Smart-City Policy in China: Opportunities for Innovation and Challenges to Sustainable Development
Abstract
:1. Introduction
- based on the measurement standards for the urban innovation capability index provided in the report “China’s City and Industry Innovation Report 2017” jointly released by the First Financial Research Institute and Fudan University [13] (http://www.360doc.com/content/18/0505/21/26988834_751429774.shtml (accessed on 28 June 2024)), this paper constructs the Urban Innovation Capability Index from two micro-level data: an innovation index (patent maintenance) and an entrepreneurship index (the establishment of enterprises). It then employs the DID and SDM-DID models [14] to analyze both the direct and spatial indirect effects of smart-city construction on urban innovation capability in China.
- Secondly, this paper uses EBM to calculate the city’s green total-factor productivity (). It decomposes into two parts using GML [15]: the green efficiency change () index and the green technical change () index. From the perspective of urban network externalities, it reassesses the spatial impact of smart cities on urban green total-factor productivity, urban green efficiency change, and urban technological progress using the DID and SDM-DID models, thereby supplementing the academic discussion on issues related to smart-city network externalities.
- Thirdly, this paper categorizes cities based on geographic regions and economic development levels in China, conducts regression on subsamples, and analyzes the regional differences in the impact of smart-city policy implementation on urban innovation capability and urban green total-factor productivity, thus expanding the research perspective on smart cities.
2. Literature Review
2.1. Related Research on the Definition of a Smart City
2.2. Related Research on Factors Influencing Smart-City Construction
2.3. The Impact of Smart-City Construction on Urban Innovation and Sustainable Development
3. Research Hypotheses, Methods, and Models
3.1. Research Hypotheses
3.2. Selection of Methods and Models
4. Materials and Study Design
4.1. Materials’ Data and Variables Description
4.2. Explained Variables
4.3. Core Explanatory Variable
- (1)
- The first batch of smart-city pilot websites in 2012: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201212/20121204_212182.html (accessed on 28 June 2024);
- (2)
- The second batch of smart-city pilot websites in 2013: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201302/20130205_212789.html (accessed on 28 June 2024);
- (3)
- The third batch of smart-city pilot websites in 2013: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201308/20130805_214634.html (accessed on 28 June 2024);
- (4)
- The fourth batch of smart-city pilot websites in 2015: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201504/20150410_220653.html (accessed on 28 June 2024).
4.4. Control Variables
4.5. Weight Matrix
5. Parallel Trend Test, Empirical Results, and Discussion
5.1. Parallel Trend Test
5.2. Regression Results and Discussion
5.2.1. Basic Regressions
5.2.2. Spatial Effect Regressions
5.3. Robustness Test
5.3.1. Variable Substitution
5.3.2. Propensity Score-Matching Method and Difference-in-Difference (PSM-DID)
6. Further Results and Discussion
6.1. Regional Difference Analysis
6.2. City Difference Analysis
7. Conclusions, Policy Recommendations, and Further Research
7.1. Main Conclusions
7.2. Policy Recommendations
- We should further increase investment in technological research and development in smart pilot cities, actively attract and cultivate technological talent, and pool research resources to promote rapid progress in green technology.
- It is necessary to ensure that the Eastern, Central, and Westernregions all have smart cities with innovative potential and provide balanced support to enhance regional innovation capabilities.
- To create a favorable urban sustainable innovation environment, we need to start from multiple aspects. This includes learning from the construction experience of smart cities, improving intellectual property protection and talent-training systems, and optimizing infrastructure for transportation, research, education, and manufacturing.
7.3. Limitations of This Study and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angelidou, M. Smart city policies: A spatial approach. Cities 2014, 41, S3–S11. [Google Scholar] [CrossRef]
- Los Angeles Community Analysis Bureau (LACAB). The State of the City: The Cluster Analysis of Los Angeles; Community Analysis Bureau: Los Angeles, CA, USA, 1974. [Google Scholar]
- Bakici, T.; Almirall, E.; Wareham, J. A smart city initiative: The case of Barcelona. J. Knowl. Econ. 2013, 4, 135–148. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; Volume 4, pp. 282–291. [Google Scholar] [CrossRef]
- Alawadhi, S.; Aldama-Nalda, A.; Chourabi, H.; Gil-Garcia, J.R.; Leung, S.; Mellouli, S.; Nam, T.; Pardo, T.A.; Scholl, H.J.; Walker, S. Building Understanding of Smart City Initiatives. In Proceedings of the 11th International Conference on Electronic Government (EGOV), Kristiansand, Norway, 3–6 September 2012; pp. 40–53. Available online: https://link.springer.com/chapter/10.1007/978-3-642-33489-4_4 (accessed on 28 June 2024).
