Exploring the Role of Farmer-Led Jumpstarting Project on Adoption of Orange-Fleshed Sweet Potato in Nigeria: Implications on Productivity and Poverty
Abstract
:1. Introduction
2. Literature Review
2.1. Components and Activities of Jumpstarting Project in Nigeria
2.2. Conceptual Framework
2.3. Econometric Framework
3. Methodology
3.1. Study Area
3.1.1. Osun State
3.1.2. Kwara State
3.2. Data Source, Sampling Techniques, and Sample Size
3.3. Data Analysis
3.3.1. Sequential Probit (Determinants of Awareness, Registration of Farmers Groups, and Collection of OFSP Vine)
3.3.2. Endogenous Treatment Effect (ETE)
3.3.3. Foster, Greer, and Thorbecke Poverty Index
3.3.4. Endogenous Switching Probit Model (ESPM)
3.3.5. Robustness Check (Propensity Score Matching)
4. Results and Discussion
4.1. Determinants of Awareness, Farmer Group Registration, and Collection of OFSP Vines
4.2. Sustainability of the Jumpstarting Project (JP) on the Adoption of the Orange-Fleshed Sweet Potato (OFSP)
4.3. Estimation of the OFSP Adoption Effect on Yield and Income
4.4. Effects of Adoption of Orange-Fleshed Sweet Potato on the Poverty Status
4.4.1. Estimated Incidence of Poverty Headcount, Depth and Poverty Severity
4.4.2. Determinants of Poverty Headcount among the Adopters and Non-Adopters of OFSP
4.4.3. Treatment Effects for Poverty from Endogenous Switching Probit Regression Model
4.4.4. Robustness Check
5. Conclusions
5.1. Policy Implications
5.2. Limitations of the Study and Suggestions for Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Description | Adopters | Non-Adopters | Pooled | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Dependent Variables | |||||||
Adoption | Adoption of OFSP = 1; 0 = otherwise | 0.35 | 0.18 | 0.65 | 0.28 | 0.100 | 0.36 |
Adoption intensity | Area of land allocated to OFSP | 2.1 | 1.1 | -- | -- | 2.1 | 1.1 |
Independent variables | |||||||
Gender | Gender of HH head (1 = male, 0 = otherwise) | 0.6696 | 0.384 | 0.6298 | 0.483 | 0.6438 | 0.309 |
Age | Age of HH head (years) | 47.17 | 11.85 | 50.97 | 10.63 | 49.64 | 11.2 |
Marital status | Marital status measured as dummy (married = 1, otherwise = 0); | 0.6250 | 0.453 | 0.6875 | 0.274 | 0.6656 | 0.293 |
Education level | 1 = no formal education, 2 = primary education, 3 = secondary education, 4 = tertiary education | 0.8929 | 0.473 | 0.8413 | 0.428 | 0.8594 | 0.573 |
Household size | No. of people in household (number) | 7.72 | 2.32 | 7.52 | 2.58 | 7.59 | 2.49 |
Farming experience | No. of years in sweet potato production (years) | 23.68 | l2.19 | 23.51 | 8.66 | 23.57 | 10.02 |
Farm size | Area of land farmed (ha) | 2.1 | 1.1 | 1.8 | 1.2 | 2.1 | 1.1 |
Risk aversion | HH head’s willingness to take risk (1 = willing to take risk; 0 = otherwise | 0.100 | 0.56 | 0.3798 | 0.l97 | 0.70 | 0.56 |
Farmer association | Dummy, =1 if HH head is member of the local farmer association, 0 otherwise | 0.8393 | 0.294 | 0.6154 | 0.243 | 69.39 | 0.328 |
Extension access | Dummy, =1 if HH head had access, 0 otherwise | 0.6607 | 0.48 | 0.3702 | 0.237 | 0.4719 | 0.238 |
Number of years stayed in the community | HH head’s number of years stayed in community in years | 29.95 | 11.24 | 29.54 | 12.07 | 29.68 | 11.77 |
Access to climate information | Dummy, =1 if the HH had access to climate information, 0 otherwise | 0.5357 | 0.268 | 0.2260 | 0.189 | 0.3344 | 0.252 |
JP project participation | Participant (1 = yes, 0 = otherwise) | 0.25 | 0.14 | 0.65 | 0.37 | 0.90 | 0.43 |
Indigene of community | Indigene of community (Yes = 1, 0 = otherwise) | 0.8125 | 37.38 | 0.7115 | 28.20 | 0.7469 | 29.33 |
Visit to the agricultural field office | Visit to the agricultural field office (Yes = 1, 0 = otherwise) | 0.5089 | 24.19 | 0.2163 | 12.75 | 0.3187 | 17.36 |
King J | Used King J OFSP vine (1 = yes, 0 = otherwise) | 0.3214 | 13.83 | -- | -- | 0.3214 | 13.83 |
Mothers’ Delight | Used Mothers’ Delight OFSP vine (1 = yes, 0 = otherwise) | 0.6786 | 12.94 | -- | -- | 0.6786 | 12.94 |
Children under five (5) | Children under five (5) (Yes = 1, 0 = otherwise) | 0.7143 | 23.12 | 0.3269 | 17.38 | 0.4625 | 18.29 |
References
- HarvestPlus. Final Report on Gain-Harvestplus 2016. 2016. Available online: www.harvestplus.org/countries/nigeria/ (accessed on 2 April 2021).
