Evaluating the Ecological Footprint of Biomass Energy: Parametric and Time-Varying Nonparametric Analyses
Abstract
:1. Introduction
2. Literature Review
3. Data and Empirical Modeling
3.1. Data
3.2. Econometric Model
3.2.1. Tests for Cross-Sectional Dependence and Slope Homogeneity
3.2.2. Generalized Two-Stage Least Square
3.2.3. Local Linear Dummy Variable Estimation Technique
4. Results and Discussion
4.1. Results of Cross-Sectional Dependency and Slope Heterogeneity
4.2. Parametric Results
4.3. Nonparametric Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
GHG | greenhouse gas |
CO2 | carbon dioxide |
OECD | Organization for Economic Co-operation and Development |
G2SLS | generalized two-stage least square |
LLDVE | local linear dummy variable estimation |
BRICS | Brazil, Russia, India, China, and South Africa |
EU | European Union |
PMG | Pooled mean group |
FMOLS | Fully modified ordinary least square |
GMM | Generalized method of moment |
DCCE | Dynamic common correlated effects |
3SLS | Three-stage least squares |
CCEMG | Common correlated effect mean group |
DSUR | dynamic seemingly unrelated regression |
DARDL | Dynamic autoregressive distributed lag |
AMG | Augmented mean group |
FE | Fixed effects |
PDOLS | Partial dynamic ordinary least square |
DAG | Directed acyclic graph |
ARDL | Autoregressive distributed lag |
PCA | Principal component analysis |
WDI | World Development Indicator |
LM | Lagrange multiplier |
ICC | Intra-class correlation |
SE | Standard error |
Notation/Symbols | |
BIO | Biomass energy consumption (tons per capita) |
EF | Ecological footprint (Gha per capita) |
DT | Digitalization (PCA score) |
NR | Natural resources (% of GDP) |
GI | Globalization Index (KOF Globalization Index) |
PD | Population density (People/km2 of land area) |
ER | Employment rate (% of population) |
References
- Karmaker, S.C.; Sen, K.K.; Singha, B.; Hosan, S.; Chapman, A.J.; Saha, B.B. The Mediating Effect of Energy Poverty on Child Development: Empirical Evidence from Energy Poor Countries. Energy 2022, 243, 123093. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook; International Energy Agency (IEA): Paris, France, 2022.
- IPCC AR6 Working Group III. Climate Change 2022: Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- REN21. Renewables 2020 Global Status Report; REN21: Paris, France, 2020; ISBN 978-3-9818911-7-1. [Google Scholar]
- IEA. Renewables 2021—Analysis Anda Forecast to 2026; International Energy Agency: Paris, France, 2021; p. 167.
- World Bioenergy. Association Global Bioenergy Statistics Report; World Bioenergy: Stockholm, Sweden, 2023. [Google Scholar]
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Kuşkaya, S. Can Biomass Energy Be an Efficient Policy Tool for Sustainable Development? Renew. Sustain. Energy Rev. 2017, 71, 830–845. [Google Scholar] [CrossRef]
- Güney, T.; Kantar, K. Biomass Energy Consumption and Sustainable Development. Int. J. Sustain. Dev. World Ecol. 2020, 27, 762–767. [Google Scholar] [CrossRef]
- Bilgili, F.; Ozturk, I. Biomass Energy and Economic Growth Nexus in G7 Countries: Evidence from Dynamic Panel Data. Renew. Sustain. Energy Rev. 2015, 49, 132–138. [Google Scholar] [CrossRef]
- Bildirici, M.; Özaksoy, F. An Analysis of Biomass Consumption and Economic Growth in Transition Countries. Econ. Res. Istraz. 2018, 31, 386–405. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Biofuels and the Environment; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2023.