- Zubizarreta, I.; Seravalli, A.; Arrizabalaga, S. Smart city concept: What it is and what it should be. J. Urban Plan. Dev. 2016, 142, 4015005. [Google Scholar] [CrossRef]
- Vanolo, A. Smart mentality: The smart city as disciplinary strategy. Urban Stud. 2014, 51, 883–898. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kankanamge, N.; Vella, K. How Are Smart City Concepts and Technologies Perceived and Utilized? A Systematic Geo-Twitter Analysis of Smart Cities in Australia. J. Urban Technol. 2021, 28, 135–154. [Google Scholar] [CrossRef]
- Rodríguez-Bolívar, P.M. Transforming City Governments for Successful Smart Cities; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 9–12. [Google Scholar] [CrossRef]
- Lai, C.S.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Wong, R.T.; Zobaa, A.F.; Wu, R.; Lai, L.L. A review of technical standards for smart cities. Clean Technol. 2020, 2, 290–310. [Google Scholar] [CrossRef]
- Wang, K.-L.; Pang, S.Q.; Zhang, F.Q.; Miao, Z.; Sun, H.P. The impact assessment of smart city policy on urban green total-factor productivity: Evidence from China. Environ. Impact Assess. Rev. 2022, 94, 106756. [Google Scholar] [CrossRef]
- Stübinger, J.; Schneider, L. Understanding smart city—A data-driven literature review. Sustainability 2020, 12, 8460. [Google Scholar] [CrossRef]
- Holgersson, T.; Kekezi, O. Towards a multivariate innovation index. Econ. Innov. New Technol. 2017, 27, 254–272. [Google Scholar] [CrossRef]
- Zhong, J.; Chun, W.; Deng, W.; Gao, H. Can Mergers and Acquisitions Promote Technological Innovation in the New Energy Industry? An Empirical Analysis Based on China’s Lithium Battery Industry. Sustainability 2023, 15, 12136. [Google Scholar] [CrossRef]
- Ren, Y.; Fang, C.; Li, G. Spatiotemporal characteristics and influential factors of eco-efficiency in Chinese prefecture-level cities: A spatial panel econometric analysis. J. Clean. Prod. 2020, 260, 120787. [Google Scholar] [CrossRef]
- Hollands, R.G. Will The Real Smart City Please stand Up. In telligent, Progressive or Entrepreneurial? In The Routledge Companion to Smart Cities; Routledge: Abingdon, UK, 2008; Volume 21. [Google Scholar] [CrossRef]
- Washburn, D.; Sindhu, U.; Balaouras, S.; Dines, R.A.; Hayes, N.M.; Nelson, L.E. Helping CIOs Understand “Smart City” Initiatives: Defining the Smart City, Its Drivers, and the Role of the CIO; Forrester Research, Inc.: Cambridge, MA, USA, 2010; Available online: http://public.dhe.ibm.com/partnerworld/pub/smb/smarterplanet/forr_help_cios_und_smart_city_initiatives.pdf (accessed on 28 June 2024).
- Rios, P. Creating the Smart City. 2008. Available online: http://dspace.udmercy.edu:8080/dspace/bitstream/10429/20/1/2008_rios_smart.pdf (accessed on 28 June 2024).
- Marsa-Maestre, I.; Lopez-Carmona, M.A.; Velasco, J.R.; Navarro, A. Mobile agents for service personalization in smart environments. J. Netw. 2008, 3, 30–41. [Google Scholar] [CrossRef]
- Anthopoulos, L.; Tsoukalas, I.A. The Implementation Model of a Digital City. The Case Study of the Digital City of Trikala, Greece: E-Trikala. J. e-Gov. 2005, 2, 91–109. Available online: https://www.academia.edu/download/30696690/icfinal.pdf (accessed on 28 June 2024). [CrossRef]
- Komninos, N. Intelligent cities: Towards interactive and global innovation environments. Int. J. Innov. Reg. Dev. 2009, 1, 337–355. [Google Scholar] [CrossRef]
- Sairamesh, J.; Lee, A.; Anania, L. Session details: Information cities. Commun. Acm. 2004, 47, 28–31. [Google Scholar] [CrossRef]
- Hall, P. Creative cities and economic development. Urban Stud. 2000, 37, 633–649. [Google Scholar] [CrossRef]
- Coe, A.; Paquet, G.; Roy, J. E-Governance and Smart Communities. Soc. Sci. Comput. Rev. 2001, 19, 80–93. [Google Scholar] [CrossRef]
- Dameri, R.P. Searching for Smart City definition: A comprehensive proposal. Int. J. Comput. Technol. 2013, 11, 2544–2551. [Google Scholar] [CrossRef]
- Kim, T.; Ramos, C.; Mohammed, S. Smart city and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future trends and current state of smart city concepts: A survey. IEEE Access 2020, 8, 86448–86467. [Google Scholar] [CrossRef]
- Neirott, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Kim, J. Smart city trends: A focus on 5 countries and 15 companies. Cities 2022, 123, 103551. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H.; Zailani, S. The big picture on the internet of things and the smart city: A review of what we know and what we need to know. Internet Thing 2022, 19. [Google Scholar] [CrossRef]
