15.74 ab | 23.70 | 114.2 a | 8.01 c | 22.9 |
CT × I2 × Y2 | 96.67 a | 15.88 a | 23.83 | 114.29 a | 8.40 bc | 22.76 |
MT × I0 × Y1 | 90.33 e | 14.99 bc | 22.63 | 111.36 c | 10.04 a | 22.67 |
MT × I0 × Y2 | 90.80 e | 15.17 abc | 22.69 | 111.40 c | 10.06 a | 22.68 |
MT × I1 × Y1 | 93.63 c | 15.16 abc | 23.07 | 112.17 b | 8.76 b | 22.59 |
MT × I1 × Y2 | 94.63 c | 15.22 abc | 23.33 | 112.29 b | 8.75 b | 22.72 |
MT × I2 × Y1 | 94.32 c | 15.56 abc | 23.70 | 114.01 a | 8.05 c | 22.79 |
MT × I2 × Y2 | 94.89 bc | 15.65 abc | 23.80 | 114.17 a | 8.08 c | 22.72 |
T | *** | NS | NS | *** | NS | NS |
R | *** | ** | ** | *** | *** | NS |
Y | * | NS | NS | NS | NS | NS |
T × R | * | * | * | * | * | NS |
T × Y | * | NS | NS | * | NS | NS |
R × Y | * | * | * | * | * | NS |
T × R × Y | * | * | NS | * | * | NS |
Treatments | N Content (%) | P Content (%) | K Content (%) | S Content (%) | ||||
---|---|---|---|---|---|---|---|---|
Grain | Straw | Grain | Straw | Grain | Straw | Grain | Straw | |
T1 | 0.97 e | 0.33 c | 0.20 | 0.1 b | 0.21 c | 0.99 c | 0.11 b | 0.07 |
T2 | 1.14 bc | 0.46 a | 0.22 | 0.12 ab | 0.24 ab | 1.19 a | 0.13 ab | 0.09 |
T3 | 1.09 d | 0.41 b | 0.21 | 0.11 ab | 0.22 bc | 1.16 b | 0.12 ab | 0.07 |
T4 | 1.12 c | 0.45 a | 0.21 | 0.12 ab | 0.24 ab | 1.18 ab | 0.12 ab | 0.08 |
T5 | 1.18 a | 0.47 a | 0.22 | 0.13 a | 0.25 a | 1.19 a | 0.14 a | 0.09 |
T6 | 1.15 b | 0.46 a | 0.22 | 0.12 ab | 0.24 ab | 1.20 a | 0.13 ab | 0.09 |
CV (%) | 0.68 | 1.75 | 3.53 | 6.45 | 3.23 | 0.65 | 6.02 | 9.22 |
SE (±) | 0.02 | 0.026 | 0.002 | 0.028 | 0.044 | 0.028 | 0.026 | 0.027 |
LOS | * | * | NS | * | * | * | * | NS |
Treatment Combination | %N | %P | %K | %S | ||||
---|---|---|---|---|---|---|---|---|
Grain | Straw | Grain | Straw | Grain | Straw | Grain | Straw | |
Tillage (T) | ||||||||
CT | 1.29 a | 0.52 | 0.25 a | 0.08 | 0.33 | 1.14 a | 0.11 | 0.08 |
MT | 1.27 b | 0.50 | 0.23 b | 0.07 | 0.33 | 1.12 b | 0.11 | 0.09 |
Residue (R) | ||||||||
I0 | 1.08 b | 0.42 b | 0.22 b | 0.06 b | 0.31 c | 0.98 c | 0.09 c | 0.09 |
I1 | 1.37 a | 0.55 a | 0.24 a | 0.08 a | 0.33 b | 1.19 bc | 0.11 a | 0.08 |
I2 | 1.39 a | 0.56 a | 0.25 a | 0.08 a | 0.35 a | 1.23 ab | 0.12 b | 0.09 |
Year (Y) | ||||||||
Y1 | 1.27 b | 0.51 | 0.24 | 0.07 | 0.33 | 1.12 | 0.10 b | 0.09 |
Y2 | 1.29 a | 0.51 | 0.24 | 0.08 | 0.33 | 1.14 | 0.11 a | 0.08 |
Tillage (T) × Residue (R) | ||||||||
CT × I0 | 1.09 c | 0.42 b | 0.22 cd | 0.06 b | 0.30 c | 0.99 c | 0.10 b | 0.06 |
CT × I1 | 1.38 ab | 0.56 a | 0.25 ab | 0.08 a | 0.34 a | 1.20 b | 0.11 a | 0.08 |
CT × I2 | 1.40 a | 0.57 a | 0.26 a | 0.09 a | 0.35 a | 1.24 a | 0.12 a | 0.09 |
MT × I0 | 1.08 c | 0.41 b | 0.21 d | 0.06 b | 0.30 c | 0.98 c | 0.09 c | 0.11 |
MT × I1 | 1.37 b | 0.54 a | 0.23 bcd | 0.08 a | 0.32 b | 1.19 b | 0.11 a | 0.08 |
MT × I2 | 1.38 ab | 0.55 a | 0.24 abc | 0.08 a | 0.35 a | 1.20 b | 0.12 a | 0.09 |
Tillage (T) × Year (Y) | ||||||||
CT × Y1 | 1.28 ab | 0.51 | 0.24 abc | 0.07 b | 0.33 | 1.13 ab | 0.11 ab | 0.08 |
CT × Y2 | 1.30 a | 0.52 | 0.25 a | 0.08 a | 0.34 | 1.15 a | 0.12 a | 0.08 |
MT × Y1 | 1.27 b | 0.5 | 0.23 bcd | 0.07 b | 0.32 | 1.11 b | 0.1 b | 0.11 |
MT × Y2 | 1.28 ab | 0.51 | 0.23 abc | 0.08 ab | 0.33 | 1.13 ab | 0.11 ab | 0.07 |
Residue (R) × Year (Y) | ||||||||