- Aydin, M. The Effect of Biomass Energy Consumption on Economic Growth in BRICS Countries: A Country-Specific Panel Data Analysis. Renew. Energy 2019, 138, 620–627. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. A Reassessment of Global Bioenergy Potential in 2050. GCB Bioenergy 2015, 7, 328–336. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life Cycle Assessment of Bioenergy Systems: State of the Art and Future Challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Bondeau, A.; Lauk, C.; Müller, C.; Plutzar, C.; Steinberger, J.K. Global Bioenergy Potentials from Agricultural Land in 2050: Sensitivity to Climate Change, Diets and Yields. Biomass Bioenergy 2011, 35, 4753–4769. [Google Scholar] [CrossRef] [PubMed]
- UN. Adoption of the Paris Agreement; United Nations: Paris, France, 2015.
- IPCC. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018; Volume 2, ISBN 9781009157940. [Google Scholar]
- Fritsche, U.; Brunori, G.; Chiaramonti, D.; Galanakis, C.; Hellweg, S.; Matthews, R.; Panoutsou, C.; European Commission, Joint Research Centre. Future Transitions for the Bioeconomy towards Sustainable Development and a Climate-Neutral Economy: Knowledge Synthesis: Final Report; Publications Office of the European Union: Luxembourg, 2020; ISBN 9789276215189. [Google Scholar]
- Ebhodaghe, S.O.; Babatunde, E.O.; Ogundijo, T.O.; Omotosho, A.D. Biomass: Challenges and Future Perspectives; Springer: Singapore, 2023. [Google Scholar]
- Danish; Wang, Z. Does Biomass Energy Consumption Help to Control Environmental Pollution? Evidence from BRICS Countries. Sci. Total Environ. 2019, 670, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Danish. Nexus between Biomass Energy Consumption and Environment in OECD Countries: A Panel Data Analysis. Biomass Convers. Biorefinery 2021, 13, 1905–1913. [Google Scholar] [CrossRef]
- Wang, Z.; Bui, Q.; Zhang, B.; Pham, T.L.H. Biomass Energy Production and Its Impacts on the Ecological Footprint: An Investigation of the G7 Countries. Sci. Total Environ. 2020, 743, 140741. [Google Scholar] [CrossRef]
- Mahmood, N.; Wang, Z.; Yasmin, N.; Manzoor, W.; Rahman, A.U. How to Bend down the Environmental Kuznets Curve: The Significance of Biomass Energy. Environ. Sci. Pollut. Res. 2019, 26, 21598–21608. [Google Scholar] [CrossRef]
- Ajmi, A.N.; Inglesi-Lotz, R. Biomass Energy Consumption and Economic Growth Nexus in OECD Countries: A Panel Analysis. Renew. Energy 2020, 162, 1649–1654. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L. Does Biomass Energy Consumption Mitigate CO2 Emissions? The Role of Economic Growth and Urbanization: Evidence from Developing Asia. J. Asia Pacific Econ. 2021, 26, 96–115. [Google Scholar] [CrossRef]
- Destek, M.A. Biomass Energy Consumption and Economic Growth: Evidence from Top 10 Biomass Consumer Countries. Energy Sources Part B Econ. Plan. Policy 2017, 12, 853–858. [Google Scholar] [CrossRef]
- Tripathi, C.B.; Baredar, P.; Tripathi, L. Air Pollution in Delhi: Biomass Energy and Suitable Environmental Policies Are Sustainable Pathways for Health Safety. Curr. Sci. 2019, 117, 1153–1160. [Google Scholar] [CrossRef]
- Corrieri, U. Le Biomasse Legnose Non Sono Vere Energie Rinnovabili e Il Loro Uso Causa Gravi Effetti Sulla Salute. Epidemiol. Prev. 2019, 43, 300–304. [Google Scholar] [CrossRef]
- Weldu, Y.W. Life Cycle Human Health and Ecosystem Quality Implication of Biomass-Based Strategies to Climate Change Mitigation. Renew. Energy 2017, 108, 11–18. [Google Scholar] [CrossRef]
