Distribution of Heavy Metals in the Surrounding Mining Region of Kizhnica in Kosovo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Preparations
Two-stage method for microwave-assisted acid digestion [7]: | ||||||
Stage | Reagents | Power, W Level (%) | Ramp Time, min | Max. Pressure, psi | Temperature, °C | Hold Time, min |
1 | 3 mL HNO3 + 9 mL HCl + 3 mL HF | 1200 (100) | 15 | 800 | 210 | 15 |
2 | 25 mL 4% H3BO3 | 1200 (100) | 15 | 800 | 170 | 10 |
2.3. Chemical Analysis
2.4. Certified Reference Materials
2.5. Mineralogical Analysis
2.6. Statistical Analysis
2.7. Determination of Contamination Factor
2.8. Determination of Pollution Load Index
2.9. Determination of Geoaccumulation Index
3. Results and Discussion
3.1. Chemical Analyses
3.2. Mineralogical Characterization
3.3. Statistical Analyses
3.4. Environmental Implication
3.5. Impact on Sustainability
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shabani, D.; Murtezani, A.; Tahirbegolli, B.; Bozalija, A.; Alili-Idrizi, E.; Ibraimi, Z. Blood Lead Level of Children and its Trend in Mitrovica, Kosova. J. Child Sci. 2019, 9, e84–e89. [Google Scholar] [CrossRef]
- Zabërgja Ferati, F.; Kerolli Mustafa, M.; Abazaj, F. Effects of Metal Toxicity on the Growth and Photosynthetic Pigment Contents of Salix purpurea in Mitrovica, Kosovo. Kem. Ind. 2022, 71, 123–130. [Google Scholar] [CrossRef]
- Korça, B.; Demaku, S. Evaluating the Presence of Heavy Metals in the Vicinity of an Industrial Complex. Pol. J. Environ. Stud. 2020, 29, 3643–3649. [Google Scholar] [CrossRef] [PubMed]
- Ferati, F.; Kerolli-Mustafa, M.; Kraja-Ylli, A. Assessment of heavy metal contamina-tion in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environ. Monit. Assess. 2015, 187, 338. [Google Scholar] [CrossRef] [PubMed]
- Borgna, L.; Di Lella, L.A.; Nannoni, F.; Pisani, A.; Pizzetti, E.; Protano, G.; Riccobono, F.; Rossi, S. The high contents of lead in soils of northern Kosovo. J. Geochem. Explor. 2009, 101, 137–146. [Google Scholar] [CrossRef]
- Kerolli Mustafa, M.; Fajković, H.; Rončević, S.; Ćurković, L. Assessment of metals risks from different depths of jarosite tailing waste of Trepça Zinc Industry, Kosovo based on BCR procedure. J. Geochem. Explor. 2015, 148, 161–168. [Google Scholar] [CrossRef]
- Kerolli Mustafa, M. Characterization and Environmental Impact Assessment of Jarosite Process Tailing Waste. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2014. Available online: https://www.croris.hr/crosbi/publikacija/ocjenski-rad/384970 (accessed on 4 May 2024).
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L.; Fan, Y. Assessment of Soil-Heavy Metal Pollution and the Health Risks in a Mining Area from Southern Shaanxi Province, China. Toxics 2022, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhu, H.; Liu, J.; Zhang, Y.; Wu, S.; Xiong, J.; Wang, F. Risk Assessment of Heavy Metals in Soils from Four Different Industrial Plants in a Medium-Sized City in North China. Toxics 2023, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Šajn, R.; Aliu, M.; Stafilov, T.; Alijagić, J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J. Geochem. Explor. 2013, 134, 1–16. [Google Scholar] [CrossRef]
- Prathumratana, L.; Kim, R.; Kim, K.-W. Lead contamination of the mining and smelting district in Mitrovica, Kosovo. Environ. Geochem. Health 2020, 42, 1033–1044. [Google Scholar] [CrossRef]
- Musliu, A.; Shallari, S.; Hajdini, S.; Ukaj, S.; Sinanaj, B. Soil Pollution in Mitrovica Town Surroundings as a Consequence Of Mining and Industrial Processes in Trepca Mine. J. Int. Environ. Appl. Sci. 2012, 7, 511–514. [Google Scholar]