- Yaqoob, I.; Salah, K.; Jayaraman, R.; Omar, M. Metaverse applications in smart cities: Enabling technologies, opportunities, challenges, and future directions. Internet Things 2023, 23, 100884. [Google Scholar] [CrossRef]
- Alizadeh, H.; Sharifi, A. Toward a societal smart city: Clarifying the social justice dimension of smart cities. Sustain. Cities Soc. 2023, 95, 104612. [Google Scholar] [CrossRef]
- Kruhlov, V.; Dvorak, J.; Moroz, V.; Tereshchenko, D. Revitalizing Ukrainian Cities: The Role of Public-Private Partnerships in Smart Urban Development. Cent. Eur. Public Adm. Rev. 2024, 22, 85–107. [Google Scholar] [CrossRef]
- Chen, M.A. Smart city and cyber-security; technologies used, leading challenges and future recommendations. Energy Rep. 2021, 7, 7999–8012. [Google Scholar] [CrossRef]
- Mora, L.; Gerli, P.; Ardito, L.; Petruzzelli, A.M. Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda. Technovation 2023, 123, 102717. [Google Scholar] [CrossRef]
- Zhao, F.; Fashola, O.I.; Olarewaju, T.I.; Onwumere, I. Smart city research: A holistic and state-of-the-art literature review. Cities 2021, 119, 103406. [Google Scholar] [CrossRef]
- Sharif, A.R.; Pokharel, S. Smart city dimensions and associated risks: Review of literature. Sustain. Cities Soc. 2022, 77, 103542. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. The emerging data–driven Smart City and its innovative applied solutions for sustainability: The cases of London and Barcelona. Energy Inform. 2020, 3, 26–471. [Google Scholar] [CrossRef]
- Yang, S.B.; Jahanger, A.; Usman, M. Examining the influence of green innovations in industrial enterprises on China’s smart city development. Technol. Forecast. Soc. Chang. 2024, 199, 123031. [Google Scholar] [CrossRef]
- Gohar, A.; Nencioni, G. The role of 5G technologies in a smart city: The case for intelligent transportation system. Sustainability 2021, 13, 5188. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: Recent advancements and future trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef] [PubMed]
- Kashef, M.; Visvizi, A.; Troisi, O. Smart city as a smart service system: Human-computer interaction and smart city surveillance systems. Comput. Hum. Behav. 2021, 124, 106923. [Google Scholar] [CrossRef]
- Guo, Q.B.; Wang, Y.; Dong, X.B. Effects of smart city construction on energy saving and CO2 emission reduction: Evidence from China. Appl. Energy. 2022, 313, 118879. [Google Scholar] [CrossRef]
- Jinxiu, W.; Kun, D. Impact and mechanism analysis of smart city policy on urban innovation: Evidence from China. Econ. Anal. Policy 2021, 73, 574–587. [Google Scholar] [CrossRef]
- Ji, M.; Jin, M.; Chen, L.; Liu, Y.; Tian, Y. Promoting urban innovation through smart cities: Evidence from a Quasi-Natural experiment in China. Environ. Stud. 2024, 13, 319. [Google Scholar] [CrossRef]
- Despoina, F.; Effie, K.; Lichao, W. Are smart cities green? The role of environmental and digital policies for Eco-innovation in China. World Dev. 2023, 165, 106212. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, Z.; Shi, R.; Zhao, M. Smart city and green development: Empirical evidence from the perspective of green technological innovation. Technol. Forecast. Soc. Chang. 2023, 191, 122507. [Google Scholar] [CrossRef]
- Chu, Z.; Cheng, M.W.; Yu, N.N. A smart city is a less polluted city. Technol. Forecast. Soc. Chang. 2021, 172, 121037. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nguyen, X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 2021, 305, 127161. [Google Scholar] [CrossRef]
- Clement, J.; Manjon, M.; Crutzen, N. Factors for collaboration amongst smart city stakeholders: A local government perspective. Gov. Inf. Q. 2022, 39, 101746. [Google Scholar] [CrossRef]
- Chen, Z.; Sivaparthipan, C.B.; Muthu, B. IoT based smart and intelligent smart city energy optimization. Sustain. Energy Technol. Assessments 2022, 49, 101724. [Google Scholar] [CrossRef]
- Salman, M.Y.; Hasar, H. Review on environmental aspects in smart city concept: Water, waste, air pollution and transportation smart applications using IoT techniques. Sustain. Cities Soc.. 2023, 94, 104567. [Google Scholar] [CrossRef]
- Ji, T.T.; Chen, J.H.; Wei, H.H.; Su, Y.C. Towards people-centric smart city development: Investigating the citizens’ preferences and perceptions about smart-city services in Taiwan. Sustain. Cities Soc. 2021, 67, 102691. [Google Scholar] [CrossRef]