- Karmaker, S.C.; Hosan, S.; Saha, B.B. Does Biomass Energy Consumption Improve Human Development? Evidence from South Asian Countries. Int. Energy J. 2021, 21, 81–92. [Google Scholar]
- Karmaker, S.C.; Rahman, M.M.; Hosan, S.; Saha, B.B. The Impact of Biomass Energy Consumption on Human Development: Evidence from Asian Countries. Proc. Int. Exch. Innov. Conf. Eng. Sci. 2020, 6, 204–211. [Google Scholar] [CrossRef]
- Wang, Z.; Bui, Q.; Zhang, B. The Relationship between Biomass Energy Consumption and Human Development: Empirical Evidence from BRICS Countries. Energy 2020, 194, 116906. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Ozturk, I. The Effect of Energy Consumption, Urbanization, Trade Openness, Industrial Output, and the Political Stability on the Environmental Degradation in the MENA (Middle East and North African) Region. Energy 2015, 84, 382–389. [Google Scholar] [CrossRef]
- Wackernagel, M.; Rees, W. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Philadelphia, PA, USA, 1995. [Google Scholar]
- Ahmed, Z.; Wang, Z. Investigating the Impact of Human Capital on the Ecological Footprint in India: An Empirical Analysis. Environ. Sci. Pollut. Res. 2019, 26, 26782–26796. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, H.Z.; Wang, H.Z.; Xu, H. The Spatiotemporal Evolution of Ecological Security in China Based on the Ecological Footprint Model with Localization of Parameters. Ecol. Indic. 2021, 126, 107636. [Google Scholar] [CrossRef]
- Ulucak, R.; Bilgili, F. A Reinvestigation of EKC Model by Ecological Footprint Measurement for High, Middle and Low Income Countries. J. Clean. Prod. 2018, 188, 144–157. [Google Scholar] [CrossRef]
- Ahmed, Z.; Zafar, M.W.; Ali, S.; Danish. Linking Urbanization, Human Capital, and the Ecological Footprint in G7 Countries: An Empirical Analysis. Sustain. Cities Soc. 2020, 55, 102064. [Google Scholar] [CrossRef]
- Alola, A.A.; Bekun, F.V.; Sarkodie, S.A. Dynamic Impact of Trade Policy, Economic Growth, Fertility Rate, Renewable and Non-Renewable Energy Consumption on Ecological Footprint in Europe. Sci. Total Environ. 2019, 685, 702–709. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, Non-Renewable Energy Consumption, Economic Growth, Trade Openness and Ecological Footprint: Evidence from Organisation for Economic Co-Operation and Development Countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Nathaniel, S.; Anyanwu, O.; Shah, M. Renewable Energy, Urbanization, and Ecological Footprint in the Middle East and North Africa Region. Environ. Sci. Pollut. Res. 2020, 27, 14601–14613. [Google Scholar] [CrossRef]
- Danish; Hassan, S.T.; Baloch, M.A.; Mahmood, N.; Zhang, J.W. Linking Economic Growth and Ecological Footprint through Human Capital and Biocapacity. Sustain. Cities Soc. 2019, 47, 101516. [Google Scholar] [CrossRef]
- Saud, S.; Chen, S.; Danish; Haseeb, A. Impact of Financial Development and Economic Growth on Environmental Quality: An Empirical Analysis from Belt and Road Initiative (BRI) Countries. Environ. Sci. Pollut. Res. 2019, 26, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Yilanci, V.; Korkut Pata, U. Convergence of per Capita Ecological Footprint among the ASEAN-5 Countries: Evidence from a Nonlinear Panel Unit Root Test. Ecol. Indic. 2020, 113, 106178. [Google Scholar] [CrossRef]
- Makhdum, M.S.A.; Usman, M.; Kousar, R.; Cifuentes-Faura, J.; Radulescu, M.; Balsalobre-Lorente, D. How Do Institutional Quality, Natural Resources, Renewable Energy, and Financial Development Reduce Ecological Footprint without Hindering Economic Growth Trajectory? Evidence from China. Sustainability 2022, 14, 3910. [Google Scholar] [CrossRef]