- Brewer, P.A.; Bird, G.; Macklin, M.G. Isotopic provenancing of Pb in Mitrovica, northern Kosovo: Source identification of chronic Pb enrichment in soils, house dust and scalp hair. Appl. Geochem. 2016, 64, 164–175. [Google Scholar] [CrossRef]
- Zabergja-Ferati, F.; Kerolli Mustafa, M.; Abazaj, F. Heavy Metal Contamination and Accumulation in Soil and Plant from Mining Area of Mitrovica, Kosovo. Bull. Environ. Contam. Toxicol. 2021, 107, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Marković, S.; Vučković, B.; Nikolić-Bujanović, L.; Mrazovac Kurilić, S.; Todorović, N.; Nikolov, J.; Jokić, A.; Đokić, B. Heavy metals and radon content in spring water of Kosovo. Sci. Rep. 2020, 10, 10359. [Google Scholar] [CrossRef] [PubMed]
- Sadiku, M.; Kadriu, S.; Kelmendi, M.; Inishi, D. Research into ecological status and the degree of heavy metal concentration in the waters of the Drenica river (Kosovo). Sci. Bull. Natl. Min. Univ. 2021, 4, 89–95. [Google Scholar] [CrossRef]
- Beluli, V.M.; Mulliqi, I. Heavy metals as main polluting factors in the Mirusha, Stanishor and Morava rivers in the Municipality of Gjilan, Kosovo. J. Turk. Chem. Soc. A Chem. 2019, 6, 89–96. [Google Scholar] [CrossRef]
- Aliu, M.; Sajn, R.; Stafilov, T. Distribution of Ag, Au, Bi, Cu, and Mo in surface soils. Case study: Mitrovica region, Republic of Kosovo. Chem. Ecol. 2023, 39, 970–990. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Li, Y.; Li, H.; Wang, W.; Ge, Q. Estimation of lead and zinc emissions from mineral exploitation based on characteristics of lead/zinc deposits in China. Trans. Nonferrous Met. Soc. China 2011, 21, 2513–2519. [Google Scholar] [CrossRef]
- Kristensen, L.J.; Taylor, P.A.; Flegal, R. An odyssey of environmental pollution: The rise, fall and remobilisation of industrial lead in Australia. Appl. Geochem. 2017, 83, 3–13. [Google Scholar] [CrossRef]
- Cappuyns, V.; Swennen, R.; Vandamme, A.; Niclaes, M. Environmental impact of the former Pb–Zn mining and smelting in East Belgium. J. Geochem. Explor. 2006, 88, 6–9. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Li, X.; Tang, Y.; Wang, X.; Song, X.; Yang, J. Heavy Metals in Soil around a Typical Antimony Mine Area of China: Pollution Characteristics, Land Cover Influence and Source Identification. Int. J. Environ. Res. Public Health 2023, 20, 2177. [Google Scholar] [CrossRef]
- Pouresmaieli, M.; Ataei, M.; Forouzandeh, P.; Azizollahi, P.; Mahmoudifard, M. Recent progress on sustainable phytoremediation of heavy metals from soil. J. Environ. Chem. Eng. 2022, 10, 108482. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Amos, R.T.; Blowes, D.W.; Bailey, B.L.; Sego, D.C.; Smith, L.; Ritchie, A.I.M. Waste-rock hydrogeology and geochemistry. Appl. Geochem. 2015, 57, 140–156. [Google Scholar] [CrossRef]
- Tamayo, S.S.; Esquivel, E.M. Industrial development and its impact on the environment. Epidemiología 2014, 52, 357–363. [Google Scholar]
- Vriens, B.; Plante, B.; Seigneur, N.; Jamieson, H. Mine Waste Rock: Insights for Sustainable Hydrogeochemical Management. Minerals 2020, 10, 728. [Google Scholar] [CrossRef]
- Escobar, A.G.; Relvas, J.M.R.S.; Pinto, Á.M.M.; Oliveira, M. Physical–Chemical Characterization of the Neves Corvo Extractive Mine Residues: A Perspective Towards Future Mining and Reprocessing of Sulfidic Tailings. J. Sustain. Metall. 2021, 7, 1483–1505. [Google Scholar] [CrossRef]
- Mascaro, I.; Benvenuti, M.; Corsini, F.; Costagliola, P.; Lattanzi, P.; Parrini, P.; Tanelli, G. Mine wastes at the polymetallic deposit of Fenice Capanne (southern Tuscany, Italy). Mineralogy, geochemistry, and environmental impact. Environ. Geol. 2001, 41, 417–429. [Google Scholar] [CrossRef]
