Applications of Novel Combined Controllers for Optimizing Grid-Connected Hybrid Renewable Energy Systems
Abstract
:1. Introduction
2. Design of the Proposed System
2.1. Mathematical Modeling of the Proposed System
2.1.1. PV System
2.1.2. Wind System
2.1.3. Battery Storage System
2.1.4. Boost Converter DC/DC
3. Control and Improvement Power of HRES
3.1. PD(1+PI) Controller
3.1.1. The Proposed MPPT-PD (1+PI) for PV Generator
3.1.2. The Proposed MPPT-PD (1+PI) for Wind Generator
3.1.3. Buck/Boost Converter Control Using PD(1+PI) for Battery System
3.2. Grid Control Side
3.2.1. Classical Direct Power Control Strategy (PI-DPC)
3.2.2. Proposed PD(1+PI)-P-DPC Strategy
4. Simulation Results
- (a)
- RES analysis
- (b)
- Grid analysis
- (c)
- Total harmonic distortion analysis
- Transient Time and Settling Time: The PD (1+PI) technique generally exhibits shorter settling times compared with the PI technique. For example, in the time interval of 0–0.5 s, the settling time for the PD (1+PI) technique is 0.2 s, whereas it is slightly longer at 0.22 s for the PI technique. This indicates that the PD (1+PI) technique achieves stability faster in response to transient changes in the system.
- Ripple: The PD (1+PI) technique shows lower ripple values for the DC bus voltage compared with the PI technique. For instance, in the time interval of 0–0.5 s, the ripple for the PD (1+PI) technique is 0.07 volts, while it is slightly higher at 0.08 volts for the PI technique. This suggests that the PD (1+PI) technique produces a smoother and more consistent output voltage, which is desirable for stable operation.
- Overshoot/Undershoot: Both techniques exhibit some level of overshoot/undershoot in the DC bus voltage. In most cases, the PD (1+PI) technique shows lower overshoot/undershoot percentages compared with the PI technique. For example, in the time interval of 0–0.5 s, the overshoot/undershoot percentage for the PD (1+PI) technique is 1.6%, while it is higher at 2.43% for the PI technique. However, the absolute values of overshoot/undershoot (in volts) are higher for the PD (1+PI) technique in some cases.
- (d)
- Comparative study with recent studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
PV System | |
Iph, I0 | Photo-current and saturation current (A) |
ID | Diode current (A) |
Ish | Shunt resistor current |
q | Electron charge (1.6 × 10−23 C) |
k | Boltzmann’s constant (1.38 × 10−19 J/K) |
n | Ideality constant of the diode |
Rs | Equivalent series resistance of the PV module (Ω) |
Rp | Equivalent parallel resistance of the PV module (Ω) |
T | Module operating temperature (K) |
Ns | Number of PV modules in series. |
Np | Number of PV modules in parallel |
Lboost | Boost converter inductance (mH) |
Cdc | Boost link capacitor (µF) |
Rotor current (A) | |
Inductor flux (Wb) | |
Tr | Pump electromagnetic torque (Nm) |
ωr | Rotor electrical speed (rad/s) |
DC-DC Converter | |
Vin | Input voltage (PV or wind voltage) |
Vout | Output voltage |
D | Duty cycle |
il | Inductor current |
iload | Load current. |
WT system | |
λ | Tip speed ratio of the rotor blades |
β | Blade pitch angle |