- Bilgili, F.; Ulucak, R. The Nexus between Biomass—Footprint and Sustainable Development. Encycl. Renew. Sustain. Mater. 2020, 175–192. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V.; Weldekidan, H.; Asamoah, E.F.; Owusu, P.A.; Doyi, I.N.Y. Environmental Sustainability Assessment Using Dynamic Autoregressive-Distributed Lag Simulations—Nexus between Greenhouse Gas Emissions, Biomass Energy, Food and Economic Growth. Sci. Total Environ. 2019, 668, 318–332. [Google Scholar] [CrossRef]
- Baležentis, T.; Streimikiene, D.; Zhang, T.; Liobikiene, G. The Role of Bioenergy in Greenhouse Gas Emission Reduction in EU Countries: An Environmental Kuznets Curve Modelling. Resour. Conserv. Recycl. 2019, 142, 225–231. [Google Scholar] [CrossRef]
- Ulucak, R.; Danish; Kassouri, Y. An Assessment of the Environmental Sustainability Corridor: Investigating the Nonlinear Effects of Environmental Taxation on CO2 Emissions. Sustain. Dev. 2020, 28, 1010–1018. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries. Energy 2017, 138, 721–727. [Google Scholar] [CrossRef]
- Shahbaz, M.; Balsalobre-Lorente, D.; Sinha, A. Foreign Direct Investment–CO2 Emissions Nexus in Middle East and North African Countries: Importance of Biomass Energy Consumption. J. Clean. Prod. 2019, 217, 603–614. [Google Scholar] [CrossRef]
- Adewuyi, A.O.; Awodumi, O.B. Biomass Energy Consumption, Economic Growth and Carbon Emissions: Fresh Evidence from West Africa Using a Simultaneous Equation Model. Energy 2017, 119, 453–471. [Google Scholar] [CrossRef]
- Solarin, S.A.; Al-Mulali, U.; Gan, G.G.G.; Shahbaz, M. The Impact of Biomass Energy Consumption on Pollution: Evidence from 80 Developed and Developing Countries. Environ. Sci. Pollut. Res. 2018, 25, 22641–22657. [Google Scholar] [CrossRef]
- Danish; Baloch, M.A.; Mahmood, N.; Zhang, J.W. Effect of Natural Resources, Renewable Energy and Economic Development on CO2 Emissions in BRICS Countries. Sci. Total Environ. 2019, 678, 632–638. [Google Scholar] [CrossRef]
- Danish; Zhang, B.; Wang, B.; Wang, Z. Role of Renewable Energy and Non-Renewable Energy Consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing Environmental Kuznets Curve Hypothesis: The Role of Renewable and Non-Renewable Energy Consumption and Trade in OECD Countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- de Souza, E.S.; Freire, F.d.S.; Pires, J. Determinants of CO2 Emissions in the MERCOSUR: The Role of Economic Growth, and Renewable and Non-Renewable Energy. Environ. Sci. Pollut. Res. 2018, 25, 20769–20781. [Google Scholar] [CrossRef]
- Bhat, J.A. Renewable and Non-Renewable Energy Consumption—Impact on Economic Growth and CO2 Emissions in Five Emerging Market Economies. Environ. Sci. Pollut. Res. 2018, 25, 35515–35530. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R.; Dogan, E. The Role of Renewable versus Non-Renewable Energy to the Level of CO2 Emissions a Panel Analysis of Sub-Saharan Africa’s Βig 10 Electricity Generators. Renew. Energy 2018, 123, 36–43. [Google Scholar] [CrossRef]
- Dogan, E.; Ozturk, I. The Influence of Renewable and Non-Renewable Energy Consumption and Real Income on CO2 Emissions in the USA: Evidence from Structural Break Tests. Environ. Sci. Pollut. Res. 2017, 24, 10846–10854. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. Determinants of CO2 Emissions in the European Union: The Role of Renewable and Non-Renewable Energy. Renew. Energy 2016, 94, 429–439. [Google Scholar] [CrossRef]