- Kontopoulos, A.; Komnitsas, K.; Xenidis, A.; Papassiopi, N. Environmental characterisation of the sulphidic tailings in Lavrion. Miner. Eng. 1995, 8, 1209–1219. [Google Scholar] [CrossRef]
- Bussière, B. Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can. Geotech. J. 2007, 44, 1019–1052. [Google Scholar] [CrossRef]
- Frese, S.D.; Klitgaard, R.; Pedersen, E.K. Environmental Management in Kosovo-Heavy Metal emission from Trepca. In TekSam Report; Institut for Miljo, Teknologi og Samfund: Roskilde, Denmark, 2004; pp. 1–144. [Google Scholar]
- Korça, B.; Demaku, S. Assessment of Contamination with Heavy Metals in Environment: Water, STERILE, Sludge and Soil around Kishnica Landfill, Kosovo. Pol. J. Environ. Stud. 2021, 30, 671–677. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Cerdà, A. Heavy Metals in the Environment; Elsevier: Chennai, India, 2021. [Google Scholar] [CrossRef]
- Kim, H.-T.; Lee, T.G. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd). Chemosphere 2017, 178, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Bolanča, T.; Šipušić, J.; Ukić, Š.; Šiljeg, M.; Ujević Bošnjak, M. Optimization of arsenic sludge immobilization process in cement—Natural zeolite—Lime blends using artificial neural networks and multi objective criteria functions. Fresenius Environ. Bull. 2012, 21, 76–83. [Google Scholar]
- Toth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Mamat, A.; Zhang, Z.; Mamat, Z.; Zhang, F.; Yinguang, C. Pollution assessment and health risk evaluation of eight (metalloid) heavy metals in farmland soil of 146 cities in China. Environ. Geochem. Health 2020, 42, 3949–3963. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Administrative Instruction of GRK No.11/2018 on Limited Values of Emissions of Polluted Materials into Soil. Available online: https://kryeministri.rks-gov.net/wp-content/uploads/2022/07/UDHEZIM-ADMINISTRATIV-QRK-Nr.11.-2018-PER-VLERAT-KUFITARE-TE-EMISIONEVE-TE-MATERIEVE-NDOTESE-NE-TOKE-1.pdf (accessed on 15 July 2024).
- European Union. Heavy Metals in Wastes, European Commission on Environment. 2002. Available online: http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf (accessed on 20 April 2023).
- Müller, G. Index of geoaccumulation in the sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Liakopoulos, A.; Lemiere, B.; Michael, K.; Crouzet, C.; Laperche, V.; Romaidis, I.; Drougas, I.; Lassin, A. Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece). Waste Manag. Res. 2020, 28, 996–1009. [Google Scholar] [CrossRef]
- Tomović, M.; Dervišević, I.; Manojlović, D.; Đokić, J.; Janačković, M. Pollution Distribution from Korlace Mine Pit into the Environment. Pol. J. Environ. Stud. 2023, 32, 807–820. [Google Scholar] [CrossRef]
- Min, X.; Xie, X.; Chai, L.; Liang, Y.; Li, M.; Ke, Y. Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Trans. Nonferrous Met. Soc. China 2013, 23, 208–218. [Google Scholar] [CrossRef]
- Tomlinson, D.C.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Galjak, J.; Đokić, J.; Milentijević, G.; Dervišević, I.; Jović, S. Characterization of the tailing waste deposit “Gornje Polje”. Opt.—Int. J. Light Electron Opt. 2020, 215, 164684. [Google Scholar] [CrossRef]
- Sotiria, G.; Papadimou, O.D.K.; Chartodiplomenou, M.A.; Golia, E.E. Urban Soil Pollution by Heavy Metals: Effect of the Lockdown during the Period of COVID-19 on Pollutant Levels over a Five-Year Study. Soil Syst. 2023, 7, 28. [Google Scholar] [CrossRef]
- Statistical Yearbook of the Republic of Kosovo. 2021. Available online: https://askapi.rks-gov.net/Custom/4bd04f76-1e2b-444c-8dc1-86d3edf20225.pdf (accessed on 15 July 2024).