- Aguayo, V.; Kahn, S.; Ismael, C.; Meershoek, S. Vitamin A deficiency and child mortality in Mozambique. Public Health Nutr. 2004, 8, 29–31. [Google Scholar] [CrossRef]
- Jenkins, M.; Shanks, C.B.; Houghtaling, B. Orange-Fleshed Sweet Potato: Successes and Remaining Challenges of the Introduction of a Nutritionally Superior Staple Crop in Mozambique. Food Nutr. Bull. 2015, 36, 327–353. [Google Scholar] [CrossRef]
- Etumnu, C.; Katz, E.; Abidin, E.; Carey, E. Behavioral Determinants of Biofortified Food Acceptance: The Case of Orange-fleshed Sweet Potato in Ghana. In Proceedings of the 2016 Annual Meeting, Boston, MA, USA, 31 July–2 August 2016; Agricultural and Applied Economic Association: Chicago, IL, USA, 2016; p. 235249. [Google Scholar]
- Underwood, B. Vitamin A deficiency disorders: International efforts to control a preventable “pox”. J. Nutr. 2004, 134, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Adekambi, S.A.; Okello, J.J.; Abidin, P.E.; Carey, E. Effect of exposure to biofortified crops on smallholder farm household adoption decisions: The case of orange-fleshed sweetpotato in Ghana and Nigeria. Sci. Afr. 2020, 8, e00362. [Google Scholar] [CrossRef]
- Low, J.W.; Mwangab, R.O.M.; Andrade, M.; Carey, E.; Anna-Marie, B. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Glob. Food Secur. 2017, 14, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Okello, J.J.; Shikuku, K.M.; Sindi, K.; Low, J. Farmers’ perceptions of orange-fleshed sweetpotato: Do common beliefs about sweetpotato production and consumption really matter? Afr. J. Food Agric. Dev. 2015, 15, 10153–10170. [Google Scholar] [CrossRef]
- Feder, G.; Umali, D.L. The adoption of agricultural innovations: A review. Technol. Forecast. Soc. Chang. 1993, 43, 215–239. [Google Scholar] [CrossRef]
- Duflo, E.; Kremer, M.; Robinson, J. Nudging farmers to use fertilizer: Theory and experimental evidence from Kenya. Am. Econ. Rev. 2011, 101, 2350–2390. [Google Scholar] [CrossRef]
- Edmeades, S.; Smale, M. A trait-based model of the potential demand for a genetically engineered food crop in a developing economy. Agric. Econ. 2006, 35, 351–361. [Google Scholar] [CrossRef]
- Adesina, A.A.; Baidu-Forson, J. Farmers’ perceptions and adoption of new agricultural technology: Evidence from analysis in Burkina Faso and Guinea, West Africa. Agric. Econ. 1995, 13, 1–9. [Google Scholar] [CrossRef]
- Lambrecht, I.; Vanlauwe, B.; Merckx, M.; Maertens, R. Understanding the process of agricultural technology adoption: Mineral fertilizer in eastern DR Congo. World Develop. 2005, 59, 132–146. [Google Scholar] [CrossRef]
- Vimala, B.; Nambisan, B.; Hariprakash, B. Retention of carotenoids in orange-fleshed sweet potato during processing. J. Food Sci. Technol. 2011, 48, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, S.; Kassie, M.; Simtowe, F.; Leslie, L. Poverty Reduction Effects of Agricultural Technology Adoption: A Micro-Evidence from Rural Tanzania. J. Dev. Stud. 2012, 48, 1288–1305. [Google Scholar] [CrossRef]
- Smale, M.; Mason, N. Hybrid Seed and the Economic Well-Being of Smallholder Maize Farmers in Zambia. J. Dev. Stud. 2014, 50, 680–695. [Google Scholar] [CrossRef]
- De Janvry, A.; Sadoulet, E. World Poverty and the Role of Agricultural Technology: Direct and Indirect Effects. J. Dev. Stud. 2002, 38, 1–26. [Google Scholar] [CrossRef]
- De Janvry, A.; Sadoulet, E. Agricultural Growth and Poverty Reduction: Additional Evidence. World Bank Res. Obs. 2010, 25, 1–20. [Google Scholar] [CrossRef]
- Jelliffe, J.L. An Economic Analysis of Smallholder Groundnut Production in Selected African Countries. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2020. Available online: https://opencommons.uconn.edu/dissertations/2441 (accessed on 6 March 2021).
- Larsen, A.F.; Lilleør, H.B. Beyond the Field: The Impact of Farmer Field Schools on Food Security and Poverty Alleviation. World Dev. 2014, 64, 843–859. [Google Scholar] [CrossRef]
- Zeng, D.; Alwang, J.; George, W.N.; Shiferaw, B.; Jaleta, M.; Yirga, C. Ex Post Impacts of Improved Maize Varieties on Poverty in Rural Ethiopia. Agric. Econ. 2015, 46, 515–526. [Google Scholar] [CrossRef]
- Sanyang, S.; Sibiri, J.T.; Julienne, K.; Coulibaly, N.; Konaté, L. A Paradigm Shift in African Agricultural Research for Development: The Role of Innovation Platforms. Int. J. Agric. Sustain. 2016, 14, 187–213. [Google Scholar] [CrossRef]
- Afolami, C.A.; Obayelu, A.E.; Vaughan, I.I. Welfare Impact of Adoption of Improved Cassava Varieties by Rural Households in South Western Nigeria. Agric. Food Econ. 2015, 3, 18. [Google Scholar] [CrossRef]
- Ainembabazi, J.H.; Abdoulaye, T.; Shiferaw, F.; Arega, A.; Dontsop-Nguezet, P.M.; Pierre, C.N.; Cyrille, H.; Sylvain, M.; Manyong, V. Who Benefits from Which Agricultural Research-for Development Technologies? Evidence from Farm Household Poverty Analysis in Central Africa. World Dev. 2018, 108, 28–46. [Google Scholar] [CrossRef]
- Amare, M.; Shiferaw, B. Nonfarm Employment, Agricultural Intensification, and Productivity Change: Empirical Findings from Uganda. Agric. Econ. 2017, 48, 59–72. [Google Scholar] [CrossRef]
- Woolfe, J.A. Sweet Potato: An Untapped Food Resource; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1992. [Google Scholar]
- Ofori, G.; Oduro, I.; Ellis, W.; Dapaah, K. Assessment of vitamin A content and sensory attributes of new sweet potato (Ipomoea batatas) genotypes in Ghana. Afr. J. Food Sci. 2009, 3, 184–192. [Google Scholar]
- Agbon, C.A.; Onabanjo, O.O.; Okeke, E.C. Daily nutrient contribution of meals served in the home grown school feeding of Osun State, Nigeria. Nutr. Food Sci. 2012, 42, 355–361. [Google Scholar] [CrossRef]
- Ramalho, E.A.; Joaquim, J.S.; Ramalho, J.; Murteira, M.R. Alternative Estimating and Testing Empirical Strategies for Fractional Regression Models. J. Econ. Surv. 2011, 25, 19–68. [Google Scholar] [CrossRef]
- Papke, L.E.; Wooldridge, J.M. Econometric Methods for Fractional Response Variables with an Application to 401 (k) Plan Participation Rates. J. Appl. Econom. 1996, 11, 619–632. [Google Scholar] [CrossRef]
- Papke, L.E.; Wooldridge, J.M. Panel Data Methods for Fractional Response Variables with an Application to Test Pass Rates. J. Econom. 2008, 145, 121–133. [Google Scholar] [CrossRef]
- Imbens, G.W.; Wooldridge, J.M. Recent Developments in the Econometrics of Program Evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef]
- Ravallion, M. Chapter 59 Evaluating Anti-Poverty Programs. In Handbook of Development Economics; Elsevier: Amsterdam, The Netherlands, 2007; Volume 4, pp. 3787–3846. Available online: http://linkinghub.elsevier.com/retrieve/pii/S1573447107040594 (accessed on 4 January 2021).