- Kang, S.H.; Islam, F.; Kumar Tiwari, A. The Dynamic Relationships among CO2 Emissions, Renewable and Non-Renewable Energy Sources, and Economic Growth in India: Evidence from Time-Varying Bayesian VAR Model. Struct. Chang. Econ. Dyn. 2019, 50, 90–101. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Hochman, G. Do Natural Gas and Renewable Energy Consumption Lead to Less CO2 Emission? Empirical Evidence from a Panel of BRICS Countries. Energy 2017, 141, 1466–1478. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Wang, Z.; Yan, C. Heterogeneous Impacts of Renewable Energy and Environmental Patents on CO2 Emission—Evidence from the BRIICS. Sci. Total Environ. 2019, 668, 1328–1338. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The Influence of Real Output, Renewable and Non-Renewable Energy, Trade and Financial Development on Carbon Emissions in the Top Renewable Energy Countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Cerdeira Bento, J.P.; Moutinho, V. CO2 Emissions, Non-Renewable and Renewable Electricity Production, Economic Growth, and International Trade in Italy. Renew. Sustain. Energy Rev. 2016, 55, 142–155. [Google Scholar] [CrossRef]
- Shahbaz, M.; Balsalobre, D.; Shahzad, S.J.H. The Influencing Factors of CO2 Emissions and the Role of Biomass Energy Consumption: Statistical Experience from G-7 Countries. Environ. Model. Assess. 2019, 24, 143–161. [Google Scholar] [CrossRef]
- Sinha, A.; Shahbaz, M.; Balsalobre, D. Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries. J. Clean. Prod. 2017, 168, 1217–1229. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Naqvi, S.A.A.; Riaz, S.; Anwar, S.; Abbas, N. Nexus of Biomass Energy, Key Determinants of Economic Development and Environment: A Fresh Evidence from Asia. Renew. Sustain. Energy Rev. 2020, 133, 110244. [Google Scholar] [CrossRef]
- Danish; Ulucak, R. Linking Biomass Energy and CO2 Emissions in China Using Dynamic Autoregressive-Distributed Lag Simulations. J. Clean. Prod. 2020, 250, 119533. [Google Scholar] [CrossRef]
- Destek, M.A.; Aslan, A. Disaggregated Renewable Energy Consumption and Environmental Pollution Nexus in G-7 Countries. Renew. Energy 2020, 151, 1298–1306. [Google Scholar] [CrossRef]
- Shahbaz, M.; Solarin, S.A.; Hammoudeh, S.; Shahzad, S.J.H. Bounds Testing Approach to Analyzing the Environment Kuznets Curve Hypothesis with Structural Beaks: The Role of Biomass Energy Consumption in the United States. Energy Econ. 2017, 68, 548–565. [Google Scholar] [CrossRef]
- Katircioglu, S.T. The Impact of Biomass Consumption on CO2 Emissions an Empirical Investigation from Turkey. Int. J. Clim. Chang. Strateg. Manag. 2015, 7, 348–358. [Google Scholar] [CrossRef]
- Bilgili, F. The Impact of Biomass Consumption on CO2 Emissions: Cointegration Analyses with Regime Shifts. Renew. Sustain. Energy Rev. 2012, 16, 5349–5354. [Google Scholar] [CrossRef]
- Bilgili, F.; Öztürk, İ.; Koçak, E.; Bulut, Ü.; Pamuk, Y.; Muğaloğlu, E.; Bağlıtaş, H.H. The Influence of Biomass Energy Consumption on CO2 Emissions: A Wavelet Coherence Approach. Environ. Sci. Pollut. Res. 2016, 23, 19043–19061. [Google Scholar] [CrossRef]
- Ahmed, A.; Uddin, G.S.; Sohag, K. Biomass Energy, Technological Progress and the Environmental Kuznets Curve: Evidence from Selected European Countries. Biomass Bioenergy 2016, 90, 202–208. [Google Scholar] [CrossRef]
- Kim, G.S.; Choi, S.K.; Seok, J.H. Does Biomass Energy Consumption Reduce Total Energy CO2 Emissions in the US? J. Policy Model. 2020, 42, 953–967. [Google Scholar] [CrossRef]
- Global Footprint Network. 2020. Available online: https://www.footprintnetwork.org/ (accessed on 8 February 2022).