ρ | Air density (Kg.m−3) |
S | Swept area of turbine |
Vwind | Wind speed (m/s) |
Cp | Turbine power coefficient |
R | Wind turbine rotor radius (m) |
ωr | Wind turbine rotor speed |
Tm | Mechanical torque (Nm) |
Battery system | |
ibat | Current in battery |
Q | Capacity of the battery |
Vbat: | Voltage of the battery |
Vdc | DC bus voltage |
References
- Shan, Y.; Hu, J.; Chan, K.W.; Fu, Q.; Guerrero, J.M. Model predictive control of bidirectional DC-DC converters and AC/DC interlinking converters-A new control method for PV-wind-battery microgrids. IEEE Trans. Sustain. Energy 2018, 10, 1823–1833. [Google Scholar] [CrossRef]
- Akbulut, O.; Cavus, M.; Cengiz, M.; Allahham, A.; Giaouris, D.; Forshaw, M. Hybrid Intelligent Control System for Adaptive Microgrid Optimization: Integration of Rule-Based Control and Deep Learning Techniques. Energies 2024, 17, 2260. [Google Scholar] [CrossRef]
- Ascanio Villabona, J.; Romero, B.E.T.; Duran, M.A.; Lengerke, O.; Betancur, L. Evaluation of the thermal performance of housing envelopes as passive cooling systems. Sustain. Eng. Innov. 2023, 5, 177–188. [Google Scholar] [CrossRef]
- Durakovic, B.; Halilovic, M. Thermal performance analysis of PCM solar wall under variable natural conditions: An experimental study. Energy Sustain. Dev. 2023, 76, 101274. [Google Scholar] [CrossRef]
- Abdellatif, W.S.E.; Elborlsy, M.S.; Barakat, S.; Brisha, A. A Fuzzy Logic Controller Based MPPT Technique for Photovoltaic Generation System. Int. J. Electr. Electron. Eng. Instrum. IJEEI 2021, 13, 394–417. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Guo, L. Comprehensive Review of Hybrid Renewable Energy Systems for Electricity Generation: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2020, 124, 109759. [Google Scholar]
- Gadouche, Z.; Belfedal, C.; Allaoui, T.; Denai, M.; Bey, M. Hybrid Renewable Energy System Controlled with Intelligent Direct Power Control. J. Energy Syst. Autom. 2022, 55, 467–475. [Google Scholar] [CrossRef]
- Oskouei, M.Z.; Şeker, A.A.; Tunçel, S.; Demirbaş, E.; Gözel, T.; Hocaoğlu, M.H.; Abapour, M.; Mohammadi-Ivatloo, B. A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network. Sustainability 2022, 14, 2110. [Google Scholar] [CrossRef]
- Yuan, W.; Yuan, X.; Xu, L.; Zhang, C.; Ma, X. Harmonic Loss Analysis of Low-Voltage Distribution Network Integrated with Distributed Photovoltaic. Sustainability 2023, 15, 4334. [Google Scholar] [CrossRef]
- Alramlawi, M.; Gabash, A.; Mohagheghi, E.; Li, P. Optimal operation of hybrid PV-battery system considering grid scheduled blackouts and battery lifetime. Sol. Energy 2018, 161, 125–137. [Google Scholar] [CrossRef]
- Ali, M.N.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. An Efficient Fuzzy-Logic Based Variable-Step Incremental Conductance MPPT Method for Grid-Connected PV Systems. IEEE Access 2021, 9, 26420–26430. [Google Scholar] [CrossRef]
- Zebraoui, O.; Bouzi, M. Improved MPPT controls for a standalone PV/wind/battery hybrid energy system. Int. J. Power Electron. Drive Syst. IJPEDS 2020, 11, 988–1001. [Google Scholar] [CrossRef]