- Chen, K.; Li, Q.; Shoaib, M.; Ameer, W.; Jiang, T. Does improved digital governance in government promote natural resource management? Quasi-natural experiments based on smart city pilot. Resour. Policy 2024, 90, 104721. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-garmsir, A.R.; Kummitha, R.K.R. Contributions of smart city solutions and technologies to resilience against the COVID-19 pandemic: A literature review. Sustainability 2021, 13, 8018. [Google Scholar] [CrossRef]
- Lee, J.; Babcock, J.; Pham, T.S.; Bui, T.H.; Kang, M. Smart city as a social transition towards inclusive development through technology: A tale of four smart cities. Int. J. Urban Sci. 2023, 27, 75–100. [Google Scholar] [CrossRef]
- Clement, J.; Ruysschaert, B.; Crutzen, N. Smart city strategies–A driver for the localization of the sustainable development goals? Ecol. Econ. 2023, 213, 107941. [Google Scholar] [CrossRef]
- Filippo, M.; Francesca, M.; Andrea, B. Smart city as a hub for talent and innovative companies: Exploring the (dis) advantages of digital technology implementation in cities. Technol. Forecast. Soc. Chang. 2023, 193, 122636. [Google Scholar] [CrossRef]
- Caird, S. City approaches to smart city evaluation and reporting: Case studies in the United Kingdom. Urban Res. Pract. 2018, 11, 159–179. [Google Scholar] [CrossRef]
- Singh, U.; Upadhyay, S.P.; Uttam, S. Fractured smart cities: Missing links in India’s smart city mission. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 1790–1805. [Google Scholar] [CrossRef]
- Shin, S.Y.; Kim, D.; Chun, S.A. Digital Divide in Advanced Smart City Innovations. Sustainability 2021, 13, 4076. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, Y.; Wu, H.; Ren, S. How do FDI and technical innovation affect environmental quality? Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 7835–7850. [Google Scholar] [CrossRef] [PubMed]
- Matteo, M.; Alessandro, S.; Luigi, M.; Ramakrishna, S. Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy. Sustainability 2021, 13, 6114. [Google Scholar] [CrossRef]
- Qinyuan, W.; Wencui, D. Social Capital, Environmental Knowledge, and Pro-Environmental Behavior. Int. J. Environ. Res. Public Health 2022, 19, 1443. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.B.; Bhushan, B.; Dhiman, G. Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Syst. 2022, 39, e12753. [Google Scholar] [CrossRef]
- Ahmad, K.; Maabreh, M.; Ghaly, M.; Khan, K.; Qadir, J.; Al-Fuqaha, A. Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges. Comput. Sci. Rev. 2022, 43, 100452. [Google Scholar] [CrossRef]
- Ismagilova, E.; Hughes, L.; Rana, N.P.; Dwivedi, Y.K. Security, Privacy and Risks Within Smart Cities: Literature Review and Development of a Smart City Interaction Framework. Inf. Syst. Front. A J. Res. Innov. 2020, 24, 21–22. [Google Scholar] [CrossRef]
- Laufs, J.; Borrion, H.; Bradford, B. Security and the smart city: A systematic review. Sustain. Cities Soc. 2020, 55, 102023. [Google Scholar] [CrossRef]
- Spicer, Z.; Goodman, N.; Wolfe, D.A. How ‘smart’ are smart cities? Resident attitudes towards smart city design. Cities 2023, 141, 104442. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Hawken, S.; Sargolzaei, S.; Foroozanfa, M. Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies. Technol. Forecast. Soc. Chang. 2019, 142, 105–116. [Google Scholar] [CrossRef]
- Bansak, K. Estimating causal moderation effects with randomized treatments and non-randomized moderators. J. R. Stat. Soc. Ser. A-Stat. Soc. 2021, 184, 65–86. [Google Scholar] [CrossRef]
- Kolak, M.; Anselin, L. A spatial perspective on the econometrics of program evaluation. Int. Reg. Sci. Rev. 2019, 43, 128–153. [Google Scholar] [CrossRef]
- Ferman, B. Inference in differences-in-differences: How much should we trust in independent clusters? J. Appl. Econom. 2023, 38, 358–369. [Google Scholar] [CrossRef]
- LeSage, P.J.; Pace, K.R. Spatial econometric modeling of origin-destination flows. J. Reg. Sci. 2008, 48, 941–967. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Lu, D. China’s Growth Slowdown and Prospects for Becoming a High-Income Developed Economy. Asian Econ. Pap. 2017, 16, 89–113. [Google Scholar] [CrossRef]
Target Level | Normative Layer | Indicator Layer | Unit | |
---|---|---|---|---|
Green total-factor productivity () | Input indicators | Labor input | Number of persons employed in municipal districts | 10,000 people |
Land input | Built-up area of municipal districts | Hm2 | ||
Capital investment | 2006 base period capital stock | 10,000 yuan (RMB) | ||
Output indicators | Expected outputs | GDP 2006 base period deflator | 10,000 yuan (RMB) | |
Indicators of undesired outputs | Sulfur dioxide SO2 | t | ||
Industrial wastewater | wt | |||