- Deaton, A. Instruments, Randomization, and learning about Development. J. Econ. Lit. 2010, 48, 424–455. [Google Scholar] [CrossRef]
- Duflo, E.; Glennerster, R.; Kremer, M. Chapter 61 Using Randomization in Development Economics Research: A Toolkit. In Handbook of Development Economics; Elsevier: Amsterdam, The Netherlands, 2008; Volume 4, pp. 3895–3962. Available online: http://linkinghub.elsevier.com/retrieve/pii/S1573447107040612 (accessed on 4 January 2021).
- Khandker, S.; Gayatri, B.K.; Hussain, S. Handbook on Impact Evaluation: Quantitative Methods and Practices; The World Bank: Washington, DC, USA, 2009; Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/650951468335456749/handbook-on-impact-evaluation-quantitative-methods-and-practices (accessed on 4 January 2021).
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Winters, P.; Salazar, L.; Maffioli, A. Designing Impact Evaluations for Agricultural Projects; Technical Notes No. IDB-TN-l98; Impact-Evaluation Guideline; Office of Strategic Planning and Development Effectiveness, InterAmerican Development Bank: Washington, DC, USA, 2010; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3307422 (accessed on 4 January 2021).
- Hirano, K.; Imbens, G.W.; Geert, R. Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score. Econom. J. Econom. Soc. 2003, 71, 1161–1189. [Google Scholar] [CrossRef]
- Guo, S.; Fraser, M.W. Propensity Score Analysis: Statistical Methods and Applications, 2nd ed.; Advanced Quantitative Techniques in the Social Sciences Series II; Sage Publications: Thousand Oaks, CA, USA, 2015. [Google Scholar]
- Bravo-Ureta, B.E.; Alexandre, N.A.; Daniel, S.; Aarón, I. The Economic Impact of Marena’s Investments on Sustainable Agricultural Systems in Honduras: Impact of Investments on Sustainable Agriculture. J. Agric. Econ. 2011, 62, 429–448. [Google Scholar] [CrossRef]
- Sanglestsawai, S.; Rejesus, R.M.; Yorobe, J.M. Economic Impacts of Integrated Pest Management (IPM) Farmer Field Schools (FFS): Evidence from Onion Farmers in the Philippines. Agric. Econ. 2015, 46, 149–162. [Google Scholar] [CrossRef]
- Abadie, A.; Imbens, G.W. Matching on the Estimated Propensity Score. Econometrica 2016, 84, 781–807. [Google Scholar] [CrossRef]
- DiPrete, T.A.; Gangl, M. Assessing Bias in the Estimation of Causal Effects: Rosenbaum Bounds on Matching Estimators and Instrumental Variables Estimation with Imperfect Instruments. Sociol. Methodol. 2004, 34, 271–310. [Google Scholar] [CrossRef]
- Kassie, M.; Shiferaw, B.; Geoffrey, M. Agricultural Technology, Crop Income, and Poverty Alleviation in Uganda. World Dev. 2011, 39, 1784–1795. [Google Scholar] [CrossRef]
- Angrist, J.D.; Imbens, G.W.; Rubin, D.B. Identification of Causal Effects Using Instrumental Variables. J. Am. Stat. Assoc. 1996, 91, 444–455. [Google Scholar] [CrossRef]
- Caliendo, M.; Kopeinig, S. Some Practical Guidance for the Implementation of Propensity Score Matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef]
- Cavatassi, R.; González-flores, M.; Paul, W.; Andrade-Piedra, P.; Patricio, E.; Thiele, G. linking Smallholders to the New Agricultural Economy: The Case of the Plataformas de Concertación in Ecuador. J. Dev. Stud. 2011, 47, 1545–1573. [Google Scholar] [CrossRef]
- De los Santos Montero, L.A.; Bravo-Ureta, B.E. Natural Resource Management and Household Well-Being: The Case of POSAF-II in Nicaragua. World Dev. 2017, 99, 42–59. [Google Scholar] [CrossRef]
- Angrist, J.D. Estimation of limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice. J. Bus. Econ. Stat. 2001, 19, 2–28. [Google Scholar] [CrossRef]
- NPC. National Population Commission; ICF International: Abuja, Nigeria, 2018. [Google Scholar]
- Wossen, T.; Berger, T.; Di Falco, S. Social capital, risk preference and adoption of improved farm land management practices in Ethiopia. Agric. Econ. 2015, 46, 81–97. [Google Scholar] [CrossRef]
- Keil, A.; Krishnapriya, P.P.; Mitra, A.; Jat, M.L.; Sidhu, H.S.; Krishna, V.V.; Shyamsundar, P. Changing agricultural stubble burning practices in the Indo-Gangetic plains: Is the Happy Seeder a profitable alternative? Int. J. Agric. Sustain. 2020, 19, 128–151. [Google Scholar] [CrossRef]
- Kolapo, A.; Kolapo, A.J. Implementation of conservation agricultural practices as an effective response to mitigate climate change impact and boost crop productivity in Nigeria. J. Agric. Food Res. 2023, 12, 100557. [Google Scholar] [CrossRef]
- Kolapo, A. Heterogeneous preferences and market potentials for biofortified foods in sub-Saharan Africa: Evidence from Nigeria. Future Foods 2023, 8, 100278. [Google Scholar] [CrossRef]
- Kolapo, A.; Muhammed, O.A.; Kolapo, A.J.; Olowolafe, D.E.; Eludire, A.I.; Didunyemi, A.J.; Falana, K.; Osungbure, I.D. Adoption of drought tolerant maize varieties and farmers’ access to credit in Nigeria: Implications on productivity. Sustain. Future 2023, 6, 100142. [Google Scholar] [CrossRef]