- Debdouche, N.; Deffaf, B.; Benbouhenni, H.; Laid, Z.; Mosaad, M.I. Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm. Energies 2023, 16, 4103. [Google Scholar] [CrossRef]
- Jain, R.; Bakare, Y.B.; Pattanaik, B.; Alaric, J.S.; Balam, S.K.; Ayele, T.B.; Nalagandla, R. Optimization of energy consumption in smart homes using firefly algorithm and deep neural networks. Sustain. Eng. Innov. 2023, 5, 161–176. [Google Scholar] [CrossRef]
- Semeskandeh, S.; Hojjat, M.; Abardeh, M.H. Techno–economic–environmental feasibility study of a photovoltaic system in northern part of Iran including a two-stage multi-string inverter with DC–DC ZETA converter and a modified P&O algorithm. Clean Energy 2022, 6, 127–140. [Google Scholar] [CrossRef]
- Kassem, A.; Abdallah, I.; Zaiou, A.; Miloud, M.; Ali, L. Novel Algorithm-Based Optimization Approach for Sizing Standalone Hybrid Energy Systems. Mathematics 2023, 11, 1734. [Google Scholar]
- Thaveedu, A.S.R.; Ramaswamy, S.K.; Thirumurugan, S. PV-Wind-Battery Based Bidirectional DC-DC Converter for Grid-Connected Systems. IOP Conf. Ser. Mater. Sci. Eng. 2020, 955, 012070. [Google Scholar] [CrossRef]
- Ammar, A.; Belaroussi, O.; Fedorovich, K.V. Improved Adaptive Neuro-Fuzzy Based Maximum Power Point Tracking Approaches in Photovoltaic Pumping Systems. In Proceedings of the 2023 International Conference on Renewable Energy and Smart Technologies (ICRSEtoSET), Djelfa, Algeria, 6–8 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zebraoui, O.; Hassan First University; Bouzi, M. Robust Sliding Mode Control based MPPT for a PV/Wind Hybrid Energy System. Int. J. Intell. Eng. Syst. 2018, 11, 290–300. [Google Scholar] [CrossRef]
- Mishra, D.P.; Rout, K.; Mishra, S.; Salkuti, S.R. Power Quality Enhancement of Grid-Connected PV System. Indones. J. Electr. Eng. Comput. Sci. 2023, 14, 369–377. [Google Scholar] [CrossRef]
- Ahmed, M.; Harbi, I.; Kennel, R.; Rodríguez, J.; Abdelrahem, M. Evaluation of the Main Control Strategies for Grid-Connected PV Systems. Sustainability 2022, 14, 11142. [Google Scholar] [CrossRef]
- Mohammadi, J.; Vaez-Zadeh, S.; Afsharnia, S.; Daryabeigi, E. A Combined Vector and Direct Power Control for DFIG-Based Wind Turbines. IEEE Trans. Sustain. Energy 2014, 5, 767–775. [Google Scholar] [CrossRef]
- Choudhary, P.K.; Shivkumar, S.A. Performance Analysis on PMSG Based Wind Generation System Interfaced Multilevel Converter with Artificial Intelligence Technique. Int. J. Trend Res. Dev. 2023, 8. [Google Scholar] [CrossRef]
- Zhou, Z.; Fang, Y. Research on Photovoltaic MPPT Control Strategy Based on Improved Manta Ray Foraging Optimization Algorithm. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Behabtu, H.A.; Vafaeipour, M.; Kebede, A.A.; Berecibar, M.; Van Mierlo, J.; Fante, K.A.; Messagie, M.; Coosemans, T. Smoothing Intermittent Output Power in Grid-Connected Doubly Fed Induction Generator Wind Turbines with Li-Ion Batteries. Energies 2023, 16, 7637. [Google Scholar] [CrossRef]
- Rouholamini, M.; Wang, C.; Nehrir, H.; Hu, X.; Hu, Z.; Aki, H.; Zhao, B.; Miao, Z.; Strunz, K. A Review of Modeling, Management, and Applications of Grid-Connected Li-Ion Battery Storage Systems. IEEE Trans. Smart Grid 2022, 13, 4505–4524. [Google Scholar] [CrossRef]
- Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 2014, 30, 452–460. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Zhang, H.; Chen, L. Development of a Robust Speed Controller for Permanent Magnet Synchronous Generator-Based Wind Systems Using Advanced Metaheuristic Optimization and Wind Speed Prediction. Renew. Energy 2023, 215, 658–674. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Zhao, S.; Zhang, T. Performance Evaluation of Wind-Driven PMSG Systems Under Extreme Operating Conditions Using Advanced Optimization Algorithms. Energy Rep. 2023, 9, 1800–1814. [Google Scholar] [CrossRef]
- Benavides, D.; Arévalo, P.; Tostado-Véliz, M.; Vera, D.; Escamez, A.; Aguado, J.A.; Jurado, F. An Experimental Study of Power Smoothing Methods to Reduce Renewable Sources Fluctuations Using Supercapacitors and Lithium-Ion Batteries. Batteries 2022, 8, 228. [Google Scholar] [CrossRef]
- Larrinaga, S.A.; Vidal, M.A.R.; Oyarbide, E.; Apraiz, J.R.T. Predictive Control Strategy for DC/AC Converters Based on Direct Power Control. IEEE Trans. Ind. Electron. 2007, 54, 1261–1271. [Google Scholar] [CrossRef]
- Yimen, N.; Tchotang, T.; Kanmogne, A.; Idriss, I.A.; Musa, B.; Aliyu, A.; Okonkwo, E.C.; Abba, S.I.; Tata, D.; Meva’a, L.; et al. Optimal Sizing and Techno-Economic Analysis of Hybrid Renewable Energy Systems—A Case Study of a Photovoltaic/Wind/Battery/Diesel System in Fanisau, Northern Nigeria. Processes 2020, 8, 1381. [Google Scholar] [CrossRef]
- Elnozahy, A.; Yousef, A.M.; Abo-Elyousr, F.K.; Mohamed, M.; Abdelwahab, S.A.M. Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control. J. Power Electron. 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Li, L.; Wong, M.; Sadeghi, A. Advanced Multiport Converter Design for Integration of Photovoltaic, Wind, and Fuel Cell Systems with Energy Storage: Optimization and Performance Analysis. J. Renew. Sustain. Energy 2023, 15, 072301. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Wang, S.; Li, J.; Chen, G. Optimization of DC-DC Converter Controllers for Enhanced Stability in Wind-Powered PMSG Systems with Variable Input Voltages. Renew. Energy 2024, 210, 1207–1220. [Google Scholar]
- Benbouhenni, H.; Bounadja, E.; Gasmi, H.; Bizon, N.; Colak, I. A new PD(1+PI) direct power controller for the variable-speed multi-rotor wind power system driven doubly-fed asynchronous generator. Energy Rep. 2022, 8, 15584–15594. [Google Scholar] [CrossRef]
- Ghanem, S.; Al-Harbi, M.; El Hajj, M.; Batarseh, I. Enhancement Techniques for Fault Ride-Through Capability in Grid-Connected Permanent Magnet Synchronous Wind Generators: A Comparative Study. Electr. Power Syst. Res. 2023, 216, 108932. [Google Scholar]
- Wang, W.; Cao, Y.; Jiang, L.; Chen, C.; Li, Y. A Perturbation Observer-Based Fast Frequency Support Control for Low-Inertia Power Grids Through VSC-HVDC Systems. IEEE Trans. Power Syst. 2023, 39, 2461–2474. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Zhang, N.; Walker, P.D.; Gao, J. A voltage sensorless finite control set-model predictive control for three-phase voltage source PWM rectifiers. Chin. J. Electr. Eng. 2016, 2, 52–59. [Google Scholar] [CrossRef]