- UN. Environment Programme International Resource Panel Global Material Flows Database. 2019. Available online: https://www.resourcepanel.org/global-material-flows-database (accessed on 22 December 2021).
- Gygli, S.; Haelg, F.; Potrafke, N.; Sturm, J.E. The KOF Globalisation Index—Revisited. Rev. Int. Organ. 2019, 14, 543–574. [Google Scholar] [CrossRef]
- World Bank Data Bank: World Development Indicators. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 15 December 2021).
- Dogan, E.; Ulucak, R.; Kocak, E.; Isik, C. The Use of Ecological Footprint in Estimating the Environmental Kuznets Curve Hypothesis for BRICST by Considering Cross-Section Dependence and Heterogeneity. Sci. Total Environ. 2020, 723, 138063. [Google Scholar] [CrossRef]
- Sen, S.C.; Hosan, S.; Chapman, A.J.; Saha, B.B. The Role of Environmental Taxes on Technological Innovation. Energy 2021, 232, 121052. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The Lagrange Multiplier Test and Its Applications to Model Specification in Econometrics. Rev. Econ. Stud. 1980, 47, 239. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels; Working Paper No.0435; University of Cambridge USC: Cambridge, UK, 2004; Volume 3. [Google Scholar]
- Hashem Pesaran, M.; Yamagata, T. Testing Slope Homogeneity in Large Panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Bedir, S.; Yilmaz, V.M. CO2 Emissions and Human Development in OECD Countries: Granger Causality Analysis with a Panel Data Approach. Eurasian Econ. Rev. 2016, 6, 97–110. [Google Scholar] [CrossRef]
- Swamy, P.A.V.B. Efficient Inference in a Random Coefficient Regression Model. Econometrica 1970, 38, 311. [Google Scholar] [CrossRef]
- Koomson, I.; Danquah, M. Financial Inclusion and Energy Poverty: Empirical Evidence from Ghana. Energy Econ. 2021, 94, 105085. [Google Scholar] [CrossRef]
- Phillips, P.C.B. Trending Time Series and Macroeconomic Activity: Some Present and Future Challenges. J. Econom. 2001, 100, 21–27. [Google Scholar] [CrossRef]
- Awaworyi Churchill, S.; Ivanovski, K.; Munyanyi, M.E. Income Inequality and Renewable Energy Consumption: Time-Varying Nonparametric Evidence. J. Clean. Prod. 2021, 296, 126306. [Google Scholar] [CrossRef]
- Awaworyi Churchill, S.; Inekwe, J.; Smyth, R.; Zhang, X. R&D Intensity and Carbon Emissions in the G7: 1870–2014. Energy Econ. 2019, 80, 30–37. [Google Scholar] [CrossRef]
- Hailemariam, A.; Smyth, R.; Zhang, X. Oil Prices and Economic Policy Uncertainty: Evidence from a Nonparametric Panel Data Model. Energy Econ. 2019, 83, 40–51. [Google Scholar] [CrossRef]
- Silvapulle, P.; Smyth, R.; Zhang, X.; Fenech, J.P. Nonparametric Panel Data Model for Crude Oil and Stock Market Prices in Net Oil Importing Countries. Energy Econ. 2017, 67, 255–267. [Google Scholar] [CrossRef]
- Ivanovski, K.; Hailemariam, A.; Smyth, R. The Effect of Renewable and Non-Renewable Energy Consumption on Economic Growth: Nonparametric Evidence. J. Clean. Prod. 2021, 286, 124956. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Biomass Energy and the Environmental Impacts Associated with Its Production and Utilization. Renew. Sustain. Energy Rev. 2010, 14, 919–937. [Google Scholar] [CrossRef]