Soot | t |
Sample Type | All Samples | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Definition | n | Mean | Std.Dev | Min | Max | n | Mean | Std.Dev | Min | Max | n | Mean | Std.Dev | Min | Max |
The natural logarithm of innovation index | 3892 | 12.84 | 51.11 | 0.00604 | 1309 | 1066 | 32.68 | 88.66 | 0.0962 | 1309 | 2826 | 5.355 | 20.73 | 0.00604 | 447.1 | |
The green total-factor productivity | 3892 | 1.002 | 0.0101 | 0.904 | 1.127 | 1066 | 1.001 | 0.0144 | 0.904 | 1.127 | 2826 | 1.002 | 0.00791 | 0.911 | 1.084 | |
The green technology efficiency index | 3892 | 1.01 | 0.0315 | 0.882 | 1.143 | 1066 | 1.007 | 0.0414 | 0.882 | 1.143 | 2826 | 1.011 | 0.0268 | 0.892 | 1.131 | |
The green technology progress index | 3892 | 0.993 | 0.0311 | 0.867 | 1.139 | 1066 | 0.996 | 0.0421 | 0.867 | 1.139 | 2826 | 0.992 | 0.0257 | 0.88 | 1.106 | |
The policy dummy variable | 3892 | 0.274 | 0.446 | 0 | 1 | |||||||||||
The natural logarithm of education expenditure | 3892 | 12.8 | 0.865 | 9.241 | 15.96 | 1066 | 13.35 | 0.768 | 10.91 | 15.96 | 2826 | 12.59 | 0.806 | 9.241 | 14.93 | |
The natural logarithm of the urban construction land area | 3892 | 4.454 | 0.796 | 2.079 | 8.123 | 1066 | 4.869 | 0.83 | 2.708 | 7.209 | 2826 | 4.298 | 0.723 | 2.079 | 8.123 | |
The natural logarithm of the per-capita regional gross domestic product | 3892 | 10.5 | 0.681 | 4.595 | 13.06 | 1066 | 10.94 | 0.561 | 9.084 | 13.06 | 2826 | 10.33 | 0.645 | 4.595 | 12.12 | |
The natural logarithm of the number of employees in the unit at the end of the year | 3892 | 12.73 | 0.8 | 2.97 | 15.74 | 1066 | 13.07 | 0.891 | 11.04 | 15.74 | 2826 | 12.6 | 0.722 | 2.97 | 15 | |
The natural logarithm of scientific and technological expenditures | 3892 | 10 | 1.429 | 4.466 | 15.53 | 1066 | 10.94 | 1.392 | 7.297 | 15.53 | 2826 | 9.651 | 1.275 | 4.466 | 13.82 | |
The natural logarithm of local general public budget expenditure | 3892 | 14.54 | 0.858 | 11.2 | 17.64 | 1066 | 15.14 | 0.731 | 12.86 | 17.64 | 2826 | 14.32 | 0.792 | 11.2 | 16.84 | |
The natural logarithm of regional GDP | 3892 | 7.133 | 0.943 | 4.141 | 10.23 | 1066 | 7.704 | 0.935 | 5.341 | 10.23 | 2826 | 6.917 | 0.852 | 4.141 | 9.604 | |
The natural logarithm of the proportion of the secondary industry in the gross regional domestic product | 3892 | 3.846 | 0.255 | 2.458 | 4.521 | 1066 | 3.83 | 0.231 | 2.542 | 4.357 | 2826 | 3.852 | 0.264 | 2.458 | 4.521 |
Variables | ||||
Model | Model (1) | Model (2) | Model (3) | Model (4) |
Effect | RE | FE | RE | FE |
0.4002 *** | 0.4224 *** | 0.0005 | −0.0007 | |
(18.54) | (18.97) | (1.25) | (−1.28) | |
0.5107 *** | 0.7000 *** | 0.0008 ** | 0.0004 | |
(20.93) | (22.89) | (2.31) | (0.50) | |
0.5444 *** | 0.4627 *** | −0.0044 *** | −0.0053 *** | |
(19.86) | (14.04) | (−11.96) | (−6.29) | |
0.1028 *** | −0.0707 * | −0.0002 | 0.0003 | |
(3.63) | (−1.95) | (−0.61) | (0.34) | |
0.0052 | −0.0203 | 0.0022 *** | 0.0065 *** | |
(0.22) | (−0.78) | (5.69) | (9.67) | |
0.1435 *** | 0.1173 *** | 0 | 0.0003 | |
(9.92) | (7.75) | (−0.15) | (0.83) | |
−10.2962 *** | −9.9530 *** | 0.9854 *** | 0.9315 *** | |
(−33.16) | (−29.33) | (195.91) | (107.16) | |
No | Yes | No | Yes | |
N | 3892.00 | 3892.00 | 3892.00 | 3892.00 |
0.73 | 0.73 | 0.02 | 0.03 | |
chi2(6) = 101.80 | chi2(6) = 69.85 | |||
(p = 0.0000) | (p = 0.0000) | |||
Variables | ||||
Model | Model (5) | Model (6) | Model (7) | Model (8) |
Effect | RE | FE | RE | FE |
−0.0017 | −0.0046 ** | 0.0026 ** | 0.0043 ** | |
(−1.35) | (−2.44) | (2.05) | (2.29) | |
−0.0003 | −0.0016 | 0.0017 * | 0.002 | |
(−0.25) | (−0.62) | (1.66) | (0.79) | |
−0.0043 *** | −0.0027 | −0.0001 | −0.0021 | |
(−3.80) | (−0.96) | (−0.05) | (−0.77) | |
−0.0003 | 0.0012 | 0.0005 | −0.0001 | |
(−0.31) | (0.39) | (0.50) | (−0.05) | |
0.0012 | 0.0062 *** | 0.0006 | −0.0001 | |
(0.97) | (2.77) | (0.53) | (−0.06) | |
0.0004 | 0.0008 | −0.0005 | −0.0002 | |
(0.58) | (0.60) | (−0.66) | (−0.17) | |
1.0172 *** | 0.9445 *** | 0.9612 *** | 0.9804 *** | |
(64.86) | (32.66) | (61.99) | (34.19) | |
No | Yes | No | Yes | |
N | 3892.00 | 3892.00 | 3892.00 | 3892.00 |
0.00 | 0.00 | 0.00 | 0.00 | |
chi2(6) = 10.71 | chi2(6) = 2.28 | |||
(p = 0.0978) | (p = 0.8927) |
Variables | ||||
---|---|---|---|---|
2007 | 0.064 * | 0.082 *** | 0.125 *** | 0.169 ** |
2008 | 0.097 ** | 0.167 *** | 0.266 *** | 0.245 *** |
2009 | 0.142 *** | 0.141 *** | 0.237 *** | 0.224 *** |
2010 | 0.183 *** | 0.159 *** | 0.223 *** | 0.220 *** |
2011 | 0.221 *** | 0.115 *** | 0.113 *** | 0.122 *** |
2012 | 0.254 *** | 0.079 ** | 0.144 *** | 0.121 *** |
2013 | 0.275 *** | 0.088 ** | 0.391 *** | 0.350 *** |