- Jimoh, S.O.; Baruwa, O.I.; Kolapo, A. Analysis of profit efficiency of smallholder beef cattle farms in South-West, Nigeria. Cogent Econ. Financ. 2023, 11, 2181786. [Google Scholar] [CrossRef]
- Kolapo, A.; Didunyemi, A.J.; Aniyi, O.J.; Obembe, O.E. Adoption of multiple sustainable land management practices and its effects on productivity of smallholder maize farmers in Nigeria. Resour. Environ. Sustain. 2022, 10, 100084. [Google Scholar] [CrossRef]
- Kolapo, A.; Tijani, A.A.; Olowolafe, D.E.; Muhammed, O.A. Acceptance of European Union (EU) approved pesticides for cocoa production in Nigeria. Cogent Food Agric. 2022, 8, 2098590. [Google Scholar]
- Rabirou, K.; Kolapo, A.; Lasisi, A.L. Competitiveness of broiler production in Nigeria: A policy analysis matrix approach. Heliyon 2022, 8, e09298. [Google Scholar]
- Chipungu, F.; Changadeya, W.; Ambali, A.; Saka, J.; Mahungu, N.; Mkumbira, J. Characterization of sweet potato accessions in Malawi using morphological markers and farmers’ indigenous knowledge system (IKS). Afr. J. Agric. Res. 2017, 12, 3088–3098. [Google Scholar]
- Kolapo, A.; Olanipekun, O.A.; Akande, Y.B.; Kolawole, M.A.; Muhammed, O.A. Impact of Youth Commercial Agricultural Development Programme on Poverty Status of Rural Households in Ekiti State, Nigeria. Int. J. Agric. Manag. Dev. 2022, 12, 91–101. [Google Scholar]
- Kolapo, A.; Kolapo, A.J. Welfare and Productivity Impact of Adoption of Biofortified Cassava by Smallholder Farmers in Nigeria. Cogent Food Agric. 2021, 7, 1886662. [Google Scholar] [CrossRef]
- Kolapo, A.; Abimbola, E.I.; Omilaju, S.B. Land Tenure, Land Property Rights and Adoption of Bio-Fortified Cassava in Nigeria: Policy Implication. J. Land Rural Stud. 2021, 9, 1–18. [Google Scholar]
- Greene, W.H. The Econometric Approach to Efficiency Analysis, in the Measurement of Efficiency; Fried, H., Lovell, C.A.K., Schmidt, S., Eds.; Oxford University Press: New York, NY, USA, 2008; Chapter 2. [Google Scholar]
- Barrett, C.B.; Michael, R.C.; Peter, D.L. Understanding and Reducing Persistent Poverty in Africa: Introduction to a Special Issue. J. Dev. Stud. 2006, 42, 167–177. [Google Scholar] [CrossRef]
- Giesbert, L.; Kati, S. Assets, Shocks, and Poverty Traps in Rural Mozambique. World Dev. 2012, 40, 1594–1609. [Google Scholar] [CrossRef]
- Davis, K.; Nkonya, E.; Kato, E.; Mekonnen, D.A.; Odendo, M.; Miiro, R.; Nkuba, J. Impact of Farmer Field Schools on Agricultural Productivity and Poverty in East Africa. World Dev. 2012, 40, 402–413. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.O.; Winter-Nelson, A. Social learning and Farm Technology in Ethiopia: Impacts by Technology, Network Type, and Poverty Status. J. Dev. Stud. 2012, 48, 1505–1521. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Muyanga, M.; Jayne, T.S.; Burke, W.J. Pathways into and out of Poverty: A Study of Rural Household Wealth Dynamics in Kenya. J. Dev. Stud. 2013, 49, l358–l374. [Google Scholar] [CrossRef]
- Pan, Y.; Smith, S.C.; Sulaiman, M. Agricultural Extension and Technology Adoption for Food Security: Evidence from Uganda. Am. J. Agric. Econ. 2018, 100, 1012–1031. [Google Scholar] [CrossRef]
- Alkire, S.; James, F.; Suman, S.; Maria, E.S.; José, M.R.; Paola, B. Multidimensional Poverty Measurement and Analysis; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Kolapo, A.; Ogunyemi, O.V.; Ologundudu, O.M.; Adekunle, I.A.; Akinloye, M.O.; Komolehin, F. Farmers’ choice of varieties and demand for improved cassava stems in Nigeria. Int. J. Agric. Res. Innov. Technol. 2021, 11, 42–51. [Google Scholar] [CrossRef]
- Low, J.W.; Thiele, G. Understanding innovation: The development and scaling of orange-fleshed sweetpotato in major African food systems. Agric. Syst. 2020, 179, 102770. [Google Scholar] [CrossRef]
- Kolapo, A.; Raji, I.A.; Falana, K.; Muhammed, O.A. Farm Size Efficiency Differentials of Bio-fortified Cassava Production in Nigeria: A Stochastic Frontier Analysis Approach. Malays. J. Sustain. Agric. 2021, 5, 51–60. [Google Scholar]
- Custodio, E.; Kayitakire, F.; Thomas, A.C. Exploring the New Indicator Minimum Dietary Diversity Women. Results from Burkina Faso; EUR 27717. 2016. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC100162/lb-na-27717-en-n%20%2Bec.pdf (accessed on 6 September 2022).
- Kolapo, A.; Ayeni, A.A. Welfare Impact of Adoption of Improved Oil Palm Processing Technologies Among Rural Households in South-Western, Nigeria. Trop. Agroecosyst. 2020, 1, 35–42. [Google Scholar]
- Heltberg, R.; Tarp, F. Agricultural Supply Response and Poverty in Mozambique. Food Policy 2002, 27, 103–124. [Google Scholar] [CrossRef]
- Alwang, J.; Siegel, P.B. Measuring the Impacts of Agricultural Research on Poverty Reduction. Agric. Econ. 2003, 29, 1–14. [Google Scholar] [CrossRef]
- Moyo, S.; Norton, G.W.; Alwang, J.; Rhinehart, I.; Deom, C.M. Peanut Research and Poverty Reduction: Impacts of Variety Improvement to Control Peanut Viruses in Uganda. Am. J. Agric. Econ. 2007, 89, 448–460. [Google Scholar] [CrossRef]