- European Commission, Eurostat. Eurostat Regional Yearbook: 2023 Edition; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
CF Value | Class | Soil Description |
---|---|---|
CF < 0.10 | I | very slight contamination |
0.10 ≤ CF < 0.25 | II | slight contamination |
0.26 ≤ CF < 0.50 | III | moderate contamination |
0.51 ≤ CF < 0.75 | IV | severe contamination |
0.76 ≤ CF < 1.00 | V | very severe contamination |
1.10 ≤ CF < 2.00 | VI | slight pollution |
2.10 ≤ CF < 4.00 | VII | moderate pollution |
4.10 ≤ CF < 8.00 | VIII | severe pollution |
8.10 ≤ CF < 16.0 | IX | very severe pollution |
CF < 16.0 | X | excessive pollution |
PLI Values | Class | Designation of Soil Quality |
---|---|---|
≤0 | class I | no pollution |
0–1 | class II | low degree of pollution |
1–2 | class III | moderate degree of pollution |
2–4 | class IV | high degree of pollution |
4–8 | class V | very high degree of pollution |
8–16 | class VI | extremely high degree of pollution |
Igeo Values | Class | Designation of Soil Quality |
---|---|---|
≤0 | I | uncontaminated |
0–1 | II | uncontaminated to moderately contaminated |
1–2 | III | moderately contaminated |
2–3 | IV | moderately to strongly contaminate |
3–4 | V | strongly contaminated |
4–5 | VI | strongly to extremely contaminate |
>5 | VII | extremely contaminated |
Samples | pH | Conductivity, µS cm–1 | C, wt.% | H, wt.% | N, wt.% |
---|---|---|---|---|---|
S1 | 6.73 | 361 | 1.29 | 7.39 | 0.15 |
S2 | 3.22 | 2280 | 1.25 | 3.58 | 0.14 |
S3 | 2.35 | 3160 | 2.44 | 3.24 | 0.21 |
S4 | 2.68 | 2620 | 1.68 | 2.04 | 0.18 |
S5 | 6.88 | 13.5 | 1.89 | 3.51 | 0.13 |
S6 | 6.78 | 530 | 1.05 | 1.68 | 0.11 |
S7 | 7.68 | 72.4 | 1.98 | 1.06 | 0.23 |
S8 | 6.49 | 2060 | 2.71 | 1.98 | 0.18 |
S9 | 6.5 | 125 | 1.67 | 1.67 | 0.22 |
S10 | 6.82 | 25.1 | 0.94 | 0.81 | 0.16 |
Samples | Concentration (mg kg–1) | |||||||
---|---|---|---|---|---|---|---|---|
Pb | Zn | Cu | As | Cd | Ni | Mn | Sb | |
S1 | 2304.2 | 413.1 | 127.3 | 4260.1 | 0.1 | 37.9 | 317.0 | 125.9 |
S2 | 1623.4 | 687.3 | 86.7 | 646.8 | 2.3 | 216.3 | 5171.1 | 27.0 |
S3 | 1253.1 | 405.6 | 72.9 | 600.7 | 0.2 | 239.2 | 3397.0 | 23.7 |
S4 | 1714.1 | 1771.9 | 128.1 | 361.3 | 11.3 | 240.4 | 4173.2 | 18.8 |
S5 | 67.2 | 95.3 | 82.7 | 56.8 | 0.1 | 82.7 | 1905.9 | 2.9 |
S6 | 565.3 | 244.8 | 126.0 | 169.2 | 1.0 | 288.4 | 1551.7 | 4.4 |
S7 | 1129.7 | 1528.3 | 55.7 | 372.6 | 7.5 | 631.4 | 2015.5 | 12.5 |
S8 | 1051.6 | 608.3 | 54.0 | 163.9 | 2.4 | 590.2 | 2984.2 | 11.6 |
S9 | 1361.9 | 2401.1 | 78.9 | 310.6 | 10.5 | 349.6 | 2237.4 | 13.8 |
S10 | 354.9 | 364.5 | 64.1 | 127.6 | 1.5 | 155.0 | 1531.8 | 2.9 |
Limited values * | 200 | 300 | 200 | 30 | 3 | 300 | - | - |
Pb | Zn | Cu | As | Cd | Ni | Mn | Sb | pH | Conductivity, µS cm–1 | C, wt.% | H, wt.% | N, wt.% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | 1.000000 | ||||||||||||
Zn | 0.382236 | 1.000000 | |||||||||||
Cu | 0.396471 | −0.041432 | 1.000000 | ||||||||||
As | 0.694510 | −0.162572 | 0.471900 | 1.000000 | |||||||||