2014 | 0.291 *** | −0.075 * | 0.187 *** | 0.376 *** |
2015 | 0.312 *** | 0.01 | 0.046 | 0.280 *** |
2016 | 0.335 *** | 0.058 | 0.015 | 0.066 * |
2017 | 0.347 *** | 0.118 *** | 0.127 *** | 0.183 *** |
2018 | 0.363 *** | 0.434 *** | 0.281 *** | 0.371 *** |
2019 | 0.369 *** | 0.218 *** | 0.361 *** | 0.378 *** |
2020 | 0.380 *** | 0.08 ** | −0.019 | 0.169 *** |
Variables | ||||
Model | Model (9) | Model (10) | Model (11) | Model (12) |
0.3609 *** | 0.2796 *** | −0.0006 | −2.0012 ** | |
(21.46) | (16.78) | (−2.47) | (−2.22) | |
0.2381 *** | 0.0002 | |||
(10.80) | (0.40) | |||
0.3312 *** | −2.0069 *** | |||
(13.84) | (−20.73) | |||
−2.1388 *** | 0.0048 *** | |||
(−2.62) | (7.08) | |||
0.0621 *** | 0.0083 *** | |||
(3.35) | (14.46) | |||
0.0800 *** | −2.0007 ** | |||
(7.35) | (−2.07) | |||
0.1846 *** | −2.1885 *** | 0.9980 *** | 0.8368 *** | |
(3.30) | (−24.73) | (741.45) | (93.34) | |
0.1163 *** | −2.1008 *** | 0.0009 | −2.0029 *** | |
(4.30) | (−2.56) | (1.42) | (−2.33) | |
0.7690 *** | 0.6194 *** | 0.0037 *** | 0.0450 *** | |
(84.97) | (51.10) | (2.70) | (13.04) | |
0.0802 *** | 0.0759 *** | 0.0001 *** | 0.0001 *** | |
(40.99) | (40.65) | (42.48) | (41.85) | |
N | 3892 | 3892 | 3892 | 3892 |
0.238 | 0.667 | 0.002 | 0.005 | |
−2.0048 *** | −2.0049 *** | 0.0053 *** | 0.0050 *** | |
(−2.31) | (−2.28) | (5.35) | (4.84) | |
Variables | ||||
Model | Model (13) | Model (14) | Model (15) | Model (16) |
−2.0003 | −2.0011 | |||
(−2.18) | (−2.82) | |||
−2.0036 ** | 0.0006 | |||
(−2.20) | (0.41) | |||
−2.0016 | 0.0048 *** | |||
(−2.91) | (2.99) | |||
0.0045 *** | −2.0006 | |||
(3.43) | (−2.48) | |||
0.0009 | −2.0009 | |||
(1.19) | (−2.40) | |||
0.2826 *** | 0.2529 *** | 0.2362 *** | 0.2136 *** | |
(24.50) | (11.69) | (22.37) | (10.93) | |
0.0048 *** | 0.0056 *** | −2.0050 *** | −2.0069 *** | |
(3.23) | (3.00) | (−2.81) | (−2.13) | |
0.7361 *** | 0.7369 *** | 0.7786 *** | 0.7795 *** | |
(76.40) | (76.69) | (92.72) | (92.94) | |
0.0004 *** | 0.0004 *** | 0.0003 *** | 0.0003 *** | |
(40.21) | (40.20) | (40.34) | (40.33) | |
N | 3892 | 3892 | 3892 | 3892 |
0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variables | ||||
Model | Model (9) | Model (10) | Model (11) | Model (12) |
0.3609 *** | 0.2725 *** | −2.0006 | −2.0002 | |
(21.46) | (16.68) | (−2.47) | (−2.46) | |
−2.1921 *** | 0.0032 *** | |||
(−2.39) | (4.56) | |||
0.3109 *** | −2.0019 *** | |||
(13.57) | (−2.30) | |||
0.4727 *** | −2.0027 *** | |||
(13.30) | (−2.22) | |||
−2.7221 *** | 0.0103 *** | |||
(−28.01) | (9.23) | |||
0.0953 *** | 0.0010 *** | |||
(8.50) | (2.95) | |||
0.1846 *** | 0.4368 | 0.9980 *** | 0.9031 *** | |
(3.30) | (1.50) | (741.45) | (100.95) | |
0.1163 *** | −2.1385 *** | 0.0009 | −2.0006 | |
(4.30) | (−2.96) | (1.42) | (−2.74) | |
0.7690 *** | 0.5489 *** | 0.0037 *** | 0.0305 *** | |
(84.97) | (42.12) | (2.70) | (12.39) | |
0.0802 *** | 0.0740 *** | 0.0001 *** | 0.0001 *** | |
−20.99 | −20.92 | −22.48 | −22.13 | |
N | 3892 | 3892 | 3892 | 3892 |
0.238 | 0.727 | 0.002 | 0.009 | |
Variables | ||||
Model | Model (13) | Model (14) | Model (15) | Model (16) |
−2.0048 *** | −2.0040 *** | 0.0053 *** | 0.0047 *** | |
(−2.31) | (−2.53) | (5.35) | (4.55) | |
0.0039 ** | −2.0021 | |||
(2.01) | (−2.18) | |||
−2.0019 | 0.0004 | |||
(−2.16) | (0.30) | |||
−2.0074 *** | 0.0041 * | |||
(−2.80) | (1.72) | |||
0.0109 *** | −2.0095 *** | |||
(4.02) | (−2.90) | |||
0.0012 | −2.0003 | |||
(1.53) | (−2.45) | |||
0.2826 *** | 0.2350 *** | 0.2362 *** | 0.2776 *** | |
(24.50) | (10.28) | (22.37) | (12.90) | |
0.0048 *** | 0.0077 *** | −2.0050 *** | −2.0077 *** | |
(3.23) | (4.06) | (−2.81) | (−2.50) | |
0.7361 *** | 0.7333 *** | 0.7786 *** | 0.7764 *** | |
(76.40) | (75.67) | (92.72) | (91.94) | |
0.0004 *** | 0.0004 *** | 0.0003 *** | 0.0003 *** | |
(40.21) | (40.22) | (40.34) | (40.33) | |
N | 3892 | 3892 | 3892 | 3892 |
0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variable | ||||||
Matching | One-to-four matching | Kernel matching | ||||
1.2529 *** | 0.6907 *** | 0.4016 *** | 30.0451 *** | 23.2986 *** | 22.1134 *** | |
(29.46) | (14.98) | (15.45) | (19.93) | (13.00) | (12.97) | |
0.2982 *** | −2.0075 | 3.3642 *** | 0.1006 | |||
(21.74) | (−2.84) | (6.84) | (0.20) | |||
0.1772 *** | 0.0932 *** | |||||
(66.27) | (17.83) | |||||
1.2891 *** | 0.9434 *** | 0.1413 *** | 4.1034 *** | 0.9566 | −2.0712 | |
(59.64) | (37.59) | (7.65) | (5.89) | (1.15) | (−2.09) | |
N | 2241 | 2241 | 2241 | 3246 | 3246 | 3246 |
0.307 | 0.441 | 0.827 | 0.118 | 0.132 | 0.216 | |
Variable | ||||||
Matching | One-to-four matching | Kernel matching | ||||