- Mwaniki, A. Biofortification as a vitamin a deficiency intervention in kenya (chapter 7). In Case Studies in Food Policy for Developing Countries: Policies for Health, Nutrition, Food Consumption, and Poverty; Cornell University Press: Ithaca, NY, USA, 2009; Volume l, p. 8l. [Google Scholar]
- Mutter, R.L.; Green, W.H.; Spector, W.; Rosko, M.D.; Mukamel, D.B. Investigating the Impact of Endogeneity on Inefficiency Estimates in the Application of Stochastic Frontier Analysis to Nursing Homes. J. Product. Anal. 2013, 39, 101–111. [Google Scholar] [CrossRef]
- De Brauw, A.; Eozenou, P.; Gilligan, D.O.; Hotz, C.; Kumar, N.; Meenakshi, J.V. Biofortification, crop adoption and health information: Impact pathways in Mozambique and Uganda. Am. J. Agric. Econ. 2018, 100, 906–930. [Google Scholar] [CrossRef] [PubMed]
- Kosmowski, F.; Aragaw, A.; Kilian, A.; Ambel, A.; Ilukor, J.; Yigezu, B.; Stevenson, J. Varietal identification in household surveys: Results from three household-based methods against the benchmark of DNA fingerprinting in southern Ethiopia. Exp. Agric. 2018, 55, 371–385. [Google Scholar] [CrossRef]
- Kolapo, A.; Yesufu, O.A. Determinants of Adoption of Improved Processing Technology among Catfish Producer-Processors in South Western, Nigeria. Food Agribus. Manag. 2020, 1, 94–99. [Google Scholar]
- Kassali, R.; Kolapo, A.; Ige, I.O.; Adebayo, K.E. Analysis of consumers’ preference and willingness to pay for orange-fleshed sweet potato in Osun state, Nigeria. Int. J. Agric. Res. Innov. Technol. 2024, 14, 53–61. [Google Scholar] [CrossRef]
- Kolapo, A.; Ologundudu, O.M.; Adekunle, I.A.; Ogunyemi, O.A. Impact Assessment of Fadama III group Participation on Food security Status of Rural Households in South West, Nigeria. J. Agric. Sustain. 2020, 13, 21–29. [Google Scholar]
- Kolapo, A.; Ologundudu, O.M.; Adekunle, I.A. Gender, Membership in Farmers’ Association and Adoption of Biofortification in Nigeria: The Case of Bio-Fortified Cassava. SSRG Int. J. Agric. Environ. Sci. (SSRG-IJAES) 2020, 7, 38–45. [Google Scholar]
- Heckman, J.J. Dummy endogenous variables in a simultaneous equation system. Econometrica 1978, 46, 931–959. [Google Scholar] [CrossRef]
- Heckman, J.J. Sample selection bias as a specification error. Econometrica 1986, 47, 153–162. [Google Scholar] [CrossRef]
- Miranda, A.; Rabe-Hesketh, S. Maximum likelihood estimation of endogenous switching and sample selection models for binary, ordinal, and count variables. Stata J. 2006, 6, 285–308. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Impact of interventions on discrete outcomes: Maximum likelihood estimation of the binary choice models with binary endogenous regressors. Stata J. 2011, 11, 368–385. [Google Scholar] [CrossRef]
- Awotide, B.A.; Ogunniyi, A.; Olagungu, K.O.; Manda, J.; Alene, A.; Nguena Cl Manyong, V.; Abdoulaye, T. Does Adoption of Improved Agricultural Technologies Impact Poverty and Food Security in the Sahelian Region of West Africa? In Proceedings of the A Contributed Paper Prepared for Oral Presentation at the 3lst International Conference of Agricultural Economist, New Delhi, India, 21–25 August 2021. [Google Scholar]
- Wooldridge, J.M. Inverse probability weighted estimation for general missing data problems. J. Econom. 2002, 141, 1281–1301. [Google Scholar] [CrossRef]
- Leuven, E.; Sianesi, B. PSMATCH2: Stata Module to Perform Propensity Score Matching, Common Support Graphing, and Covariate Imbalance Testing. 2003. Available online: https://econpapers.repec.org/software/bocbocode/s432001.htm (accessed on 3 June 2021).
- Tommaso, N. Simulation-based sensitivity analysis for matching estimators. Stata J. 2007, 7, 334–350. [Google Scholar]
- Heckman, J.; Lalonde, R.; Smith, J. The economics and econometrics of active labour market programs. In Handbook of Labour Economics; Ashenfelter, O., Card, D., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; Volume III. [Google Scholar]
- Davis, F.D. A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1986. [Google Scholar]
- Dehejia, R.H.; Wahba, S. Casual effects in non-experimental studies: Re-evaluating the evaluation of training programs. J. Am. Stat. Assoc. 1999, 94, 1053–1062. [Google Scholar] [CrossRef]
Jumpstarting Awareness | Jumpstarting Registration | Collection of OFSP Vine | |
---|---|---|---|
Variable | Coefficient | Coefficient | Coefficient |
Age | 0.0325 *** (0.0106) | 0.0327 ** (0.0164) | 0.3789 *** (0.1002) |
Marital status | −0.0114 (0.0203) | 0.3274 *** (0.0801) | 0.0774 ** (0.0312) |
Education | 0.1137 *** (0.0206) | 0.0393 ** (0.0163) | 0.0250 (0.0238) |
Gender | 0.3204 *** (0.1028) | 0.0849 * (0.0448) | 0.4446 *** (0.1287) |
Household size | −0.0250 (0.0238) | 0.0124 (0.0184) | 0.0351 (0.0243) |
Farming experience | −0.0001 (0.0006) | −0.0006 (0.0008) | −0.0003 (0.0007) |
Membership in association | 0.0026 *** (0.0006) | 0.0038 *** (0.0013) | −0.0009 (0.0017) |