Authors | Years | Countries | Methods | Results |
---|---|---|---|---|
Danish [21] | 1990–2014 | 26 OECD countries | PMG, FMOLS, DOLS | bio ↑ carbon emission |
Mahmood et al. [23] | 1980–2015 | Pakistan | ARDL | bio ↑ carbon emission |
Shahbaz et al. [68] | 1980–2014 | G7 countries | GMM | bio ↑ carbon emission |
Solarin et al. [54] | 1980–2010 | 80 countries | GMM, DCCE | bio ↑ carbon emission |
Sinha et al. [69] | 1990–2014 | N-11 countries | GMM | bio ↑ carbon emission |
Adewuyi and Awodumi [53] | 1980–2010 | West African countries | 3SLS | bio ↑ carbon emission |
Shah et al. [70] | 1990–2017 | 38 Asian nations | CCEMG | bio ↑ carbon emission |
Gao and Zhang [25] | 1980–2010 | 13 Asian countries | FMOLS | bio ↑ carbon emission |
Wang et al. [22] | 1980–2016 | G7 countries | DSUR | bio ↑ ecological footprint |
Danish and Ulucak [71] | 1982–2017 | China | DARDL | bio ↓ carbon emission |
Destek and Aslan [72] | 1991–2014 | G7 countries | AMG | bio ↓ carbon emission |
Danish and Wang [20] | 1992–2013 | BRICS countries | GMM | bio ↓ carbon emission |
Shahbaz et al. [51] | 1990–2015 | MENA countries | GMM | bio ↓ carbon emission |
Shahbaz et al. [73] | 1960–2016 | USA | ARDL | bio ↓ carbon emission |
Bilgili et al. [7] | 1982–2011 | USA | Hatemi-J casality | bio ↓ carbon emission |
Dogan and Inglesi-Lotz [50] | 1985–2012 | 22 countries | FMOLS | bio ↓ carbon emission |
Katircioglu [74] | 1980–2010 | Turkey | ARDL | bio ↓ carbon emission |
Bilgili [75] | 1990–2011 | USA | Hatemi-J causality | bio ↓ carbon emission |
Baležentis et al. [48] | 1995–2015 | 27 European Union nations | FE, FMOLS, PDOLS | bio ↓ GHG emission |
Bilgili et al. [76] | 1984–2015 | USA | Wavelet coherence approach | bio ↑↓ carbon emission |
Ahmed et al. [77] | 1980–2010 | 24 European nations | PMG | bio /→ carbon emission |
Sarkodie [47] | 1970–2017 | Australia | ARDL | bio /→ ecological footprint bio ↓ GHG emission |
Kim et al. [78] | 1973–2016 | USA | DAG, ARDL | bio ↓ carbon emission |
Variable | Symbol | Definition | Measure | Source |
---|---|---|---|---|
Biomass energy consumption | BIO | The total amount of biomass energy consumption per population of a country | Tons per capita | Global Material Flows Database |
Ecological footprint | EF | The ecological assets required to create the natural resources consumed | Gha per capita | Global Footprint Network |
Digitalization (PCA score) | DT | Percentage of the total population is utilizing the internet | % of population | World Development Indicator |
The number of mobile cellular subscriptions per 100 individuals | Per 100 people | World Development Indicator | ||
Natural resources | NR | The total natural resource rents comprise the combined value of oil, natural gas, coal (both hard and soft), mineral rents, and forest rents | % of GDP | World Development Indicator |
Globalization Index | GI | Calculated based on economic flows and restrictions, information flows, personal contact, and cultural proximity | Index (2010 = 100) | KOF Globalization Index |
Population density | PD | Measured by dividing the midyear population count by the land area in square kilometers | People/km2 of land area | World Development Indicator |