−2.0007 | 0.0009 | 0.0008 | −2.0006 | 0.0001 | −2.0001 | |
(−2.75) | (0.73) | (0.72) | (−2.09) | (0.09) | (−2.11) | |
−2.0009 ** | −2.0006 * | −2.0003 * | −2.0001 | |||
(−2.41) | (−2.87) | (−2.81) | (−2.59) | |||
0.1329 *** | 0.1253 *** | |||||
(18.60) | (22.14) | |||||
1.0022 *** | 1.0032 *** | 0.3534 *** | 1.0021 *** | 1.0024 *** | 0.3907 *** | |
(1979.69) | (1534.55) | (10.12) | (3799.15) | (3164.20) | (14.14) | |
N | 2241 | 2241 | 2241 | 3246 | 3246 | 3246 |
0 | 0.003 | 0.153 | 0 | 0.002 | 0.143 | |
Variable | ||||||
Matching | One-to-four matching | Kernel matching | ||||
−2.0089 *** | −2.0092 ** | −2.0077 *** | −2.0066 *** | −2.0059 *** | −2.0061 *** | |
(−2.76) | (−2.35) | (−2.64) | (−2.48) | (−2.60) | (−2.69) | |
0.0001 | 0.0001 | −2.0003 | 0.0007 * | |||
(0.11) | (0.17) | (−2.55) | (1.96) | |||
0.1723 *** | 0.1728 *** | |||||
(68.57) | (77.14) | |||||
1.0131 *** | 1.0130 *** | 0.1638 *** | 1.0125 *** | 1.0129 *** | 0.1614 *** | |
(615.67) | (475.99) | (13.17) | (1157.79) | (963.80) | (14.60) | |
N | 2241 | 2241 | 2241 | 3246 | 3246 | 3246 |
0.004 | 0.004 | 0.707 | 0.004 | 0.004 | 0.669 | |
Variable | ||||||
Matching | One-to-four matching | Kernel matching | ||||
0.0094 *** | 0.0108 *** | 0.0089 *** | 0.0072 *** | 0.0067 *** | 0.0065 *** | |
(2.92) | (2.76) | (4.60) | (3.84) | (2.96) | (5.41) | |
−2.0007 | −2.0007 | 0.0003 | −2.0008 ** | |||
(−2.62) | (−2.23) | (0.45) | (−2.41) | |||
0.1742 *** | 0.1752 *** | |||||
(77.09) | (87.19) | |||||
0.9899 *** | 0.9908 *** | 0.1474 *** | 0.9903 *** | 0.9901 *** | 0.1451 *** | |
(604.16) | (467.60) | (13.41) | (1139.90) | (948.35) | (14.94) | |
N | 2241 | 2241 | 2241 | 3246 | 3246 | 3246 |
0.004 | 0.005 | 0.753 | 0.005 | 0.005 | 0.721 |
Variables | Eastern | |||
Model | Model (25) | Model (26) | Model (27) | Model (28) |
0.3442 *** | −2.0006 | −2.0086 *** | 0.0062 *** | |
(11.20) | (−2.57) | (−2.64) | (2.90) | |
−2.1123 ** | 0.0029 ** | 0.0016 | −2.0037 | |
(−2.19) | (2.12) | (0.45) | (−2.16) | |
0.5539 *** | 0.0003 | 0.6916 *** | 0.7539 *** | |
(25.26) | (0.15) | (39.84) | (51.52) | |
Yes | Yes | Yes | Yes | |
N | 1344 | 1344 | 1344 | 1344 |
96 | 96 | 96 | 96 | |
0.745 | 0.078 | 0.000 | 0.001 | |
Variables | Central | |||
Model | Model (29) | Model (30) | Model (31) | Model (32) |
0.1954 *** | 0.0000 | −2.0006 | 0.0005 | |
(7.72) | (0.04) | (−2.52) | (0.55) | |
−2.0034 | 0.0013 | 0.0055 *** | −2.0036 ** | |
(−2.08) | (1.36) | (2.80) | (−2.15) | |
0.6265 *** | 0.3866 *** | 0.7777 *** | 0.8073 *** | |
(29.48) | (13.18) | (57.96) | (68.36) | |
Yes | Yes | Yes | Yes | |
N | 1400 | 1400 | 1400 | 1400 |
100 | 100 | 100 | 100 | |
0.662 | 0.07 | 0.007 | 0.008 | |
Variables | Western | |||
Model | Model (33) | Model (34) | Model (35) | Model (36) |
0.3828 *** | 0.0011 ** | −2.0062 *** | 0.0075 *** | |
(12.02) | (2.07) | (−2.91) | (3.89) | |
−2.0775 | 0.0001 | 0.0073 ** | −2.0094 *** | |
(−2.55) | (0.14) | (2.33) | (−2.32) | |
0.3383 *** | 0.0016 | 0.6326 *** | 0.6698 *** | |
(12.18) | (1.57) | (32.45) | (38.04) | |
Yes | Yes | Yes | Yes | |
N | 1148 | 1148 | 1148 | 1148 |
82 | 82 | 82 | 82 | |
0.614 | 0.048 | 0.000 | 0.000 |
Variables | Northeast | |||
Model | Model (37) | Model (38) | Model (39) | Model (40) |
0.2346 *** | −2.0015 | −2.001 | 0.0006 | |
(4.87) | (−2.77) | (−2.26) | (0.21) | |
0.014 | −2.0106 *** | 0.0005 | −2.0049 | |
(0.18) | (−2.29) | (0.10) | (−2.02) | |
0.4765 *** | 0.0149 *** | 0.6522 *** | 0.7610 *** | |
(11.20) | (3.87) | (19.17) | (30.49) | |
Yes | Yes | Yes | Yes | |
N | 504 | 504 | 504 | 504 |
36 | 36 | 36 | 36 | |
0.737 | 0.02 | 0.001 | 0.002 | |
Variables | North | |||
Model | Model (41) | Model (42) | Model (43) | Model (44) |
0.4262 *** | −2.0039 *** | −2.0084 * | 0.0075 * | |
(12.64) | (−2.89) | (−2.92) | (1.86) | |
−2.2565 *** | −2.0035 * | 0.006 | −2.0089 | |
(−2.38) | (−2.70) | (0.88) | (−2.41) | |
0.5133 *** | 0.0136 ** | 0.6555 *** | 0.7120 *** | |
(13.41) | (2.52) | (20.67) | (25.73) | |
Yes | Yes | Yes | Yes | |
N | 420 | 420 | 420 | 420 |
30 | 30 | 30 | 30 | |
0.519 | 0.015 | 0 | 0 | |
Variables | Midland | |||
Model | Model (45) | Model (46) | Model (47) | Model (48) |
0.2181 *** | 0.0001 | −2.0018 | 0.0019 | |
(5.70) | (0.12) | (−2.95) | (1.10) | |
0.1247 * | 0.0032 ** | 0.0072 * | −2.0034 | |
(1.68) | (2.20) | (1.94) | (−2.01) | |
0.5661 *** | 0.4289 *** | 0.7788 *** | 0.7906 *** | |
(15.95) | (9.96) | (40.73) | (43.68) | |
Yes | Yes | Yes | Yes | |
N | 588 | 588 | 588 | 588 |
42 | 42 | 42 | 42 | |
0.69 | 0.121 | 0.009 | 0.01 | |
Variables | South | |||
Model | Model (49) | Model (50) | Model (51) | Model (52) |