Access to credit | −0.0003 (0.0003) | 0.0003 (0.0004) | −0.0003 (0.0007) |
Access to off-farm work | −0.0002 (0.0003) | −0.0008 (0.0005) | 0.0006 (0.0005) |
Risk aversion | 0.0031 ** (0.0017) | 0.0003 (0.0004) | −0.0001 (0.0006) |
Access to extension contacts | 0.0031 ** (0.0017) | 0.0006 (0.0005) | −0.0006 (0.0008) |
Access to climate information | −0.0008 (0.0005) | −0.0009 (0.0017) | −0.0003 (0.0015) |
Number of years in the community | 0.0026 ** (0.0013) | 0.0002 (0.0005) | −0.0008 (0.0005) |
Primary occupation | 0.0001 * (0.0001) | −0.0002 (0.0011) | 0.0005 (0.0004) |
Visiting the agricultural field office | 0.0002 ** (0.0001) | 0.0023 ** (0.0009) | 0.0001 (0.0006) |
State fixed effect | Yes | Yes | Yes |
Wald chi2(27) | 365.3 | 274.5 | 235.7 |
Pseudo R2 | 0.47 | 0.63 | 0.51 |
Goodness of fit measure | 1.62 | 1.47 | 1.35 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variable | (i) OlS R | (i) OlS U | (ii) OlS R | (ii) OlS U | (i) FR R+ | (i) FR U+ | (ii) FR R+ | (ii) FR U+ |
Treated | 0.1662 *** (0.0138) | 0.0055 ** (0.0024) | 0.0049 *** (0.0018) | 0.0140 * (0.0008) | ||||
Non-treated | 0.0061 (0.4718) | 0.0027 (0.0033) | 0.0041 * (0.0022) | 0.0807 *** (0.0144) | ||||
PC | 0.0063 *** (0.0023) | 0.0098 *** (0.0021) | 0.0063 ** (0.0029) | 0.0026 * (0.0014) | ||||
Age | 0.0063 ** (0.0029) | −0.0002 (0.0034) | −0.0005 (0.0008) | 0.0048 (0.0045) | ||||
Marital status | −0.0001 (0.0021) | 0.0112 ** (0.0044) | 0.0001 (0.0003) | 0.0005 (0.0016) | ||||
Education | 0.0026 * (0.0014) | 0.0145 ** (0.0075) | 0.0003 (0.0005) | −0.0014 (0.0024) | ||||
Gender | −0.0022 (0.0024) | 0.0154 *** (0.0038) | 0.0007 (0.0007) | −0.0047 (0.0035) | ||||
Household size | 0.0032 *** (0.0009) | −0.0019 (0.0014) | 0.0007 *** (0.0002) | 0.2998 *** (0.0922) | ||||
Farming experience | −0.0018 (0.0012) | −0.0001 (0.0005) | 0.0003 ** (0.0001) | 0.0656 (0.1087) | ||||
Farm size | 0.0078 (0.0110) | 0.0006 (0.0007) | −0.0001 (0.0002) | −0.1234 (0.0968) | ||||
Membership in association | 0.0002 ** (0.0001) | 0.0015 (0.0011) | 0.0006 (0.0013) | 0.159 (0.1282) | ||||
Access to credit | 0.0056 (0.0037) | 0.0010 *** (0.0002) | 0.0005 * (0.0003) | 0.0334 (0.3497) | ||||
Risk aversion | 0.0050 (0.0032) | −0.0017 (0.0014) | −0.0007 (0.0005) | −0.2137 (0.1750) | ||||
Access to extension contacts | 0.0017 (0.0024) | −0.0001 (0.0005) | 0.0015 *** (0.0006) | −0.0491 (0.1384) | ||||
Access to climate information | 0.0003 (0.0016) | 0.0004 (0.0007) | 0.0032 (0.0022) | 0.4067* (0.2466) | ||||
Years stayed in the community | −0.0001 (0.0021) | 0.0017 * (0.0010) | −0.0016 (0.0066) | −0.0491 (0.1384) | ||||
Project community l_Osun | 0.0021 ** (0.0008) | −0.0004 (0.0004) | 0.0007 *** (0.0002) | 0.2635 ** (0.1131) | ||||
Project community 2_Osun | 0.0127* (0.0070) | 0.0009 *** (0.0002) | 0.0019 *** (0.0006) | 0.3558 *** (0.1362) | ||||
Project community l_Kwara | 0.0006 ** (0.003) | 0.0002 (0.0006) | 0.0036 ** (0.0018) | −0.2137 (0.1750) | ||||
Project community 2_Kwara | 0.0049 ** (0.0023) | 0.0012 *** (0.0002) | 0.0035 * (0.0021) | −0.0586 (0.221) | ||||
Constant | −0.0002 (0.0034) | 0.0004 ** (0.0002) | 0.0018 ** (0.0007) | −0.0147 (0.0145) | ||||
R2 | 0.637 | 0.592 | 0.637 | 0.592 | ||||
F | 5.737 | 12.63 | 6.519 | 14.32 |
PSM(1) | PSM(2) | PSM(3) | PSM(4) | |
---|---|---|---|---|
Treated/Non-Treated and Control | PC/Control | Treated/Control | Treated/Non-Treated | |
Age | 0.0001 (0.0006) | 0.0018 ** (0.0007) | 0.0001 (0.0002) | −0.0001 (0.0021) |
Marital status | 0.0005 (0.0003) | −0.0006 (0.0008) | 0.0002 (0.0002) | −0.0022 (0.0024) |
Education | 0.0003 (0.0003) | −0.0001 (0.0006) | 0.0004 (0.0006) | 0.0026 * (0.0014) |
Gender | −0.0002 (0.0003) | 0.0003 (0.0004) | 0.0001 (0.0006) | 0.0036 (0.01733) |
Household size | 0.0003 * (0.0002) | −0.0008 (0.0005) | 0.0005 (0.0004) | −0.0167 (0.04808) |
Farming experience | 0.0001 (0.0001) | 0.0007 * (0.0004) | 0.0007 (0.0009) | −0.0341 (0.0222) |
Farm size | −0.0002 (0.0002) | 0.0005 (0.0004) | 0.0007 (0.0009) | −0.0005298 (0.0008184) |
Membership in association | 0.0015 ** (0.0007) | 0.0001 (0.0005) | −0.0005 (0.0006) | 0.1022 (0.4034) |
Access to credit | 0.0001 * (0.0001) | −0.0002 (0.0004) | 0.0005 * (0.0003) | 0.0125 (0.0273) |
Risk aversion | −0.0001 (0.0004) | −0.0009 * (0.0005) | 0.0036 ** (0.0018) | 0.1137 *** (0.0232) |
Access to extension contacts | 0.0001 (0.0005) | −0.0004 (0.0006) | −0.0030 * (0.0018) | 0.0212 (0.0242) |
Access to climate information | −0.0009 *** (0.0003) | −0.0009 (0.0007) | 0.0005 (0.0004) | 0.0434 (0.030) |
Number of years of stay in the community | −0.0003 (0.0015) | 0.0002 (0.0004) | −0.0002 (0.0004) | −0.0108 (0.0283) |
Project community 1_Osun | 0.0002 (0.0005) | −0.0001 (0.0001) | −0.0004 (0.0005) | −0.0060 (0.0228) |
Project community 2_Osun | 0.0007 (0.0005) | 0.0001 (0.0002) | −0.0004 (0.0006) | 0.0041 (0.0239) |
Project community 1_Kwara | 0.0001 (0.0006) | 0.0004 (0.0006) | −0.0009 (0.0007) | 0.0422 (0.026) |