Cd | 0.293579 | 0.955152 | 0.037837 | −0.271293 | 1.000000 | ||||||||
Ni | −0.042726 | 0.421713 | −0.553777 | −0.429200 | 0.419457 | 1.000000 | |||||||
Mn | 0.192090 | 0.232873 | −0.116577 | −0.440606 | 0.301268 | 0.178073 | 1.000000 | ||||||
Sb | 0.748591 | −0.127643 | 0.471808 | 0.995539 | −0.236774 | −0.413011 | −0.362021 | 1.000000 | |||||
pH | −0.392258 | −0.074007 | −0.221167 | 0.078777 | −0.125394 | 0.225657 | −0.795204 | 0.006272 | 1.000000 | ||||
Conductivity, µS cm–1 | 0.377315 | −0.015937 | 0.056684 | −0.112253 | 0.041967 | 0.077827 | 0.786382 | −0.033582 | −0.896577 | 1.000000 | |||
C,wt.% | 0.012788 | 0.104689 | −0.509252 | −0.221212 | 0.076021 | 0.546177 | 0.258306 | −0.176810 | −0.164339 | 0.451614 | 1.000000 | ||
H,wt.% | 0.569875 | −0.349644 | 0.470351 | 0.883341 | −0.450701 | −0.589655 | −0.223098 | 0.894385 | −0.117350 | 0.065569 | −0.080523 | 1.000000 | |
N,wt.% | 0.276542 | 0.689743 | −0.521162 | −0.127564 | 0.591499 | 0.579868 | 0.133963 | −0.098062 | −0.090824 | 0.142459 | 0.549599 | −0.310118 | 1.000000 |
CF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Metals | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 |
Pb | 11.52 | 8.12 | 6.27 | 8.57 | 0.34 | 2.83 | 5.65 | 5.26 | 6.81 | 1.77 |
Zn | 2.29 | 2.29 | 1.35 | 5.91 | 0.32 | 0.82 | 5.09 | 2.03 | 8 | 1.21 |
Cu | 0.64 | 0.43 | 0.36 | 0.64 | 0.41 | 0.63 | 0.28 | 0.27 | 0.39 | 0.32 |
As | 142.00 | 21.56 | 20.02 | 12.04 | 1.89 | 5.64 | 12.42 | 5.47 | 10.35 | 4.25 |
Cd | 0.00 | 0.76 | 0.08 | 3.76 | 0 | 0.33 | 2.5 | 0.81 | 3.35 | 0.52 |
Ni | 0.13 | 0.72 | 0.8 | 0.8 | 0.28 | 0.96 | 2.1 | 1.97 | 1.17 | 0.52 |
PLI | ||||||||||
0 | 2.13 | 1.25 | 3.24 | 0 | 1.2 | 2.84 | 1.7 | 3.08 | 1 | |
metals | Igeo | |||||||||
Pb | 3 | 3 | 2 | 3 | 0 | 1 | 2 | 2 | 3 | 1 |
Zn | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 1 | 3 | 0 |
Cu | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
As | 6 | 2 | 4 | 2 | 1 | 2 | 3 | 2 | 3 | 2 |
Cd | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 2 | 0 |
Ni | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeqiri, L.; Ukić, Š.; Ćurković, L.; Djokic, J.; Kerolli Mustafa, M. Distribution of Heavy Metals in the Surrounding Mining Region of Kizhnica in Kosovo. Sustainability 2024, 16, 6721. https://doi.org/10.3390/su16166721
Zeqiri L, Ukić Š, Ćurković L, Djokic J, Kerolli Mustafa M. Distribution of Heavy Metals in the Surrounding Mining Region of Kizhnica in Kosovo. Sustainability. 2024; 16(16):6721. https://doi.org/10.3390/su16166721
Chicago/Turabian StyleZeqiri, Lavdim, Šime Ukić, Lidija Ćurković, Jelena Djokic, and Mihone Kerolli Mustafa. 2024. "Distribution of Heavy Metals in the Surrounding Mining Region of Kizhnica in Kosovo" Sustainability 16, no. 16: 6721. https://doi.org/10.3390/su16166721
APA StyleZeqiri, L., Ukić, Š., Ćurković, L., Djokic, J., & Kerolli Mustafa, M. (2024). Distribution of Heavy Metals in the Surrounding Mining Region of Kizhnica in Kosovo. Sustainability, 16(16), 6721. https://doi.org/10.3390/su16166721