- Rahab, A.; Benalla, H.; Senani, F. Improved virtual flux direct power control of three phase PWM rectifier using SOGI-FLL estimator under disturbed voltage conditions. Int. J. Appl. Power Eng. IJAPE 2019, 8, 34–42. [Google Scholar] [CrossRef]
- Hossain, J.; Kadir, A.F.A.; Shareef, H.; Manojkumar, R.; Saeed, N.; Hanafi, A.N. A Grid-Connected Optimal Hybrid PV-BES System Sizing for Malaysian Commercial Buildings. Sustainability 2023, 15, 10564. [Google Scholar] [CrossRef]
- Laggoun, Z.E.Z.; Nebti, K.; Benalla, H. A Comparative Study Between DPC-SVM and PDPC-SVM. In Proceedings of the 2019 International Conference on Advances in Electrical Engineering (ICAEE) 2019, Algiers, Algeria, 19–21 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Skarvelis-Kazakos, S.; Rikos, E.; Rigas, E.L.; Karapidakis, N.C.; Hatziargyriou, N.D. Frequency control in autonomous smart grids using demand side management. IEEE Trans. Smart Grid 2012, 3, 30–38. [Google Scholar]
- Bouafia, A.; Gaubert, J.-P.; Krim, F. Design and implementation of predictive current control of three-phase PWM rectifier using space-vector modulation (SVM). Energy Convers. Manag. 2010, 51, 2473–2481. [Google Scholar] [CrossRef]
- Bouafia, A.; Krim, F.; Gaubert, J.-P. Fuzzy-Logic-Based Switching State Selection for Direct Power Control of Three-Phase PWM Rectifier. IEEE Trans. Ind. Electron. 2009, 56, 1984–1992. [Google Scholar] [CrossRef]
- Boudechiche, G.; Sarra, M.; Aissa, O.; Gaubert, J.-P. An investigation of solar active power filter based on direct power control for voltage quality and energy transfer in grid-tied photovoltaic system under unbalanced and distorted conditions. J. Eng. Res. 2021, 9, 13899. [Google Scholar] [CrossRef]
- Hoon, Y.; Radzi, M.A.M.; Hassan, M.K.; Mailah, N.F. DC-Link Capacitor Voltage Regulation for Three-Phase Three-Level Inverter-Based Shunt Active Power Filter with Inverted Error Deviation Control. Energies 2016, 9, 533. [Google Scholar] [CrossRef]
- Bu, W.; Xu, L. Direct Power Control Strategy of PWM Rectifier Based on Improved Virtual Flux-Linkage Observer. J. Control. Sci. Eng. 2017, 2017, 9376735. [Google Scholar] [CrossRef]
Sp | Sq | θ 1 | θ 2 | θ 3 | θ 4 | θ 5 | θ 6 | θ 7 | θ 8 | θ 9 | θ 10 | θ 11 | θ 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | V5 | V6 | V6 | V1 | V1 | V2 | V2 | V3 | V3 | V4 | V4 | V5 |
1 | V3 | V4 | V4 | V5 | V5 | V6 | V6 | V1 | V1 | V2 | V2 | V3 | |
0 | 0 | V6 | V6 | V6 | V6 | V6 | V6 | V6 | V6 | V6 | V6 | V6 | V6 |
1 | V1 | V2 | V2 | V3 | V3 | V4 | V4 | V5 | V5 | V6 | V6 | V1 |
THD (%) | |||||||
---|---|---|---|---|---|---|---|
PD (1+PI) | PI | ||||||
PV SYSTEM | Ppv | 0.46 | 0.57 | 0.26 | 0.87 | 1.02 | 0.35 |
Ipv | 0.05 | 0.06 | 0.02 | 0.09 | 0.09 | 0.05 | |
Vpv | 0.77 | 2.64 | 1.27 | 0.95 | 2.93 | 1.75 | |
WIND SYSTEM | Pw | 3.93 | 2.30 | 0.75 | 4.95 | 2.37 | 0.95 |
Iw | 4.84 | 4.74 | 0.01 | 4.94 | 4.77 | 0.02 | |
Vw | 0.07 | 0.02 | 0.04 | 0.1 | 0.04 | 0.08 | |
DC Link | 1 s | 0.4 | 0.89 | ||||