Employment Rate | ER | The percentage of individuals aged over 15 who are employed | % of population | World Development Indicator |
Indicators | lnEF | lnBIO | lnDT | lnNR | lnGI | lnPD |
---|---|---|---|---|---|---|
Mean | 1.664 | 1.163 | 0.000 | −1.117 | 4.313 | 4.402 |
Median | 1.693 | 1.181 | 0.723 | −1.045 | 4.363 | 4.668 |
Minimum | 0.552 | 0.173 | −5.034 | −7.037 | 3.729 | 0.798 |
Maximum | 2.878 | 2.366 | 1.169 | 3.064 | 4.511 | 6.267 |
Std. Dev. | 0.384 | 0.395 | 1.389 | 1.958 | 0.160 | 1.251 |
Skewness | −0.141 | 0.263 | −1.325 | −0.145 | −1.323 | −0.974 |
Kurtosis | 4.034 | 3.492 | 3.688 | 2.350 | 4.316 | 3.773 |
Obs. | 896 | 896 | 896 | 896 | 896 | 896 |
Variables | LM | CD | ||
---|---|---|---|---|
Test Value | p-Value | Test Value | p-Value | |
lnEF | 3226.89 | <0.001 | 23.03 | <0.001 |
lnBIO | 2456.82 | <0.001 | 8.77 | <0.001 |
lnNR | 3659.62 | <0.001 | 33.60 | <0.001 |
lnGI | 12,742.83 | <0.001 | 112.78 | <0.001 |
lnDT | 13,589.45 | <0.001 | 116.56 | <0.001 |
lnPD | 10,247.43 | <0.001 | 53.57 | <0.001 |
Tests | LM Value | p-Value |
---|---|---|
2.347 ** | 0.019 | |
2.745 *** | 0.005 |
Variables | Coefficients (SE) | 95% CI |
---|---|---|
lnBIO | 0.376 *** (0.036) | (0.306–0.447) |
lnNR | −0.006 (0.006) | (−0.017–0.005) |
lnGI | 0.500 *** (0.073) | (0.357–0.643) |
lnPD | −0.052 * (0.029) | (−0.108–0.005) |
lnDT | −0.011 ** (0.006) | (−0.022–0.000) |
Random effects parameters | ||
Cluster variance () | 0.212 | |
Error variance () | 0.096 | |
ICC () | 0.829 | |
Breusch and Pagan Lagrangian multiplier test for random effects () | 7425.30 *** |
2nd Stage (lnEF) | ||
---|---|---|
Variables | Coefficients (SE) | 95% CI |
lnBIO | 1.824 *** (0.366) | (1.106–2.541) |
lnNR | 0.023 ** (0.011) | (0.003–0.044) |
lnGI | −0.442 * (0.241) | (−0.915–0.030) |
lnPD | 0.270 ** (0.137) | (0.002–0.537) |
lnDT | 0.015 (0.010) | (−0.005–0.035) |
Hausman test for endogeneity () | 2015.39 *** | |
First-Stage (lnBIO) | ||
InER | 0.324 *** (0.065) | (0.196–0.452) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmaker, S.C.; Sen, K.K.; Halder, S.C.; Chapman, A.; Hosan, S.; Rahman, M.M.; Saha, B.B. Evaluating the Ecological Footprint of Biomass Energy: Parametric and Time-Varying Nonparametric Analyses. Sustainability 2024, 16, 6942. https://doi.org/10.3390/su16166942
Karmaker SC, Sen KK, Halder SC, Chapman A, Hosan S, Rahman MM, Saha BB. Evaluating the Ecological Footprint of Biomass Energy: Parametric and Time-Varying Nonparametric Analyses. Sustainability. 2024; 16(16):6942. https://doi.org/10.3390/su16166942
Chicago/Turabian StyleKarmaker, Shamal Chandra, Kanchan Kumar Sen, Shaymal C. Halder, Andrew Chapman, Shahadat Hosan, Md. Matiar Rahman, and Bidyut Baran Saha. 2024. "Evaluating the Ecological Footprint of Biomass Energy: Parametric and Time-Varying Nonparametric Analyses" Sustainability 16, no. 16: 6942. https://doi.org/10.3390/su16166942
APA StyleKarmaker, S. C., Sen, K. K., Halder, S. C., Chapman, A., Hosan, S., Rahman, M. M., & Saha, B. B. (2024). Evaluating the Ecological Footprint of Biomass Energy: Parametric and Time-Varying Nonparametric Analyses. Sustainability, 16(16), 6942. https://doi.org/10.3390/su16166942