0.3743 *** | 0.0011 | −2.0009 | 0.0018 | |
(6.73) | (0.60) | (−2.38) | (0.90) | |
−2.1117 | 0.0064 ** | 0.0114 *** | −2.005 | |
(−2.15) | (2.12) | (2.95) | (−2.43) | |
0.6163 *** | 0.0804 | 0.6994 *** | 0.7462 *** | |
(17.71) | (1.39) | (25.36) | (29.72) | |
Yes | Yes | Yes | Yes | |
N | 490 | 490 | 490 | 490 |
35 | 35 | 35 | 35 | |
0.807 | 0.087 | 0.035 | 0.015 | |
Variables | Eastland | |||
Model | Model (53) | Model (54) | Model (55) | Model (56) |
0.1778 *** | −2.0012 | −2.0056 ** | 0.0051 *** | |
(5.89) | (−2.04) | (−2.47) | (2.60) | |
−2.2040 *** | 0.0001 | 0.0048 | −2.0047 | |
(−2.21) | (0.07) | (1.38) | (−2.55) | |
0.6952 *** | 0.1164 *** | 0.7740 *** | 0.8202 *** | |
(34.42) | (8.52) | (46.43) | (58.20) | |
Yes | Yes | Yes | Yes | |
N | 1064 | 1064 | 1064 | 1064 |
76 | 76 | 76 | 76 | |
0.682 | 0.008 | 0 | 0 | |
Variables | Northwest | |||
Model | Model (57) | Model (58) | Model (59) | Model (60) |
0.2975 *** | 0.0015 * | −2.0037 | 0.0051 * | |
(6.36) | (1.91) | (−2.15) | (1.83) | |
−2.1569 * | 0.0012 | 0.0088 * | −2.0116 ** | |
(−2.91) | (0.92) | (1.68) | (−2.52) | |
0.1984 *** | 0.0011 | 0.6419 *** | 0.7097 *** | |
(3.52) | (0.79) | (17.64) | (22.67) | |
Controls | Yes | Yes | Yes | Yes |
N | 420 | 420 | 420 | 420 |
30 | 30 | 30 | 30 | |
0.653 | 0.094 | 0.001 | 0 | |
Variables | Southwest | |||
Model | Model (61) | Model (62) | Model (63) | Model (64) |
0.2581 *** | 0.0013 | −2.002 | 0.0031 | |
(4.14) | (1.18) | (−2.78) | (1.36) | |
0.1692 * | 0.0026 | 0.0067 * | −2.0046 | |
(1.76) | (1.63) | (1.74) | (−2.37) | |
0.2481 *** | 0.2723 *** | 0.6715 *** | 0.6893 *** | |
(5.56) | (5.71) | (24.65) | (26.67) | |
Controls | Yes | Yes | Yes | Yes |
N | 406 | 406 | 406 | 406 |
29 | 29 | 29 | 29 | |
0.722 | 0.052 | 0.011 | 0.004 |
City | First-tier cities | |||
Variables | ||||
Model | Model (65) | Model (66) | Model (67) | Model (68) |
0.2982 *** | −2.002 | −2.0110 *** | 0.0096 *** | |
(8.92) | (−2.19) | (−2.66) | (3.55) | |
0.0372 *** | −2.0011 ** | −2.0002 | −2.0011 | |
(3.44) | (−2.03) | (−2.25) | (−2.21) | |
0.0013 *** | 0.1455 *** | 0.1907 *** | 0.1947 *** | |
(17.23) | (11.37) | (39.49) | (46.46) | |
Yes | Yes | Yes | Yes | |
N | 966 | 966 | 966 | 966 |
69 | 69 | 69 | 69 | |
0.929 | 0.239 | 0.65 | 0.723 | |
City | Second-tier cities | |||
Variables | ||||
Model | Model (69) | Model (70) | Model (71) | Model (72) |
0.3456 *** | −2.001 | −2.0079 *** | 0.0069 *** | |
(9.39) | (−2.96) | (−2.21) | (3.09) | |
0.0251 ** | −2.0005 * | 0.0005 | −2.001 | |
(2.28) | (−2.66) | (0.71) | (−2.53) | |
0.0027 *** | 0.1046 *** | 0.1718 *** | 0.1751 *** | |
(19.56) | (12.18) | (48.15) | (53.27) | |
Yes | Yes | Yes | Yes | |
N | 980 | 980 | 980 | 980 |
70 | 70 | 70 | 70 | |
0.848 | 0.209 | 0.731 | 0.769 | |
City | Third-tier cities | |||
Model | Model (73) | Model (74) | Model (75) | Model (76) |
0.1838 *** | 0.0008 | 0.0009 | 0.0006 | |
(4.85) | (0.85) | (0.37) | (0.28) | |
0.0629 *** | −2.0005 * | 0.001 | −2.0016 *** | |
(5.76) | (−2.71) | (1.55) | (−2.65) | |
0.0019 *** | 0.0846 *** | 0.1556 *** | 0.1552 *** | |
(13.03) | (9.11) | (40.91) | (45.63) | |
Yes | Yes | Yes | Yes | |
N | 980 | 980 | 980 | 980 |
70 | 70 | 70 | 70 | |
0.761 | 0.163 | 0.666 | 0.711 | |
City | Fourth-tier cities | |||
Variables | ||||
Model | Model (77) | Model (78) | Model (79) | Model (80) |
0.1607 *** | −2.0005 | −2.0007 | 0.0007 | |
(6.33) | (−2.82) | (−2.33) | (0.35) | |
0.0431 *** | 0.0002 | 0.0024 *** | −2.0022 *** | |
(5.36) | (0.81) | (3.73) | (−2.66) | |
0.0032 *** | 0.0697 *** | 0.1593 *** | 0.1582 *** | |
(17.17) | (10.28) | (35.66) | (39.32) | |
Yes | Yes | Yes | Yes | |
N | 966 | 966 | 966 | 966 |
69 | 69 | 69 | 69 | |
0.724 | 0.152 | 0.607 | 0.649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Su, Y.; Yu, Q. Smart-City Policy in China: Opportunities for Innovation and Challenges to Sustainable Development. Sustainability 2024, 16, 6884. https://doi.org/10.3390/su16166884
Yang S, Su Y, Yu Q. Smart-City Policy in China: Opportunities for Innovation and Challenges to Sustainable Development. Sustainability. 2024; 16(16):6884. https://doi.org/10.3390/su16166884
Chicago/Turabian StyleYang, Song, Yinfeng Su, and Qin Yu. 2024. "Smart-City Policy in China: Opportunities for Innovation and Challenges to Sustainable Development" Sustainability 16, no. 16: 6884. https://doi.org/10.3390/su16166884
APA StyleYang, S., Su, Y., & Yu, Q. (2024). Smart-City Policy in China: Opportunities for Innovation and Challenges to Sustainable Development. Sustainability, 16(16), 6884. https://doi.org/10.3390/su16166884