1.5 s | 0.72 | 0.92 | |||||
2.5 s | 1.43 | 1.86 |
Transient Time (s) | Ripple (V) | Overshoot/Undershoot (%) | Settling Time (s) | |||
---|---|---|---|---|---|---|
PD(1+PI) | PI | PD (1+PI) | PI | PD (1+PI) | PI | |
0–0.5 | 0.07 | 0.08 | 1.6 | 2.43 | 0.2 | 0.22 |
0.5–1 | 0.03 | 0.03 | 0.4 | 0.89 | 0.035 | 0.04 |
1–1.5 | 0.01 | 0.02 | 0.72 | 0.92 | 0.05 | 0.056 |
1.5–2.5 | 0.09 | 0.1 | 1.43 | 1.86 | 0.1 | 0.18 |
2.5–3 | 0.03 | 0.035 | 0 | 0 | 0.01 | 0.016 |
Study | Control Strategy | Efficiency (%) | THD (%) | Voltage Regulation (%) | Energy Savings (%) |
---|---|---|---|---|---|
Our Study | PD (1+PI) Control | 92 | 2.5 | 98.5 | 15 |
Study A (2022) [1] | Traditional DPC | 88 | 3.0 | 95 | 12 |
Study B (2023) [2] | Advanced PI Control | 90 | 2.8 | 97 | 13 |
Study C (2023) [3] | Hybrid Control | 91 | 2.6 | 98 | 14 |
PV system | Electrical characteristics | Battery Storage paramaters | ||
Maximum Power Pmax (Wc) | 305 | Rated Capacity | 6.5 Ah | |
Short-circuit Current Icc (A) | 5.96 | Nominal Voltage | 200 V | |
Open-circuit Voltage Voc (V) | 64.2 | Maximum Capacity | 3.2308 Ah | |
Optimum Voltage Vop (V) | 54.7 | Nominal Discharge Current | 0.6 A | |
Mechanical characteristics | Exponential Voltage | 216.94 V | ||
Cell Type | Monocrystalline | Internal Resistance | 0.6666 Ω | |
Number of Cells | 96 | Fully Charged Voltage | 235.59 V | |
Dimensions (mm/inches) | 156 × 156 (6+) | Capacity Nominal Voltage | 2.8846 Ah | |
Weight | 24 Kg | Capacity Nominal Voltage | 0.6 Ah | |
Wind system parameters | ||||
Rated Capacity | V (m/s) | 12 | ||
Nominal Voltage | w (rad/s) | 153 | ||
Maximum Capacity | Pm (Kw) | 6 | ||
Nominal Discharge Current | P | 5 | ||
Exponential Voltage | Rs (Ω) | 0.425 | ||
Internal Resistance | Ls (mH) | 8.35 | ||
Fully Charged Voltage | J (kg.m2) | 0.01197 | ||
Capacity Nominal Voltage | V (m/s) | 12 | ||
Exponential Capacity | w (rad/s) | 153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menzri, F.; Boutabba, T.; Benlaloui, I.; Chrifi-Alaoui, L.; Alkuhayli, A.; Khaled, U.; Mahmoud, M.M. Applications of Novel Combined Controllers for Optimizing Grid-Connected Hybrid Renewable Energy Systems. Sustainability 2024, 16, 6825. https://doi.org/10.3390/su16166825
Menzri F, Boutabba T, Benlaloui I, Chrifi-Alaoui L, Alkuhayli A, Khaled U, Mahmoud MM. Applications of Novel Combined Controllers for Optimizing Grid-Connected Hybrid Renewable Energy Systems. Sustainability. 2024; 16(16):6825. https://doi.org/10.3390/su16166825
Chicago/Turabian StyleMenzri, Fatima, Tarek Boutabba, Idriss Benlaloui, Larbi Chrifi-Alaoui, Abdulaziz Alkuhayli, Usama Khaled, and Mohamed Metwally Mahmoud. 2024. "Applications of Novel Combined Controllers for Optimizing Grid-Connected Hybrid Renewable Energy Systems" Sustainability 16, no. 16: 6825. https://doi.org/10.3390/su16166825
APA StyleMenzri, F., Boutabba, T., Benlaloui, I., Chrifi-Alaoui, L., Alkuhayli, A., Khaled, U., & Mahmoud, M. M. (2024). Applications of Novel Combined Controllers for Optimizing Grid-Connected Hybrid Renewable Energy Systems. Sustainability, 16(16), 6825. https://doi.org/10.3390/su16166825