I0 × Y1 | 1.08 c | 0.42 b | 0.22 c | 0.06 b | 0.3 d | 0.98 c | 0.09 c | 0.12 |
I0 × Y2 | 1.09 c | 0.42 b | 0.22 bc | 0.07 b | 0.31 d | 0.99 c | 0.10 c | 0.06 |
I1 × Y1 | 1.37 b | 0.55 a | 0.24 abc | 0.08 a | 0.33 c | 1.19 b | 0.11 b | 0.08 |
I1 × Y2 | 1.38 ab | 0.56 a | 0.25 a | 0.08 a | 0.34 bc | 1.20 ab | 0.12 ab | 0.09 |
I2 × Y1 | 1.38 ab | 0.56 a | 0.25 a | 0.08 a | 0.35 ab | 1.21 ab | 0.12 ab | 0.09 |
I2 × Y2 | 1.40 a | 0.56 a | 0.25 a | 0.09 a | 0.36 a | 1.22 a | 0.13 a | 0.09 |
Tillage (T) × Residue (R) × Year (Y) | ||||||||
CT × I0 × Y1 | 1.08 c | 0.42 b | 0.22 de | 0.06 b | 0.30 e | 0.98 d | 0.10 de | 0.06 b |
CT × I0 × Y2 | 1.09 c | 0.43 b | 0.225 cde | 0.07 b | 0.31 de | 0.99 d | 0.103 cde | 0.07 b |
CT × I1 × Y1 | 1.37 b | 0.56 a | 0.25 abc | 0.08 a | 0.34 abc | 1.19 bc | 0.11 bcd | 0.08 ab |
CT × I1 × Y2 | 1.39 ab | 0.56 a | 0.255 ab | 0.09 a | 0.34 abc | 1.21 abc | 0.117 abc | 0.09 ab |
CT × I2 × Y1 | 1.39 ab | 0.56 a | 0.26 a | 0.08 a | 0.35 ab | 1.23 ab | 0.12 ab | 0.09 ab |
CT × I2 × Y2 | 1.41 a | 0.57 a | 0.263 a | 0.09 a | 0.36 a | 1.24 a | 0.13 a | 0.1 ab |
MT × I0 × Y1 | 1.07 c | 0.41 b | 0.21 e | 0.06 b | 0.30 e | 0.97 d | 0.08 f | 0.17 a |
MT × I0 × Y2 | 1.08 c | 0.41 b | 0.215 de | 0.06 b | 0.31 de | 0.98 d | 0.093 ef | 0.05 b |
MT × I1 × Y1 | 1.36 b | 0.54 a | 0.23 bcde | 0.08 a | 0.32 cde | 1.18 c | 0.11 bcd | 0.08 ab |
MT × I1 × Y2 | 1.37 b | 0.55 a | 0.237 abcde | 0.08 a | 0.33 bcd | 1.19 bc | 0.118 abc | 0.09 ab |
MT × I2 × Y1 | 1.37 b | 0.55 a | 0.24 abcd | 0.08 a | 0.35 ab | 1.19 bc | 0.12 ab | 0.09 ab |
MT × I2 × Y2 | 1.38 ab | 0.56 a | 0.243 abcd | 0.08 a | 0.36 a | 1.21 abc | 0.123 ab | 0.09 ab |
T | * | NS | * | NS | NS | * | NS | NS |
R | *** | *** | *** | *** | *** | *** | *** | NS |
Y | * | NS | NS | NS | NS | NS | * | NS |
T × R | * | * | * | * | NS | * | * | NS |
T × Y | * | NS | * | * | NS | * | * | NS |
R × Y | * | * | * | * | * | * | * | NS |
T × R × Y | * | * | * | * | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoque, T.S.; Ferdous, J.; Mim, N.J.; Islam, S.; Hoque, M.A.; Hassan, M.M.; Hossain, M.A. Effect of Reduced Tillage and Residue Incorporation as Sustainable Agricultural Practices on the Yield and Nutrient Uptake of Rice. Sustainability 2024, 16, 6994. https://doi.org/10.3390/su16166994
Hoque TS, Ferdous J, Mim NJ, Islam S, Hoque MA, Hassan MM, Hossain MA. Effect of Reduced Tillage and Residue Incorporation as Sustainable Agricultural Practices on the Yield and Nutrient Uptake of Rice. Sustainability. 2024; 16(16):6994. https://doi.org/10.3390/su16166994
Chicago/Turabian StyleHoque, Tahsina Sharmin, Jannatul Ferdous, Nusrat Jahan Mim, Sayful Islam, Md. Anamul Hoque, Mohamed M. Hassan, and Mohammad Anwar Hossain. 2024. "Effect of Reduced Tillage and Residue Incorporation as Sustainable Agricultural Practices on the Yield and Nutrient Uptake of Rice" Sustainability 16, no. 16: 6994. https://doi.org/10.3390/su16166994
APA StyleHoque, T. S., Ferdous, J., Mim, N. J., Islam, S., Hoque, M. A., Hassan, M. M., & Hossain, M. A. (2024). Effect of Reduced Tillage and Residue Incorporation as Sustainable Agricultural Practices on the Yield and Nutrient Uptake of Rice. Sustainability, 16(16), 6994. https://doi.org/10.3390/su16166994