Project community 2_Kwara | 0.0023 ** (0.0009) | 0.0001 (0.0001) | 0.0002 (0.0004) | −0.0169 (0.0248) |
Constant | 0.0017 *** (0.0004) | 0.0012 *** (0.0004) | 0.0007 (0.0009) | −0.0005 (0.0006) |
PSM(1) | PSM(2) | PSM(3) | PSM(4) | |
---|---|---|---|---|
Treated/Non-Treated and Control | PC/Control | Treated/Control | Treated/Non-Treated | |
ATET | 0.2319 *** (0.0129) | 0.0231 * (0.0122) | −0.04297 (0.04989) | 0.1415 *** (0.0313) |
Rosenbaum Bounds Delta (Г) | 2.45+ | 2.15 | 3.35+ | 3.75+ |
IV(1) | IV(2a) | IV(2b) | |
---|---|---|---|
(iii) First Stage | (iv) Second Stage: OlS | (iv) Second Stage: FR + | |
Treated | 0.0892 *** (0.0035) | ||
PC | −0.2504 *** (0.0043) | −0.2790 *** (0.0031) | |
Age | 0.05842 * (0.03237) | 0.0353 (0.1292) | 0.0130 ** (0.0614) |
Marital status | 0.05642 ** (0.02751) | −0.0769 ** (0.0035) | −0.0987 ** (0.0464) |
Education | −0.0936 (0.1039) | 0.0739 * (0.0422) | 0.0156 *** (0.0052) |
Gender | −0.0026 (0.01811) | 0.0788 *** (0.0280) | 0.01002 ** (0.0453) |
Household size | 0.02824 (0.01228) | 0.0144 (0.0120) | 0.0109 (0.0191) |
Farming experience | 0.01068 (0.01062) | −0.0123 (0.0191) | −0.0365 (0.1280) |
Farm size | −0.0752 (0.1149) | 0.0983 (0.0103) | −0.1038 (0.1415) |
Membership in association | 0.01304 ** (0.0058) | 0.01394 (0.0109) | 0.0114 (0.0263) |
Access to credit | 0.000119 (0.0052) | −0.0462 (0.1386) | −0.0833 (0.1512) |
Risk aversion | 0.0875 (0.0753) | 0.0605 (0.1476) | 0.01346 * (0.0070) |
Access to extension contacts | 0.0187 (0.0164) | 0.0129 (0.0636) | −0.0553 (0.1367) |
Access to climate information | 0.0524 *** (0.0111) | 0.0560 (0.0537) | 0.0772 (0.0719) |
Number of years of stay in the community | 0.0605 (0.1476) | 0.0111 (0.0129) | 0.0174 (0.0172) |
Project community 1_Osun | 0.01292 (0.0636) | −0.0211 ** (0.0106) | 0.0139 (0.1958) |
Project community 2_Osun | 0.0560 (0.0537) | 0.0803 *** (0.0209) | −0.0453 (0.4189) |
Project community 1_Kwara | 0.0111 (0.0129) | 0.0134 * (0.0070) | 0.0194 (0.0234) |
Project community 2_Kwara | −0.0211 ** (0.0106) | −0.0553 (0.1367) | −0.0121 (0.2193) |
Constant | 0.0803 *** (0.0209) | 0.0772 (0.0719) | |
R2 | 0.532 | 0.579 | |
F | 11.57 | 13.46 |
Model 1: Yield Effect | Model 2: Income Effect | |||||||
---|---|---|---|---|---|---|---|---|
Adopters (Treated) (N = 112) | Non-Adopters (Non-Treated and Control (N = 208) | Adopters (Treated) (N = 112) | Non-Adopters (Non-Treated and Control (N = 208) | |||||
Variable | Coefficient | Std. Err. | Coefficient | Std. Err | Coefficient | Std. Err | Coefficient | Std. Err |
Labor expenses | 0.00328 | 0.0021 | −0.0001 | 0.0004 | −0.0003 | 0.0003 | 0.00001 | 0.0000 |
Fertilizer qty | 0.0010 *** | 0.0002 | 0.0040 *** | 0.0006 | 0.0002 *** | 0.0001 | 0.0593 | 0.3186 |
King J | 0.0007 | 0.0010 | −0.0960 | 0.1055 | 0.0008 | 0.0005 | −0.0032 | 0.0021 |
Mothers’ Delight | 0.0029 *** | 0.0010 | 0.0003 | 0.0003 | 0.0011 *** | 0.0003 | −0.0039 | 0.0028 |
Age | 0.0003 | 0.0002 | 0.1795 *** | 0.0794 | −0.00002 | 0.00007 | 0.0008 | 0.0012 |
Marital status | 0.0002 | 0.0003 | 0.2379 *** | .0814 | 0.0013 *** | 0.0004 | −0.0007 | 0.0022 |
Education | 0.0043 *** | 0.0010 | 0.1285 | 0.1098 | −0.00009 | 0.00014 | 0.0014 | 0.0009 |
Gender | 0.0058 *** | 0.0016 | 0.0002 | 0.0002 | 0.00001 | 0.00002 | 0.0011 | 0.0009 |
Household size | 0.0070 *** | 0.0021 | 0.0004 | 0.0004 | −0.00008 | 0.00008 | 0.0043 *** | 0.0013 |
Farming experience | 0.0056 *** | 0.0013 | 2.3312 *** | 0.2907 | −0.0009 | 0.0462 | −0.0040 | 0.0038 |
Farm size | 0.0001 | 0.0001 | 0.6933 | 0.7131 | 0.0647 | 0.0335 | −0.0045 | 0.0036 |
Membership in association | 0.0044 *** | 0.0014 | 0.3601 | 0.4250 | 0.0479 | 0.0317 | 0.0029 | 0.0010 |
Access to credit | 0.0043 *** | 0.0013 | −0.0782 | 0.1628 | 0.0134 | 0.0119 | 0.0030 | 0.5211 |
Risk aversion | −0.0011 | 0.0242 | −0.00004 | 0.0004 | 0.00015 | 0.0003 | 0.0008 | 0.0009 |
Access to extension contacts | −0.0076 | 0.0433 | −0.0010 | 0.0010 | −0.0455 | 0.1036 | 0.0021 | 0.6209 |
Access to climate information | −0.0039 | 0.0028 | −0.0002 | 0.0016 | −0.0413 | 0.0428 | 0.0088 *** | 0.0020 |
Years of stay in the community | 0.0008 | 0.0012 | 0.1868 | 0.3021 | 0.0053 | 0.0087 | 0.0003 | 0.0244 |
Project community l_Osun | 0.0042 | 0.0029 | 0.0006 | 0.0043 | 0.0082 | 0.0110 | 0.0136 | 0.0102 |
Project community 2_Osun | 0.0007 | 0.0022 | −0.00008 | 0.00006 | 0.1518 | 0.1686 | 0.0004 | 0.0019 |
Project community l_Kwara | 0.0014 | 0.0009 | −0.00008 | 0.00007 | 0.2291 *** | 0.0599 | −0.0024 | 0.0017 |
Project community 2_Kwara | −0.0024 | 0.0008 | 0.0004 | 0.0024 | 0.0008 | 0.0005 | 0.0306 | 0.3102 |
Constant | 0.0002 | 0.0002 | 0.0001 | 0.0008 | 0.0011 *** | 0.0003 | 0.0094 *** | 0.0043 |
IMR | 0.0021 ** | 0.0009 | 0.0388 * | 0.0207 | 0.0443 * | 0.0244 | 0.0153 * | 0.0078 |
Endogeneity test chi-square (2) = | 37.53 *** | 46.92 *** | ||||||
Wald chi2 | 3102.377 | |||||||
Prob > chi2 | 0.000 | |||||||
LR test of indep. | 0.0261 | |||||||
Loglikelihood | 527.281 |
Model 1: Yield Effect | Model 2: Income Effect | |||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | |
Average treatment effect (ATE) | 0.7227 *** | 0.1258 | 0.0442 ** | 0.0194 |
Average treatment effect on the treated (ATET) | 0.3638 *** | 0.3009 | 0.3061 *** | 0.0102 |
Poverty Indices | Pooled | Adopters | Non-Adopters |
---|---|---|---|
Poverty headcount | 0.574 | 0.3864 | 0.6428 |
Poverty depth | 0.2837 | 0.2528 | 0.3791 |
Poverty severity | 0.2169 | 0.1563 | 0.2947 |
Variable | Adopters | Non-Adopters | ||
---|---|---|---|---|
Coefficient | Std. Err | Coefficient | Std. Err | |
Age | −0.018 | 0.013 | 0.053 ** | 0.022 |
Gender | 0.133 | 0.264 | 0.010 | 0.014 |
Education | −0.060 | 0.068 | 0.032 | 0.032 |
Marital status | 0.002 | 0.015 | 0.206 | 0.032 |
Household size | −0.093 | 0.119 | −0.003 | 0.025 |
Farming experience | −1.137 *** | 0.383 | 0.580 | 0.361 |
Farm size | −2.705 *** | 0.384 | −0.333 | 0.418 |
Membership in association | 0.016 | 0.011 | −0.038 | 0.054 |
Access to credit | −2.419 *** | 0.385 | 0.050 | 0.053 |
Risk aversion | 1.586 *** | 0.308 | 1.280 ** | 0.634 |
Access to extension contacts | −0.391 ** | 0.191 | 0.061 | 0.450 |
Project community l_Osun | 0.000 | 0.003 | 0.467 | 1.451 |
Project community 2_Osun | −0.010 | 0.0069 | −0.233 *** | 0.051 |
Project community l_Kwara | 0.003 | 0.0064 | −2.833 *** | 0.945 |
Project community 2_Kwara | −0.297 | 0.279 | −0.129 *** | 0.020 |
Constant | −4.359 *** | 1.120 | 5.7808 ** | 2.754 |
/athrhol | 1.893 *** | 0.715 | ||
/athrho0 | 0.203 | 0.296 | ||
rhol | −0.023 * | 0.012 | ||
rho0 | −0.409 ** | 0.156 | ||
lR chi2(l5) | 143.80 | |||
Prob > chi2 | 0.0000 |
Outcome Variable | Treatment Effects | Average Treatment Effect (ATE) |
---|---|---|
Poverty headcount (%) | Adopted farm households (ATET) | 0.053 ** (0.022) |
Non-adopted farm households (ATUT) | −0.217 *** (0.081) |
Variables | Sample | Treated | Controls | Differences | Std. Err | t-Statistics |
---|---|---|---|---|---|---|
Nearest Neighbor Matching (NNM) | ||||||
Yield (kg) | Unmatched | 346.632 | 299.649 | 46.983 | 11.092 | 4.24 |
ATT | 346.632 | 306.531 | 40.101 *** | 12.215 | 3.28 | |
ATU | 299.649 | 311.736 | 12.087 | - | - | |
ATE | 19.452 | - | - | |||
Effect (%) | 0.57 *** | |||||
Kernel-Based Matching | ||||||
Yield (kg) | Unmatched | 346.632 | 299.649 | 46.649 | 11.092 | 4.24 |
ATT | 346.632 | 309.562 | 37.070 *** | 13.422 | 2.76 | |
ATU | 299.649 | 310.184 | 10.535 | - | - | |
ATE | 17.758 | |||||
Effect (%) | 0.44 *** |
Variables | Sample | Treated | Controls | Differences | Std. Err | t-Statistics |
---|---|---|---|---|---|---|
Nearest Neighbor Matching (NNM) | ||||||
Income (NGN) | Unmatched | 64,382.482 | 39,675.763 | 24,706.719 | 3856.254 | 6.40 |
ATT | 64,382.482 | 43,748.218 | 20,598.264 *** | 4201.236 | 4.90 | |
ATU | 39,675.763 | 48,046.372 | 8370.609 | - | - | |
ATE | 9573.472 | - | - | |||
Effect (%) | 0.38 *** | |||||
Kernel-Based Matching (KBM) | ||||||
Income (NGN) | Unmatched | 64,382.482 | 39,675.763 | 24,706.719 | 3856.254 | 6.40 |
ATT | 64,382.482 | 43,559.852 | 20,822.630 *** | 4673.727 | 4.46 | |
ATU | 39,675.763 | 46,836.946 | 7161.183 | - | - | |
ATE | 9915.57 | - | - | |||
Effect (%) | 0.27 *** |
Variables | Sample | Treated | Controls | Differences | Std. Err | t-Statistics |
---|---|---|---|---|---|---|
Nearest Neighbor Matching (NNM) | ||||||
Poverty headcount (%) | Unmatched | 0.53 | 0.71 | −0.18 | 0.0536 | −3.36 |
ATT | 0.53 | 0.67 | −0.08 *** | 0.0332 | −2.41 | |
ATU | 0.71 | 0.64 | −0.07 | - | - | |
ATE | −0.09 | - | - | |||
Kernel-Based Matching (KBM) | ||||||
Poverty headcount (%) | Unmatched | 0.53 | 0.71 | −0.18 | 0.0536 | −3.36 |
ATT | 0.53 | 0.66 | −0.13 *** | 0.0628 | −2.07 | |
ATU | 0.71 | 0.64 | −0.07 | - | - | |
ATE | 0.09 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolapo, A.; Tijani, A.A.; Olawuyi, S.O. Exploring the Role of Farmer-Led Jumpstarting Project on Adoption of Orange-Fleshed Sweet Potato in Nigeria: Implications on Productivity and Poverty. Sustainability 2024, 16, 6845. https://doi.org/10.3390/su16166845
Kolapo A, Tijani AA, Olawuyi SO. Exploring the Role of Farmer-Led Jumpstarting Project on Adoption of Orange-Fleshed Sweet Potato in Nigeria: Implications on Productivity and Poverty. Sustainability. 2024; 16(16):6845. https://doi.org/10.3390/su16166845
Chicago/Turabian StyleKolapo, Adetomiwa, Akeem Abiade Tijani, and Seyi Olalekan Olawuyi. 2024. "Exploring the Role of Farmer-Led Jumpstarting Project on Adoption of Orange-Fleshed Sweet Potato in Nigeria: Implications on Productivity and Poverty" Sustainability 16, no. 16: 6845. https://doi.org/10.3390/su16166845
APA StyleKolapo, A., Tijani, A. A., & Olawuyi, S. O. (2024). Exploring the Role of Farmer-Led Jumpstarting Project on Adoption of Orange-Fleshed Sweet Potato in Nigeria: Implications on Productivity and Poverty. Sustainability, 16(16), 6845. https://doi.org/10.3390/su16166845